package consul import ( "context" "fmt" "net" "reflect" "strconv" "strings" "sync" "sync/atomic" "time" "github.com/armon/go-metrics" "github.com/armon/go-metrics/prometheus" "github.com/hashicorp/go-hclog" "github.com/hashicorp/go-uuid" "github.com/hashicorp/go-version" "github.com/hashicorp/raft" "github.com/hashicorp/serf/serf" "golang.org/x/time/rate" "github.com/hashicorp/consul/acl" "github.com/hashicorp/consul/agent/metadata" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/consul/agent/structs/aclfilter" "github.com/hashicorp/consul/api" "github.com/hashicorp/consul/lib" "github.com/hashicorp/consul/logging" "github.com/hashicorp/consul/types" ) var LeaderSummaries = []prometheus.SummaryDefinition{ { Name: []string{"leader", "barrier"}, Help: "Measures the time spent waiting for the raft barrier upon gaining leadership.", }, { Name: []string{"leader", "reconcileMember"}, Help: "Measures the time spent updating the raft store for a single serf member's information.", }, { Name: []string{"leader", "reapTombstones"}, Help: "Measures the time spent clearing tombstones.", }, } const ( newLeaderEvent = "consul:new-leader" barrierWriteTimeout = 2 * time.Minute defaultDeletionRoundBurst int = 5 // number replication round bursts defaultDeletionApplyRate rate.Limit = 10 // raft applies per second ) var ( // caRootPruneInterval is how often we check for stale CARoots to remove. caRootPruneInterval = time.Hour // minCentralizedConfigVersion is the minimum Consul version in which centralized // config is supported minCentralizedConfigVersion = version.Must(version.NewVersion("1.5.0")) ) // monitorLeadership is used to monitor if we acquire or lose our role // as the leader in the Raft cluster. There is some work the leader is // expected to do, so we must react to changes func (s *Server) monitorLeadership() { // We use the notify channel we configured Raft with, NOT Raft's // leaderCh, which is only notified best-effort. Doing this ensures // that we get all notifications in order, which is required for // cleanup and to ensure we never run multiple leader loops. raftNotifyCh := s.raftNotifyCh var weAreLeaderCh chan struct{} var leaderLoop sync.WaitGroup for { select { case <-time.After(s.config.MetricsReportingInterval): if s.IsLeader() { metrics.SetGauge([]string{"server", "isLeader"}, float32(1)) } else { metrics.SetGauge([]string{"server", "isLeader"}, float32(0)) } case isLeader := <-raftNotifyCh: switch { case isLeader: if weAreLeaderCh != nil { s.logger.Error("attempted to start the leader loop while running") continue } weAreLeaderCh = make(chan struct{}) leaderLoop.Add(1) go func(ch chan struct{}) { defer leaderLoop.Done() s.leaderLoop(ch) }(weAreLeaderCh) s.logger.Info("cluster leadership acquired") default: if weAreLeaderCh == nil { s.logger.Error("attempted to stop the leader loop while not running") continue } s.logger.Debug("shutting down leader loop") close(weAreLeaderCh) leaderLoop.Wait() weAreLeaderCh = nil s.logger.Info("cluster leadership lost") } case <-s.shutdownCh: return } } } func (s *Server) leadershipTransfer() error { retryCount := 3 for i := 0; i < retryCount; i++ { future := s.raft.LeadershipTransfer() if err := future.Error(); err != nil { s.logger.Error("failed to transfer leadership attempt, will retry", "attempt", i, "retry_limit", retryCount, "error", err, ) } else { s.logger.Info("successfully transferred leadership", "attempt", i, "retry_limit", retryCount, ) return nil } } return fmt.Errorf("failed to transfer leadership in %d attempts", retryCount) } // leaderLoop runs as long as we are the leader to run various // maintenance activities func (s *Server) leaderLoop(stopCh chan struct{}) { stopCtx := &lib.StopChannelContext{StopCh: stopCh} // Fire a user event indicating a new leader payload := []byte(s.config.NodeName) if err := s.LANSendUserEvent(newLeaderEvent, payload, false); err != nil { s.logger.Warn("failed to broadcast new leader event", "error", err) } // Reconcile channel is only used once initial reconcile // has succeeded var reconcileCh chan serf.Member establishedLeader := false RECONCILE: // Setup a reconciliation timer reconcileCh = nil interval := time.After(s.config.ReconcileInterval) // Apply a raft barrier to ensure our FSM is caught up start := time.Now() barrier := s.raft.Barrier(barrierWriteTimeout) if err := barrier.Error(); err != nil { s.logger.Error("failed to wait for barrier", "error", err) goto WAIT } metrics.MeasureSince([]string{"leader", "barrier"}, start) // Check if we need to handle initial leadership actions if !establishedLeader { if err := s.establishLeadership(stopCtx); err != nil { s.logger.Error("failed to establish leadership", "error", err) // Immediately revoke leadership since we didn't successfully // establish leadership. s.revokeLeadership() // attempt to transfer leadership. If successful it is // time to leave the leaderLoop since this node is no // longer the leader. If leadershipTransfer() fails, we // will try to acquire it again after // 5 seconds. if err := s.leadershipTransfer(); err != nil { s.logger.Error("failed to transfer leadership", "error", err) interval = time.After(5 * time.Second) goto WAIT } return } establishedLeader = true defer s.revokeLeadership() } // Reconcile any missing data if err := s.reconcile(); err != nil { s.logger.Error("failed to reconcile", "error", err) goto WAIT } // Initial reconcile worked, now we can process the channel // updates reconcileCh = s.reconcileCh WAIT: // Poll the stop channel to give it priority so we don't waste time // trying to perform the other operations if we have been asked to shut // down. select { case <-stopCh: return default: } // Periodically reconcile as long as we are the leader, // or when Serf events arrive for { select { case <-stopCh: return case <-s.shutdownCh: return case <-interval: goto RECONCILE case member := <-reconcileCh: s.reconcileMember(member) case index := <-s.tombstoneGC.ExpireCh(): go s.reapTombstones(index) case errCh := <-s.reassertLeaderCh: // we can get into this state when the initial // establishLeadership has failed as well as the follow // up leadershipTransfer. Afterwards we will be waiting // for the interval to trigger a reconciliation and can // potentially end up here. There is no point to // reassert because this agent was never leader in the // first place. if !establishedLeader { errCh <- fmt.Errorf("leadership has not been established") continue } // continue to reassert only if we previously were the // leader, which means revokeLeadership followed by an // establishLeadership(). s.revokeLeadership() err := s.establishLeadership(stopCtx) errCh <- err // in case establishLeadership failed, we will try to // transfer leadership. At this time raft thinks we are // the leader, but consul disagrees. if err != nil { if err := s.leadershipTransfer(); err != nil { // establishedLeader was true before, // but it no longer is since it revoked // leadership and Leadership transfer // also failed. Which is why it stays // in the leaderLoop, but now // establishedLeader needs to be set to // false. establishedLeader = false interval = time.After(5 * time.Second) goto WAIT } // leadershipTransfer was successful and it is // time to leave the leaderLoop. return } } } } // establishLeadership is invoked once we become leader and are able // to invoke an initial barrier. The barrier is used to ensure any // previously inflight transactions have been committed and that our // state is up-to-date. func (s *Server) establishLeadership(ctx context.Context) error { start := time.Now() if err := s.initializeACLs(ctx); err != nil { return err } // Hint the tombstone expiration timer. When we freshly establish leadership // we become the authoritative timer, and so we need to start the clock // on any pending GC events. s.tombstoneGC.SetEnabled(true) lastIndex := s.raft.LastIndex() s.tombstoneGC.Hint(lastIndex) // Setup the session timers. This is done both when starting up or when // a leader fail over happens. Since the timers are maintained by the leader // node along, effectively this means all the timers are renewed at the // time of failover. The TTL contract is that the session will not be expired // before the TTL, so expiring it later is allowable. // // This MUST be done after the initial barrier to ensure the latest Sessions // are available to be initialized. Otherwise initialization may use stale // data. if err := s.initializeSessionTimers(); err != nil { return err } if err := s.establishEnterpriseLeadership(ctx); err != nil { return err } s.getOrCreateAutopilotConfig() s.autopilot.EnableReconciliation() s.startConfigReplication(ctx) s.startFederationStateReplication(ctx) s.startFederationStateAntiEntropy(ctx) if s.config.PeeringEnabled { s.startPeeringStreamSync(ctx) } s.startDeferredDeletion(ctx) if err := s.startConnectLeader(ctx); err != nil { return err } // Attempt to bootstrap config entries. We wait until after starting the // Connect leader tasks so we hopefully have transitioned to supporting // service-intentions. if err := s.bootstrapConfigEntries(s.config.ConfigEntryBootstrap); err != nil { return err } s.setConsistentReadReady() s.logger.Debug("successfully established leadership", "duration", time.Since(start)) return nil } // revokeLeadership is invoked once we step down as leader. // This is used to cleanup any state that may be specific to a leader. func (s *Server) revokeLeadership() { // Disable the tombstone GC, since it is only useful as a leader s.tombstoneGC.SetEnabled(false) // Clear the session timers on either shutdown or step down, since we // are no longer responsible for session expirations. s.clearAllSessionTimers() s.revokeEnterpriseLeadership() s.stopFederationStateAntiEntropy() s.stopFederationStateReplication() s.stopConfigReplication() s.stopACLReplication() s.stopPeeringStreamSync() s.stopConnectLeader() s.stopACLTokenReaping() s.stopACLUpgrade() s.resetConsistentReadReady() s.autopilot.DisableReconciliation() } // initializeACLs is used to setup the ACLs if we are the leader // and need to do this. func (s *Server) initializeACLs(ctx context.Context) error { if !s.config.ACLsEnabled { return nil } // Purge the cache, since it could've changed while we were not the // leader. s.ACLResolver.cache.Purge() // Purge the auth method validators since they could've changed while we // were not leader. s.aclAuthMethodValidators.Purge() // Remove any token affected by CVE-2019-8336 if !s.InPrimaryDatacenter() { _, token, err := s.fsm.State().ACLTokenGetBySecret(nil, aclfilter.RedactedToken, nil) if err == nil && token != nil { req := structs.ACLTokenBatchDeleteRequest{ TokenIDs: []string{token.AccessorID}, } _, err := s.raftApply(structs.ACLTokenDeleteRequestType, &req) if err != nil { return fmt.Errorf("failed to remove token with a redacted secret: %v", err) } } } if s.InPrimaryDatacenter() { s.logger.Info("initializing acls") // Create/Upgrade the builtin global-management policy _, policy, err := s.fsm.State().ACLPolicyGetByID(nil, structs.ACLPolicyGlobalManagementID, structs.DefaultEnterpriseMetaInDefaultPartition()) if err != nil { return fmt.Errorf("failed to get the builtin global-management policy") } if policy == nil || policy.Rules != structs.ACLPolicyGlobalManagement { newPolicy := structs.ACLPolicy{ ID: structs.ACLPolicyGlobalManagementID, Name: "global-management", Description: "Builtin Policy that grants unlimited access", Rules: structs.ACLPolicyGlobalManagement, Syntax: acl.SyntaxCurrent, EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(), } if policy != nil { newPolicy.Name = policy.Name newPolicy.Description = policy.Description } newPolicy.SetHash(true) req := structs.ACLPolicyBatchSetRequest{ Policies: structs.ACLPolicies{&newPolicy}, } _, err := s.raftApply(structs.ACLPolicySetRequestType, &req) if err != nil { return fmt.Errorf("failed to create global-management policy: %v", err) } s.logger.Info("Created ACL 'global-management' policy") } // Check for configured initial management token. if initialManagement := s.config.ACLInitialManagementToken; len(initialManagement) > 0 { state := s.fsm.State() if _, err := uuid.ParseUUID(initialManagement); err != nil { s.logger.Warn("Configuring a non-UUID initial management token is deprecated") } _, token, err := state.ACLTokenGetBySecret(nil, initialManagement, nil) if err != nil { return fmt.Errorf("failed to get initial management token: %v", err) } // Ignoring expiration times to avoid an insertion collision. if token == nil { accessor, err := lib.GenerateUUID(s.checkTokenUUID) if err != nil { return fmt.Errorf("failed to generate the accessor ID for the initial management token: %v", err) } token := structs.ACLToken{ AccessorID: accessor, SecretID: initialManagement, Description: "Initial Management Token", Policies: []structs.ACLTokenPolicyLink{ { ID: structs.ACLPolicyGlobalManagementID, }, }, CreateTime: time.Now(), Local: false, EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(), } token.SetHash(true) done := false if canBootstrap, _, err := state.CanBootstrapACLToken(); err == nil && canBootstrap { req := structs.ACLTokenBootstrapRequest{ Token: token, ResetIndex: 0, } if _, err := s.raftApply(structs.ACLBootstrapRequestType, &req); err == nil { s.logger.Info("Bootstrapped ACL initial management token from configuration") done = true } else { if err.Error() != structs.ACLBootstrapNotAllowedErr.Error() && err.Error() != structs.ACLBootstrapInvalidResetIndexErr.Error() { return fmt.Errorf("failed to bootstrap initial management token: %v", err) } } } if !done { // either we didn't attempt to or setting the token with a bootstrap request failed. req := structs.ACLTokenBatchSetRequest{ Tokens: structs.ACLTokens{&token}, CAS: false, } if _, err := s.raftApply(structs.ACLTokenSetRequestType, &req); err != nil { return fmt.Errorf("failed to create initial management token: %v", err) } s.logger.Info("Created ACL initial management token from configuration") } } } state := s.fsm.State() _, token, err := state.ACLTokenGetBySecret(nil, anonymousToken, nil) if err != nil { return fmt.Errorf("failed to get anonymous token: %v", err) } // Ignoring expiration times to avoid an insertion collision. if token == nil { token = &structs.ACLToken{ AccessorID: structs.ACLTokenAnonymousID, SecretID: anonymousToken, Description: "Anonymous Token", CreateTime: time.Now(), EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(), } token.SetHash(true) req := structs.ACLTokenBatchSetRequest{ Tokens: structs.ACLTokens{token}, CAS: false, } _, err := s.raftApply(structs.ACLTokenSetRequestType, &req) if err != nil { return fmt.Errorf("failed to create anonymous token: %v", err) } s.logger.Info("Created ACL anonymous token from configuration") } // launch the upgrade go routine to generate accessors for everything s.startACLUpgrade(ctx) } else { s.startACLReplication(ctx) } s.startACLTokenReaping(ctx) return nil } // legacyACLTokenUpgrade runs a single time to upgrade any tokens that may // have been created immediately before the Consul upgrade, or any legacy tokens // from a restored snapshot. // TODO(ACL-Legacy-Compat): remove in phase 2 func (s *Server) legacyACLTokenUpgrade(ctx context.Context) error { // aclUpgradeRateLimit is the number of batch upgrade requests per second allowed. const aclUpgradeRateLimit rate.Limit = 1.0 // aclUpgradeBatchSize controls how many tokens we look at during each round of upgrading. Individual raft logs // will be further capped using the aclBatchUpsertSize. This limit just prevents us from creating a single slice // with all tokens in it. const aclUpgradeBatchSize = 128 limiter := rate.NewLimiter(aclUpgradeRateLimit, int(aclUpgradeRateLimit)) for { if err := limiter.Wait(ctx); err != nil { return err } // actually run the upgrade here state := s.fsm.State() tokens, _, err := state.ACLTokenListUpgradeable(aclUpgradeBatchSize) if err != nil { s.logger.Warn("encountered an error while searching for tokens without accessor ids", "error", err) } // No need to check expiration time here, as that only exists for v2 tokens. if len(tokens) == 0 { // No new legacy tokens can be created, so we can exit s.stopACLUpgrade() // required to prevent goroutine leak, according to TestAgentLeaks_Server return nil } var newTokens structs.ACLTokens for _, token := range tokens { // This should be entirely unnecessary but is just a small safeguard against changing accessor IDs if token.AccessorID != "" { continue } newToken := *token if token.SecretID == anonymousToken { newToken.AccessorID = structs.ACLTokenAnonymousID } else { accessor, err := lib.GenerateUUID(s.checkTokenUUID) if err != nil { s.logger.Warn("failed to generate accessor during token auto-upgrade", "error", err) continue } newToken.AccessorID = accessor } // Assign the global-management policy to legacy management tokens if len(newToken.Policies) == 0 && len(newToken.ServiceIdentities) == 0 && len(newToken.NodeIdentities) == 0 && len(newToken.Roles) == 0 && newToken.Type == "management" { newToken.Policies = append(newToken.Policies, structs.ACLTokenPolicyLink{ID: structs.ACLPolicyGlobalManagementID}) } // need to copy these as we are going to do a CAS operation. newToken.CreateIndex = token.CreateIndex newToken.ModifyIndex = token.ModifyIndex newToken.SetHash(true) newTokens = append(newTokens, &newToken) } req := &structs.ACLTokenBatchSetRequest{Tokens: newTokens, CAS: true} _, err = s.raftApply(structs.ACLTokenSetRequestType, req) if err != nil { s.logger.Error("failed to apply acl token upgrade batch", "error", err) } } } // TODO(ACL-Legacy-Compat): remove in phase 2. Keeping it for now so that we // can upgrade any tokens created immediately before the upgrade happens. func (s *Server) startACLUpgrade(ctx context.Context) { if s.config.PrimaryDatacenter != s.config.Datacenter { // token upgrades should only run in the primary return } s.leaderRoutineManager.Start(ctx, aclUpgradeRoutineName, s.legacyACLTokenUpgrade) } func (s *Server) stopACLUpgrade() { s.leaderRoutineManager.Stop(aclUpgradeRoutineName) } func (s *Server) startACLReplication(ctx context.Context) { if s.InPrimaryDatacenter() { return } // unlike some other leader routines this initializes some extra state // and therefore we want to prevent re-initialization if things are already // running if s.leaderRoutineManager.IsRunning(aclPolicyReplicationRoutineName) { return } s.initReplicationStatus() s.leaderRoutineManager.Start(ctx, aclPolicyReplicationRoutineName, s.runACLPolicyReplicator) s.leaderRoutineManager.Start(ctx, aclRoleReplicationRoutineName, s.runACLRoleReplicator) if s.config.ACLTokenReplication { s.leaderRoutineManager.Start(ctx, aclTokenReplicationRoutineName, s.runACLTokenReplicator) s.updateACLReplicationStatusRunning(structs.ACLReplicateTokens) } else { s.updateACLReplicationStatusRunning(structs.ACLReplicatePolicies) } } type replicateFunc func(ctx context.Context, logger hclog.Logger, lastRemoteIndex uint64) (uint64, bool, error) // This function is only intended to be run as a managed go routine, it will block until // the context passed in indicates that it should exit. func (s *Server) runACLPolicyReplicator(ctx context.Context) error { policyLogger := s.aclReplicationLogger(structs.ACLReplicatePolicies.SingularNoun()) policyLogger.Info("started ACL Policy replication") return s.runACLReplicator(ctx, policyLogger, structs.ACLReplicatePolicies, s.replicateACLPolicies, "acl-policies") } // This function is only intended to be run as a managed go routine, it will block until // the context passed in indicates that it should exit. func (s *Server) runACLRoleReplicator(ctx context.Context) error { roleLogger := s.aclReplicationLogger(structs.ACLReplicateRoles.SingularNoun()) roleLogger.Info("started ACL Role replication") return s.runACLReplicator(ctx, roleLogger, structs.ACLReplicateRoles, s.replicateACLRoles, "acl-roles") } // This function is only intended to be run as a managed go routine, it will block until // the context passed in indicates that it should exit. func (s *Server) runACLTokenReplicator(ctx context.Context) error { tokenLogger := s.aclReplicationLogger(structs.ACLReplicateTokens.SingularNoun()) tokenLogger.Info("started ACL Token replication") return s.runACLReplicator(ctx, tokenLogger, structs.ACLReplicateTokens, s.replicateACLTokens, "acl-tokens") } // This function is only intended to be run as a managed go routine, it will block until // the context passed in indicates that it should exit. func (s *Server) runACLReplicator( ctx context.Context, logger hclog.Logger, replicationType structs.ACLReplicationType, replicateFunc replicateFunc, metricName string, ) error { var failedAttempts uint limiter := rate.NewLimiter(rate.Limit(s.config.ACLReplicationRate), s.config.ACLReplicationBurst) var lastRemoteIndex uint64 for { if err := limiter.Wait(ctx); err != nil { return err } if s.tokens.ReplicationToken() == "" { continue } index, exit, err := replicateFunc(ctx, logger, lastRemoteIndex) if exit { return nil } if err != nil { metrics.SetGauge([]string{"leader", "replication", metricName, "status"}, 0, ) lastRemoteIndex = 0 s.updateACLReplicationStatusError(err.Error()) logger.Warn("ACL replication error (will retry if still leader)", "error", err, ) if (1 << failedAttempts) < aclReplicationMaxRetryBackoff { failedAttempts++ } select { case <-ctx.Done(): return nil case <-time.After((1 << failedAttempts) * time.Second): // do nothing } } else { metrics.SetGauge([]string{"leader", "replication", metricName, "status"}, 1, ) metrics.SetGauge([]string{"leader", "replication", metricName, "index"}, float32(index), ) lastRemoteIndex = index s.updateACLReplicationStatusIndex(replicationType, index) logger.Debug("ACL replication completed through remote index", "index", index, ) failedAttempts = 0 } } } func (s *Server) aclReplicationLogger(singularNoun string) hclog.Logger { return s.loggers. Named(logging.Replication). Named(logging.ACL). Named(singularNoun) } func (s *Server) stopACLReplication() { // these will be no-ops when not started s.leaderRoutineManager.Stop(aclPolicyReplicationRoutineName) s.leaderRoutineManager.Stop(aclRoleReplicationRoutineName) s.leaderRoutineManager.Stop(aclTokenReplicationRoutineName) } func (s *Server) startDeferredDeletion(ctx context.Context) { if s.config.PeeringEnabled { s.startPeeringDeferredDeletion(ctx) } s.startTenancyDeferredDeletion(ctx) } func (s *Server) stopDeferredDeletion() { s.leaderRoutineManager.Stop(peeringDeletionRoutineName) s.stopTenancyDeferredDeletion() } func (s *Server) startConfigReplication(ctx context.Context) { if s.config.PrimaryDatacenter == "" || s.config.PrimaryDatacenter == s.config.Datacenter { // replication shouldn't run in the primary DC return } s.leaderRoutineManager.Start(ctx, configReplicationRoutineName, s.configReplicator.Run) } func (s *Server) stopConfigReplication() { // will be a no-op when not started s.leaderRoutineManager.Stop(configReplicationRoutineName) } func (s *Server) startFederationStateReplication(ctx context.Context) { if s.config.PrimaryDatacenter == "" || s.config.PrimaryDatacenter == s.config.Datacenter { // replication shouldn't run in the primary DC return } if s.gatewayLocator != nil { s.gatewayLocator.SetUseReplicationSignal(true) s.gatewayLocator.SetLastFederationStateReplicationError(nil, false) } s.leaderRoutineManager.Start(ctx, federationStateReplicationRoutineName, s.federationStateReplicator.Run) } func (s *Server) stopFederationStateReplication() { // will be a no-op when not started s.leaderRoutineManager.Stop(federationStateReplicationRoutineName) if s.gatewayLocator != nil { s.gatewayLocator.SetUseReplicationSignal(false) s.gatewayLocator.SetLastFederationStateReplicationError(nil, false) } } // getOrCreateAutopilotConfig is used to get the autopilot config, initializing it if necessary func (s *Server) getOrCreateAutopilotConfig() *structs.AutopilotConfig { logger := s.loggers.Named(logging.Autopilot) state := s.fsm.State() _, config, err := state.AutopilotConfig() if err != nil { logger.Error("failed to get config", "error", err) return nil } if config != nil { return config } config = s.config.AutopilotConfig req := structs.AutopilotSetConfigRequest{Config: *config} if _, err = s.leaderRaftApply("AutopilotRequest.Apply", structs.AutopilotRequestType, req); err != nil { logger.Error("failed to initialize config", "error", err) return nil } return config } func (s *Server) bootstrapConfigEntries(entries []structs.ConfigEntry) error { if s.config.PrimaryDatacenter != "" && s.config.PrimaryDatacenter != s.config.Datacenter { // only bootstrap in the primary datacenter return nil } if len(entries) < 1 { // nothing to initialize return nil } if ok, _ := ServersInDCMeetMinimumVersion(s, s.config.Datacenter, minCentralizedConfigVersion); !ok { s.loggers. Named(logging.CentralConfig). Warn("config: can't initialize until all servers >=" + minCentralizedConfigVersion.String()) return nil } state := s.fsm.State() // Do some quick preflight checks to see if someone is doing something // that's not allowed at this time: // // - Trying to upgrade from an older pre-1.9.0 version of consul with // intentions AND are trying to bootstrap a service-intentions config entry // at the same time. // // - Trying to insert service-intentions config entries when connect is // disabled. usingConfigEntries, err := s.fsm.State().AreIntentionsInConfigEntries() if err != nil { return fmt.Errorf("Failed to determine if we are migrating intentions yet: %v", err) } if !usingConfigEntries || !s.config.ConnectEnabled { for _, entry := range entries { if entry.GetKind() == structs.ServiceIntentions { if !s.config.ConnectEnabled { return fmt.Errorf("Refusing to apply configuration entry %q / %q because Connect must be enabled to bootstrap intentions", entry.GetKind(), entry.GetName()) } if !usingConfigEntries { return fmt.Errorf("Refusing to apply configuration entry %q / %q because intentions are still being migrated to config entries", entry.GetKind(), entry.GetName()) } } } } for _, entry := range entries { // avoid a round trip through Raft if we know the CAS is going to fail _, existing, err := state.ConfigEntry(nil, entry.GetKind(), entry.GetName(), entry.GetEnterpriseMeta()) if err != nil { return fmt.Errorf("Failed to determine whether the configuration for %q / %q already exists: %v", entry.GetKind(), entry.GetName(), err) } if existing == nil { // ensure the ModifyIndex is set to 0 for the CAS request entry.GetRaftIndex().ModifyIndex = 0 req := structs.ConfigEntryRequest{ Op: structs.ConfigEntryUpsertCAS, Datacenter: s.config.Datacenter, Entry: entry, } _, err := s.leaderRaftApply("ConfigEntry.Apply", structs.ConfigEntryRequestType, &req) if err != nil { return fmt.Errorf("Failed to apply configuration entry %q / %q: %v", entry.GetKind(), entry.GetName(), err) } } } return nil } // reconcileReaped is used to reconcile nodes that have failed and been reaped // from Serf but remain in the catalog. This is done by looking for unknown nodes with serfHealth checks registered. // We generate a "reap" event to cause the node to be cleaned up. func (s *Server) reconcileReaped(known map[string]struct{}, nodeEntMeta *acl.EnterpriseMeta) error { if nodeEntMeta == nil { nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition() } state := s.fsm.State() _, checks, err := state.ChecksInState(nil, api.HealthAny, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } for _, check := range checks { // Ignore any non serf checks if check.CheckID != structs.SerfCheckID { continue } // Check if this node is "known" by serf if _, ok := known[strings.ToLower(check.Node)]; ok { continue } // Get the node services, look for ConsulServiceID _, services, err := state.NodeServices(nil, check.Node, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } serverPort := 0 serverAddr := "" serverID := "" CHECKS: for _, service := range services.Services { if service.ID == structs.ConsulServiceID { _, node, err := state.GetNode(check.Node, nodeEntMeta, check.PeerName) if err != nil { s.logger.Error("Unable to look up node with name", "name", check.Node, "error", err) continue CHECKS } serverAddr = node.Address serverPort = service.Port lookupAddr := net.JoinHostPort(serverAddr, strconv.Itoa(serverPort)) svr := s.serverLookup.Server(raft.ServerAddress(lookupAddr)) if svr != nil { serverID = svr.ID } break } } // Create a fake member member := serf.Member{ Name: check.Node, Tags: map[string]string{ "dc": s.config.Datacenter, "role": "node", }, } addEnterpriseSerfTags(member.Tags, nodeEntMeta) // Create the appropriate tags if this was a server node if serverPort > 0 { member.Tags["role"] = "consul" member.Tags["port"] = strconv.FormatUint(uint64(serverPort), 10) member.Tags["id"] = serverID member.Addr = net.ParseIP(serverAddr) } // Attempt to reap this member if err := s.handleReapMember(member, nodeEntMeta); err != nil { return err } } return nil } // reconcileMember is used to do an async reconcile of a single // serf member func (s *Server) reconcileMember(member serf.Member) error { // Check if this is a member we should handle if !s.shouldHandleMember(member) { s.logger.Warn("skipping reconcile of node", "member", member, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), ) return nil } defer metrics.MeasureSince([]string{"leader", "reconcileMember"}, time.Now()) nodeEntMeta := getSerfMemberEnterpriseMeta(member) var err error switch member.Status { case serf.StatusAlive: err = s.handleAliveMember(member, nodeEntMeta) case serf.StatusFailed: err = s.handleFailedMember(member, nodeEntMeta) case serf.StatusLeft: err = s.handleLeftMember(member, nodeEntMeta) case StatusReap: err = s.handleReapMember(member, nodeEntMeta) } if err != nil { s.logger.Error("failed to reconcile member", "member", member, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), "error", err, ) // Permission denied should not bubble up if acl.IsErrPermissionDenied(err) { return nil } } return nil } // shouldHandleMember checks if this is a Consul pool member func (s *Server) shouldHandleMember(member serf.Member) bool { if valid, dc := isConsulNode(member); valid && dc == s.config.Datacenter { return true } if valid, parts := metadata.IsConsulServer(member); valid && parts.Segment == "" && parts.Datacenter == s.config.Datacenter { return true } return false } // handleAliveMember is used to ensure the node // is registered, with a passing health check. func (s *Server) handleAliveMember(member serf.Member, nodeEntMeta *acl.EnterpriseMeta) error { if nodeEntMeta == nil { nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition() } // Register consul service if a server var service *structs.NodeService if valid, parts := metadata.IsConsulServer(member); valid { service = &structs.NodeService{ ID: structs.ConsulServiceID, Service: structs.ConsulServiceName, Port: parts.Port, Weights: &structs.Weights{ Passing: 1, Warning: 1, }, EnterpriseMeta: *nodeEntMeta, Meta: map[string]string{ // DEPRECATED - remove nonvoter in favor of read_replica in a future version of consul "non_voter": strconv.FormatBool(member.Tags["nonvoter"] == "1"), "read_replica": strconv.FormatBool(member.Tags["read_replica"] == "1"), "raft_version": strconv.Itoa(parts.RaftVersion), "serf_protocol_current": strconv.FormatUint(uint64(member.ProtocolCur), 10), "serf_protocol_min": strconv.FormatUint(uint64(member.ProtocolMin), 10), "serf_protocol_max": strconv.FormatUint(uint64(member.ProtocolMax), 10), "version": parts.Build.String(), }, } grpcPortStr := member.Tags["grpc_port"] if v, err := strconv.Atoi(grpcPortStr); err == nil && v > 0 { service.Meta["grpc_port"] = grpcPortStr } // Attempt to join the consul server if err := s.joinConsulServer(member, parts); err != nil { return err } } // Check if the node exists state := s.fsm.State() _, node, err := state.GetNode(member.Name, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } if node != nil && node.Address == member.Addr.String() { // Check if the associated service is available if service != nil { match := false _, services, err := state.NodeServices(nil, member.Name, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } if services != nil { for id, serv := range services.Services { if id == service.ID { // If metadata are different, be sure to update it match = reflect.DeepEqual(serv.Meta, service.Meta) } } } if !match { goto AFTER_CHECK } } // Check if the serfCheck is in the passing state _, checks, err := state.NodeChecks(nil, member.Name, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } for _, check := range checks { if check.CheckID == structs.SerfCheckID && check.Status == api.HealthPassing { return nil } } } AFTER_CHECK: s.logger.Info("member joined, marking health alive", "member", member.Name, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), ) // Register with the catalog. req := structs.RegisterRequest{ Datacenter: s.config.Datacenter, Node: member.Name, ID: types.NodeID(member.Tags["id"]), Address: member.Addr.String(), Service: service, Check: &structs.HealthCheck{ Node: member.Name, CheckID: structs.SerfCheckID, Name: structs.SerfCheckName, Status: api.HealthPassing, Output: structs.SerfCheckAliveOutput, }, EnterpriseMeta: *nodeEntMeta, } if node != nil { req.TaggedAddresses = node.TaggedAddresses req.NodeMeta = node.Meta } _, err = s.raftApply(structs.RegisterRequestType, &req) return err } // handleFailedMember is used to mark the node's status // as being critical, along with all checks as unknown. func (s *Server) handleFailedMember(member serf.Member, nodeEntMeta *acl.EnterpriseMeta) error { if nodeEntMeta == nil { nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition() } // Check if the node exists state := s.fsm.State() _, node, err := state.GetNode(member.Name, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } if node == nil { s.logger.Info("ignoring failed event for member because it does not exist in the catalog", "member", member.Name, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), ) return nil } if node.Address == member.Addr.String() { // Check if the serfCheck is in the critical state _, checks, err := state.NodeChecks(nil, member.Name, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } for _, check := range checks { if check.CheckID == structs.SerfCheckID && check.Status == api.HealthCritical { return nil } } } s.logger.Info("member failed, marking health critical", "member", member.Name, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), ) // Register with the catalog req := structs.RegisterRequest{ Datacenter: s.config.Datacenter, Node: member.Name, EnterpriseMeta: *nodeEntMeta, ID: types.NodeID(member.Tags["id"]), Address: member.Addr.String(), Check: &structs.HealthCheck{ Node: member.Name, CheckID: structs.SerfCheckID, Name: structs.SerfCheckName, Status: api.HealthCritical, Output: structs.SerfCheckFailedOutput, }, // If there's existing information about the node, do not // clobber it. SkipNodeUpdate: true, } _, err = s.raftApply(structs.RegisterRequestType, &req) return err } // handleLeftMember is used to handle members that gracefully // left. They are deregistered if necessary. func (s *Server) handleLeftMember(member serf.Member, nodeEntMeta *acl.EnterpriseMeta) error { return s.handleDeregisterMember("left", member, nodeEntMeta) } // handleReapMember is used to handle members that have been // reaped after a prolonged failure. They are deregistered. func (s *Server) handleReapMember(member serf.Member, nodeEntMeta *acl.EnterpriseMeta) error { return s.handleDeregisterMember("reaped", member, nodeEntMeta) } // handleDeregisterMember is used to deregister a member of a given reason func (s *Server) handleDeregisterMember(reason string, member serf.Member, nodeEntMeta *acl.EnterpriseMeta) error { if nodeEntMeta == nil { nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition() } // Do not deregister ourself. This can only happen if the current leader // is leaving. Instead, we should allow a follower to take-over and // deregister us later. // // TODO(partitions): check partitions here too? server names should be unique in general though if strings.EqualFold(member.Name, s.config.NodeName) { s.logger.Warn("deregistering self should be done by follower", "name", s.config.NodeName, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), ) return nil } // Remove from Raft peers if this was a server if valid, _ := metadata.IsConsulServer(member); valid { if err := s.removeConsulServer(member); err != nil { return err } } // Check if the node does not exist state := s.fsm.State() _, node, err := state.GetNode(member.Name, nodeEntMeta, structs.DefaultPeerKeyword) if err != nil { return err } if node == nil { return nil } // Deregister the node s.logger.Info("deregistering member", "member", member.Name, "partition", getSerfMemberEnterpriseMeta(member).PartitionOrDefault(), "reason", reason, ) req := structs.DeregisterRequest{ Datacenter: s.config.Datacenter, Node: member.Name, EnterpriseMeta: *nodeEntMeta, } _, err = s.raftApply(structs.DeregisterRequestType, &req) return err } // joinConsulServer is used to try to join another consul server func (s *Server) joinConsulServer(m serf.Member, parts *metadata.Server) error { // Check for possibility of multiple bootstrap nodes if parts.Bootstrap { members := s.serfLAN.Members() for _, member := range members { valid, p := metadata.IsConsulServer(member) if valid && member.Name != m.Name && p.Bootstrap { s.logger.Error("Two nodes are in bootstrap mode. Only one node should be in bootstrap mode, not adding Raft peer.", "node_to_add", m.Name, "other", member.Name, ) return nil } } } // We used to do a check here and prevent adding the server if the cluster size was too small (1 or 2 servers) as a means // of preventing the case where we may remove ourselves and cause a loss of leadership. The Autopilot AddServer function // will now handle simple address updates better and so long as the address doesn't conflict with another node // it will not require a removal but will instead just update the address. If it would require a removal of other nodes // due to conflicts then the logic regarding cluster sizes will kick in and prevent doing anything dangerous that could // cause loss of leadership. // get the autpilot library version of a server from the serf member apServer, err := s.autopilotServer(m) if err != nil { return err } // now ask autopilot to add it return s.autopilot.AddServer(apServer) } // removeConsulServer is used to try to remove a consul server that has left func (s *Server) removeConsulServer(m serf.Member) error { server, err := s.autopilotServer(m) if err != nil || server == nil { return err } return s.autopilot.RemoveServer(server.ID) } // reapTombstones is invoked by the current leader to manage garbage // collection of tombstones. When a key is deleted, we trigger a tombstone // GC clock. Once the expiration is reached, this routine is invoked // to clear all tombstones before this index. This must be replicated // through Raft to ensure consistency. We do this outside the leader loop // to avoid blocking. func (s *Server) reapTombstones(index uint64) { defer metrics.MeasureSince([]string{"leader", "reapTombstones"}, time.Now()) req := structs.TombstoneRequest{ Datacenter: s.config.Datacenter, Op: structs.TombstoneReap, ReapIndex: index, } _, err := s.raftApply(structs.TombstoneRequestType, &req) if err != nil { s.logger.Error("failed to reap tombstones up to index", "index", index, "error", err, ) } } func (s *Server) setDatacenterSupportsFederationStates() { atomic.StoreInt32(&s.dcSupportsFederationStates, 1) } func (s *Server) DatacenterSupportsFederationStates() bool { if atomic.LoadInt32(&s.dcSupportsFederationStates) != 0 { return true } state := serversFederationStatesInfo{ supported: true, found: false, } // if we are in a secondary, check if they are supported in the primary dc if s.config.PrimaryDatacenter != s.config.Datacenter { s.router.CheckServers(s.config.PrimaryDatacenter, state.update) if !state.supported || !state.found { s.logger.Debug("federation states are not enabled in the primary dc") return false } } // check the servers in the local DC s.router.CheckServers(s.config.Datacenter, state.update) if state.supported && state.found { s.setDatacenterSupportsFederationStates() return true } s.logger.Debug("federation states are not enabled in this datacenter", "datacenter", s.config.Datacenter) return false } type serversFederationStatesInfo struct { // supported indicates whether every processed server supports federation states supported bool // found indicates that at least one server was processed found bool } func (s *serversFederationStatesInfo) update(srv *metadata.Server) bool { if srv.Status != serf.StatusAlive && srv.Status != serf.StatusFailed { // they are left or something so regardless we treat these servers as meeting // the version requirement return true } // mark that we processed at least one server s.found = true if supported, ok := srv.FeatureFlags["fs"]; ok && supported == 1 { return true } // mark that at least one server does not support federation states s.supported = false // prevent continuing server evaluation return false } func (s *Server) setDatacenterSupportsIntentionsAsConfigEntries() { atomic.StoreInt32(&s.dcSupportsIntentionsAsConfigEntries, 1) } func (s *Server) DatacenterSupportsIntentionsAsConfigEntries() bool { if atomic.LoadInt32(&s.dcSupportsIntentionsAsConfigEntries) != 0 { return true } state := serversIntentionsAsConfigEntriesInfo{ supported: true, found: false, } // if we are in a secondary, check if they are supported in the primary dc if s.config.PrimaryDatacenter != s.config.Datacenter { s.router.CheckServers(s.config.PrimaryDatacenter, state.update) if !state.supported || !state.found { s.logger.Debug("intentions have not been migrated to config entries in the primary dc yet") return false } } // check the servers in the local DC s.router.CheckServers(s.config.Datacenter, state.update) if state.supported && state.found { s.setDatacenterSupportsIntentionsAsConfigEntries() return true } s.logger.Debug("intentions cannot be migrated to config entries in this datacenter", "datacenter", s.config.Datacenter) return false } type serversIntentionsAsConfigEntriesInfo struct { // supported indicates whether every processed server supports intentions as config entries supported bool // found indicates that at least one server was processed found bool } func (s *serversIntentionsAsConfigEntriesInfo) update(srv *metadata.Server) bool { if srv.Status != serf.StatusAlive && srv.Status != serf.StatusFailed { // they are left or something so regardless we treat these servers as meeting // the version requirement return true } // mark that we processed at least one server s.found = true if supported, ok := srv.FeatureFlags["si"]; ok && supported == 1 { return true } // mark that at least one server does not support service-intentions s.supported = false // prevent continuing server evaluation return false }