package consul import ( "crypto/tls" "errors" "fmt" "log" "net" "net/rpc" "os" "path/filepath" "reflect" "runtime" "strconv" "sync" "time" "github.com/hashicorp/raft" "github.com/hashicorp/raft-mdb" "github.com/hashicorp/serf/serf" ) // These are the protocol versions that Consul can _understand_. These are // Consul-level protocol versions, that are used to configure the Serf // protocol versions. const ( ProtocolVersionMin uint8 = 1 ProtocolVersionMax = 2 ) const ( serfLANSnapshot = "serf/local.snapshot" serfWANSnapshot = "serf/remote.snapshot" raftState = "raft/" snapshotsRetained = 2 raftDBSize32bit uint64 = 128 * 1024 * 1024 // Limit Raft log to 128MB raftDBSize64bit uint64 = 8 * 1024 * 1024 * 1024 // Limit Raft log to 8GB // serverRPCCache controls how long we keep an idle connection // open to a server serverRPCCache = 2 * time.Minute // serverMaxStreams controsl how many idle streams we keep // open to a server serverMaxStreams = 64 ) // Server is Consul server which manages the service discovery, // health checking, DC forwarding, Raft, and multiple Serf pools. type Server struct { config *Config // Connection pool to other consul servers connPool *ConnPool // Endpoints holds our RPC endpoints endpoints endpoints // eventChLAN is used to receive events from the // serf cluster in the datacenter eventChLAN chan serf.Event // eventChWAN is used to receive events from the // serf cluster that spans datacenters eventChWAN chan serf.Event // fsm is the state machine used with Raft to provide // strong consistency. fsm *consulFSM // Have we attempted to leave the cluster left bool // localConsuls is used to track the known consuls // in the local data center. Used to do leader forwarding. localConsuls map[string]*serverParts localLock sync.RWMutex // Logger uses the provided LogOutput logger *log.Logger // The raft instance is used among Consul nodes within the // DC to protect operations that require strong consistency raft *raft.Raft raftLayer *RaftLayer raftPeers raft.PeerStore raftStore *raftmdb.MDBStore raftTransport *raft.NetworkTransport // reconcileCh is used to pass events from the serf handler // into the leader manager, so that the strong state can be // updated reconcileCh chan serf.Member // remoteConsuls is used to track the known consuls in // remote data centers. Used to do DC forwarding. remoteConsuls map[string][]*serverParts remoteLock sync.RWMutex // rpcListener is used to listen for incoming connections rpcListener net.Listener rpcServer *rpc.Server // rpcTLS is the TLS config for incoming TLS requests rpcTLS *tls.Config // serfLAN is the Serf cluster maintained inside the DC // which contains all the DC nodes serfLAN *serf.Serf // serfWAN is the Serf cluster maintained between DC's // which SHOULD only consist of Consul servers serfWAN *serf.Serf shutdown bool shutdownCh chan struct{} shutdownLock sync.Mutex } // Holds the RPC endpoints type endpoints struct { Catalog *Catalog Health *Health Status *Status KVS *KVS Session *Session Internal *Internal } // NewServer is used to construct a new Consul server from the // configuration, potentially returning an error func NewServer(config *Config) (*Server, error) { // Check the protocol version if err := config.CheckVersion(); err != nil { return nil, err } // Check for a data directory! if config.DataDir == "" { return nil, fmt.Errorf("Config must provide a DataDir") } // Ensure we have a log output if config.LogOutput == nil { config.LogOutput = os.Stderr } // Create the tlsConfig for outgoing connections tlsConfig, err := config.OutgoingTLSConfig() if err != nil { return nil, err } // Get the incoming tls config incomingTLS, err := config.IncomingTLSConfig() if err != nil { return nil, err } // Create a logger logger := log.New(config.LogOutput, "", log.LstdFlags) // Create server s := &Server{ config: config, connPool: NewPool(config.LogOutput, serverRPCCache, serverMaxStreams, tlsConfig), eventChLAN: make(chan serf.Event, 256), eventChWAN: make(chan serf.Event, 256), localConsuls: make(map[string]*serverParts), logger: logger, reconcileCh: make(chan serf.Member, 32), remoteConsuls: make(map[string][]*serverParts), rpcServer: rpc.NewServer(), rpcTLS: incomingTLS, shutdownCh: make(chan struct{}), } // Initialize the RPC layer if err := s.setupRPC(tlsConfig); err != nil { s.Shutdown() return nil, fmt.Errorf("Failed to start RPC layer: %v", err) } // Initialize the Raft server if err := s.setupRaft(); err != nil { s.Shutdown() return nil, fmt.Errorf("Failed to start Raft: %v", err) } // Initialize the lan Serf s.serfLAN, err = s.setupSerf(config.SerfLANConfig, s.eventChLAN, serfLANSnapshot, false) if err != nil { s.Shutdown() return nil, fmt.Errorf("Failed to start lan serf: %v", err) } go s.lanEventHandler() // Initialize the wan Serf s.serfWAN, err = s.setupSerf(config.SerfWANConfig, s.eventChWAN, serfWANSnapshot, true) if err != nil { s.Shutdown() return nil, fmt.Errorf("Failed to start wan serf: %v", err) } go s.wanEventHandler() // Start listening for RPC requests go s.listen() return s, nil } // setupSerf is used to setup and initialize a Serf func (s *Server) setupSerf(conf *serf.Config, ch chan serf.Event, path string, wan bool) (*serf.Serf, error) { addr := s.rpcListener.Addr().(*net.TCPAddr) conf.Init() if wan { conf.NodeName = fmt.Sprintf("%s.%s", s.config.NodeName, s.config.Datacenter) } else { conf.NodeName = s.config.NodeName } conf.Tags["role"] = "consul" conf.Tags["dc"] = s.config.Datacenter conf.Tags["vsn"] = fmt.Sprintf("%d", s.config.ProtocolVersion) conf.Tags["vsn_min"] = fmt.Sprintf("%d", ProtocolVersionMin) conf.Tags["vsn_max"] = fmt.Sprintf("%d", ProtocolVersionMax) conf.Tags["build"] = s.config.Build conf.Tags["port"] = fmt.Sprintf("%d", addr.Port) if s.config.Bootstrap { conf.Tags["bootstrap"] = "1" } if s.config.BootstrapExpect != 0 { conf.Tags["expect"] = fmt.Sprintf("%d", s.config.BootstrapExpect) } conf.MemberlistConfig.LogOutput = s.config.LogOutput conf.LogOutput = s.config.LogOutput conf.EventCh = ch conf.SnapshotPath = filepath.Join(s.config.DataDir, path) conf.ProtocolVersion = protocolVersionMap[s.config.ProtocolVersion] conf.RejoinAfterLeave = s.config.RejoinAfterLeave // Until Consul supports this fully, we disable automatic resolution. // When enabled, the Serf gossip may just turn off if we are the minority // node which is rather unexpected. conf.EnableNameConflictResolution = false if err := ensurePath(conf.SnapshotPath, false); err != nil { return nil, err } return serf.Create(conf) } // setupRaft is used to setup and initialize Raft func (s *Server) setupRaft() error { // If we are in bootstrap mode, enable a single node cluster if s.config.Bootstrap { s.config.RaftConfig.EnableSingleNode = true } // Create the base path path := filepath.Join(s.config.DataDir, raftState) if err := ensurePath(path, true); err != nil { return err } // Create the FSM var err error s.fsm, err = NewFSM(s.config.LogOutput) if err != nil { return err } // Set the maximum raft size based on 32/64bit. Since we are // doing an mmap underneath, we need to limit our use of virtual // address space on 32bit, but don't have to care on 64bit. dbSize := raftDBSize32bit if runtime.GOARCH == "amd64" { dbSize = raftDBSize64bit } // Create the MDB store for logs and stable storage store, err := raftmdb.NewMDBStoreWithSize(path, dbSize) if err != nil { return err } s.raftStore = store // Create the snapshot store snapshots, err := raft.NewFileSnapshotStore(path, snapshotsRetained, s.config.LogOutput) if err != nil { store.Close() return err } // Create a transport layer trans := raft.NewNetworkTransport(s.raftLayer, 3, 10*time.Second, s.config.LogOutput) s.raftTransport = trans // Setup the peer store s.raftPeers = raft.NewJSONPeers(path, trans) // Ensure local host is always included if we are in bootstrap mode if s.config.Bootstrap { peers, err := s.raftPeers.Peers() if err != nil { store.Close() return err } if !raft.PeerContained(peers, trans.LocalAddr()) { s.raftPeers.SetPeers(raft.AddUniquePeer(peers, trans.LocalAddr())) } } // Make sure we set the LogOutput s.config.RaftConfig.LogOutput = s.config.LogOutput // Setup the Raft store s.raft, err = raft.NewRaft(s.config.RaftConfig, s.fsm, store, store, snapshots, s.raftPeers, trans) if err != nil { store.Close() trans.Close() return err } // Start monitoring leadership go s.monitorLeadership() return nil } // setupRPC is used to setup the RPC listener func (s *Server) setupRPC(tlsConfig *tls.Config) error { // Create endpoints s.endpoints.Status = &Status{s} s.endpoints.Catalog = &Catalog{s} s.endpoints.Health = &Health{s} s.endpoints.KVS = &KVS{s} s.endpoints.Session = &Session{s} s.endpoints.Internal = &Internal{s} // Register the handlers s.rpcServer.Register(s.endpoints.Status) s.rpcServer.Register(s.endpoints.Catalog) s.rpcServer.Register(s.endpoints.Health) s.rpcServer.Register(s.endpoints.KVS) s.rpcServer.Register(s.endpoints.Session) s.rpcServer.Register(s.endpoints.Internal) list, err := net.ListenTCP("tcp", s.config.RPCAddr) if err != nil { return err } s.rpcListener = list var advertise net.Addr if s.config.RPCAdvertise != nil { advertise = s.config.RPCAdvertise } else { advertise = s.rpcListener.Addr() } // Verify that we have a usable advertise address addr, ok := advertise.(*net.TCPAddr) if !ok { list.Close() return fmt.Errorf("RPC advertise address is not a TCP Address: %v", addr) } if addr.IP.IsUnspecified() { list.Close() return fmt.Errorf("RPC advertise address is not advertisable: %v", addr) } s.raftLayer = NewRaftLayer(advertise, tlsConfig) return nil } // Shutdown is used to shutdown the server func (s *Server) Shutdown() error { s.logger.Printf("[INFO] consul: shutting down server") s.shutdownLock.Lock() defer s.shutdownLock.Unlock() if s.shutdown { return nil } s.shutdown = true close(s.shutdownCh) if s.serfLAN != nil { s.serfLAN.Shutdown() } if s.serfWAN != nil { s.serfWAN.Shutdown() } if s.raft != nil { s.raftTransport.Close() s.raftLayer.Close() future := s.raft.Shutdown() if err := future.Error(); err != nil { s.logger.Printf("[WARN] consul: Error shutting down raft: %s", err) } s.raftStore.Close() // Clear the peer set on a graceful leave to avoid // triggering elections on a rejoin. if s.left { s.raftPeers.SetPeers(nil) } } if s.rpcListener != nil { s.rpcListener.Close() } // Close the connection pool s.connPool.Shutdown() // Close the fsm if s.fsm != nil { s.fsm.Close() } return nil } // Leave is used to prepare for a graceful shutdown of the server func (s *Server) Leave() error { s.logger.Printf("[INFO] consul: server starting leave") s.left = true // Leave the WAN pool if s.serfWAN != nil { if err := s.serfWAN.Leave(); err != nil { s.logger.Printf("[ERR] consul: failed to leave WAN Serf cluster: %v", err) } } // Leave the LAN pool if s.serfLAN != nil { if err := s.serfLAN.Leave(); err != nil { s.logger.Printf("[ERR] consul: failed to leave LAN Serf cluster: %v", err) } } return nil } // JoinLAN is used to have Consul join the inner-DC pool // The target address should be another node inside the DC // listening on the Serf LAN address func (s *Server) JoinLAN(addrs []string) (int, error) { return s.serfLAN.Join(addrs, true) } // JoinWAN is used to have Consul join the cross-WAN Consul ring // The target address should be another node listening on the // Serf WAN address func (s *Server) JoinWAN(addrs []string) (int, error) { return s.serfWAN.Join(addrs, true) } // LocalMember is used to return the local node func (c *Server) LocalMember() serf.Member { return c.serfLAN.LocalMember() } // LANMembers is used to return the members of the LAN cluster func (s *Server) LANMembers() []serf.Member { return s.serfLAN.Members() } // WANMembers is used to return the members of the LAN cluster func (s *Server) WANMembers() []serf.Member { return s.serfWAN.Members() } // RemoveFailedNode is used to remove a failed node from the cluster func (s *Server) RemoveFailedNode(node string) error { if err := s.serfLAN.RemoveFailedNode(node); err != nil { return err } if err := s.serfWAN.RemoveFailedNode(node); err != nil { return err } return nil } // IsLeader checks if this server is the cluster leader func (s *Server) IsLeader() bool { return s.raft.State() == raft.Leader } // inmemCodec is used to do an RPC call without going over a network type inmemCodec struct { method string args interface{} reply interface{} err error } func (i *inmemCodec) ReadRequestHeader(req *rpc.Request) error { req.ServiceMethod = i.method return nil } func (i *inmemCodec) ReadRequestBody(args interface{}) error { sourceValue := reflect.Indirect(reflect.Indirect(reflect.ValueOf(i.args))) dst := reflect.Indirect(reflect.Indirect(reflect.ValueOf(args))) dst.Set(sourceValue) return nil } func (i *inmemCodec) WriteResponse(resp *rpc.Response, reply interface{}) error { if resp.Error != "" { i.err = errors.New(resp.Error) return nil } sourceValue := reflect.Indirect(reflect.Indirect(reflect.ValueOf(reply))) dst := reflect.Indirect(reflect.Indirect(reflect.ValueOf(i.reply))) dst.Set(sourceValue) return nil } func (i *inmemCodec) Close() error { return nil } // RPC is used to make a local RPC call func (s *Server) RPC(method string, args interface{}, reply interface{}) error { codec := &inmemCodec{ method: method, args: args, reply: reply, } if err := s.rpcServer.ServeRequest(codec); err != nil { return err } return codec.err } // Stats is used to return statistics for debugging and insight // for various sub-systems func (s *Server) Stats() map[string]map[string]string { toString := func(v uint64) string { return strconv.FormatUint(v, 10) } stats := map[string]map[string]string{ "consul": map[string]string{ "server": "true", "leader": fmt.Sprintf("%v", s.IsLeader()), "bootstrap": fmt.Sprintf("%v", s.config.Bootstrap), "known_datacenters": toString(uint64(len(s.remoteConsuls))), }, "raft": s.raft.Stats(), "serf_lan": s.serfLAN.Stats(), "serf_wan": s.serfWAN.Stats(), "runtime": runtimeStats(), } return stats }