package consul import ( "crypto/tls" "fmt" "io" "net" "strings" "time" "github.com/armon/go-metrics" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/metadata" "github.com/hashicorp/consul/agent/pool" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/consul/lib" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/memberlist" "github.com/hashicorp/net-rpc-msgpackrpc" "github.com/hashicorp/yamux" ) const ( // maxQueryTime is used to bound the limit of a blocking query maxQueryTime = 600 * time.Second // defaultQueryTime is the amount of time we block waiting for a change // if no time is specified. Previously we would wait the maxQueryTime. defaultQueryTime = 300 * time.Second // jitterFraction is a the limit to the amount of jitter we apply // to a user specified MaxQueryTime. We divide the specified time by // the fraction. So 16 == 6.25% limit of jitter. This same fraction // is applied to the RPCHoldTimeout jitterFraction = 16 // Warn if the Raft command is larger than this. // If it's over 1MB something is probably being abusive. raftWarnSize = 1024 * 1024 // enqueueLimit caps how long we will wait to enqueue // a new Raft command. Something is probably wrong if this // value is ever reached. However, it prevents us from blocking // the requesting goroutine forever. enqueueLimit = 30 * time.Second ) // listen is used to listen for incoming RPC connections func (s *Server) listen(listener net.Listener) { for { // Accept a connection conn, err := listener.Accept() if err != nil { if s.shutdown { return } s.logger.Printf("[ERR] consul.rpc: failed to accept RPC conn: %v", err) continue } go s.handleConn(conn, false) metrics.IncrCounter([]string{"consul", "rpc", "accept_conn"}, 1) metrics.IncrCounter([]string{"rpc", "accept_conn"}, 1) } } // logConn is a wrapper around memberlist's LogConn so that we format references // to "from" addresses in a consistent way. This is just a shorter name. func logConn(conn net.Conn) string { return memberlist.LogConn(conn) } // handleConn is used to determine if this is a Raft or // Consul type RPC connection and invoke the correct handler func (s *Server) handleConn(conn net.Conn, isTLS bool) { // Read a single byte buf := make([]byte, 1) if _, err := conn.Read(buf); err != nil { if err != io.EOF { s.logger.Printf("[ERR] consul.rpc: failed to read byte: %v %s", err, logConn(conn)) } conn.Close() return } typ := pool.RPCType(buf[0]) // Enforce TLS if VerifyIncoming is set if s.config.VerifyIncoming && !isTLS && typ != pool.RPCTLS { s.logger.Printf("[WARN] consul.rpc: Non-TLS connection attempted with VerifyIncoming set %s", logConn(conn)) conn.Close() return } // Switch on the byte switch typ { case pool.RPCConsul: s.handleConsulConn(conn) case pool.RPCRaft: metrics.IncrCounter([]string{"consul", "rpc", "raft_handoff"}, 1) metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1) s.raftLayer.Handoff(conn) case pool.RPCTLS: if s.rpcTLS == nil { s.logger.Printf("[WARN] consul.rpc: TLS connection attempted, server not configured for TLS %s", logConn(conn)) conn.Close() return } conn = tls.Server(conn, s.rpcTLS) s.handleConn(conn, true) case pool.RPCMultiplexV2: s.handleMultiplexV2(conn) case pool.RPCSnapshot: s.handleSnapshotConn(conn) default: s.logger.Printf("[ERR] consul.rpc: unrecognized RPC byte: %v %s", typ, logConn(conn)) conn.Close() return } } // handleMultiplexV2 is used to multiplex a single incoming connection // using the Yamux multiplexer func (s *Server) handleMultiplexV2(conn net.Conn) { defer conn.Close() conf := yamux.DefaultConfig() conf.LogOutput = s.config.LogOutput server, _ := yamux.Server(conn, conf) for { sub, err := server.Accept() if err != nil { if err != io.EOF { s.logger.Printf("[ERR] consul.rpc: multiplex conn accept failed: %v %s", err, logConn(conn)) } return } go s.handleConsulConn(sub) } } // handleConsulConn is used to service a single Consul RPC connection func (s *Server) handleConsulConn(conn net.Conn) { defer conn.Close() rpcCodec := msgpackrpc.NewServerCodec(conn) for { select { case <-s.shutdownCh: return default: } if err := s.rpcServer.ServeRequest(rpcCodec); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") { s.logger.Printf("[ERR] consul.rpc: RPC error: %v %s", err, logConn(conn)) metrics.IncrCounter([]string{"consul", "rpc", "request_error"}, 1) metrics.IncrCounter([]string{"rpc", "request_error"}, 1) } return } metrics.IncrCounter([]string{"consul", "rpc", "request"}, 1) metrics.IncrCounter([]string{"rpc", "request"}, 1) } } // handleSnapshotConn is used to dispatch snapshot saves and restores, which // stream so don't use the normal RPC mechanism. func (s *Server) handleSnapshotConn(conn net.Conn) { go func() { defer conn.Close() if err := s.handleSnapshotRequest(conn); err != nil { s.logger.Printf("[ERR] consul.rpc: Snapshot RPC error: %v %s", err, logConn(conn)) } }() } // forward is used to forward to a remote DC or to forward to the local leader // Returns a bool of if forwarding was performed, as well as any error func (s *Server) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) { var firstCheck time.Time // Handle DC forwarding dc := info.RequestDatacenter() if dc != s.config.Datacenter { err := s.forwardDC(method, dc, args, reply) return true, err } // Check if we can allow a stale read if info.IsRead() && info.AllowStaleRead() { return false, nil } CHECK_LEADER: // Find the leader isLeader, remoteServer := s.getLeader() // Handle the case we are the leader if isLeader { return false, nil } // Handle the case of a known leader if remoteServer != nil { err := s.forwardLeader(remoteServer, method, args, reply) return true, err } // Gate the request until there is a leader if firstCheck.IsZero() { firstCheck = time.Now() } if time.Now().Sub(firstCheck) < s.config.RPCHoldTimeout { jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction) select { case <-time.After(jitter): goto CHECK_LEADER case <-s.shutdownCh: } } // No leader found and hold time exceeded return true, structs.ErrNoLeader } // getLeader returns if the current node is the leader, and if not then it // returns the leader which is potentially nil if the cluster has not yet // elected a leader. func (s *Server) getLeader() (bool, *metadata.Server) { // Check if we are the leader if s.IsLeader() { return true, nil } // Get the leader leader := s.raft.Leader() if leader == "" { return false, nil } // Lookup the server server := s.serverLookup.Server(leader) // Server could be nil return false, server } // forwardLeader is used to forward an RPC call to the leader, or fail if no leader func (s *Server) forwardLeader(server *metadata.Server, method string, args interface{}, reply interface{}) error { // Handle a missing server if server == nil { return structs.ErrNoLeader } return s.connPool.RPC(s.config.Datacenter, server.Addr, server.Version, method, server.UseTLS, args, reply) } // forwardDC is used to forward an RPC call to a remote DC, or fail if no servers func (s *Server) forwardDC(method, dc string, args interface{}, reply interface{}) error { manager, server, ok := s.router.FindRoute(dc) if !ok { s.logger.Printf("[WARN] consul.rpc: RPC request for DC %q, no path found", dc) return structs.ErrNoDCPath } metrics.IncrCounterWithLabels([]string{"consul", "rpc", "cross-dc"}, 1, []metrics.Label{{Name: "datacenter", Value: dc}}) metrics.IncrCounterWithLabels([]string{"rpc", "cross-dc"}, 1, []metrics.Label{{Name: "datacenter", Value: dc}}) if err := s.connPool.RPC(dc, server.Addr, server.Version, method, server.UseTLS, args, reply); err != nil { manager.NotifyFailedServer(server) s.logger.Printf("[ERR] consul: RPC failed to server %s in DC %q: %v", server.Addr, dc, err) return err } return nil } // globalRPC is used to forward an RPC request to one server in each datacenter. // This will only error for RPC-related errors. Otherwise, application-level // errors can be sent in the response objects. func (s *Server) globalRPC(method string, args interface{}, reply structs.CompoundResponse) error { errorCh := make(chan error) respCh := make(chan interface{}) // Make a new request into each datacenter dcs := s.router.GetDatacenters() for _, dc := range dcs { go func(dc string) { rr := reply.New() if err := s.forwardDC(method, dc, args, &rr); err != nil { errorCh <- err return } respCh <- rr }(dc) } replies, total := 0, len(dcs) for replies < total { select { case err := <-errorCh: return err case rr := <-respCh: reply.Add(rr) replies++ } } return nil } // raftApply is used to encode a message, run it through raft, and return // the FSM response along with any errors func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, error) { buf, err := structs.Encode(t, msg) if err != nil { return nil, fmt.Errorf("Failed to encode request: %v", err) } // Warn if the command is very large if n := len(buf); n > raftWarnSize { s.logger.Printf("[WARN] consul: Attempting to apply large raft entry (%d bytes)", n) } future := s.raft.Apply(buf, enqueueLimit) if err := future.Error(); err != nil { return nil, err } return future.Response(), nil } // queryFn is used to perform a query operation. If a re-query is needed, the // passed-in watch set will be used to block for changes. The passed-in state // store should be used (vs. calling fsm.State()) since the given state store // will be correctly watched for changes if the state store is restored from // a snapshot. type queryFn func(memdb.WatchSet, *state.Store) error // blockingQuery is used to process a potentially blocking query operation. func (s *Server) blockingQuery(queryOpts *structs.QueryOptions, queryMeta *structs.QueryMeta, fn queryFn) error { var timeout *time.Timer // Fast path right to the non-blocking query. if queryOpts.MinQueryIndex == 0 { goto RUN_QUERY } // Restrict the max query time, and ensure there is always one. if queryOpts.MaxQueryTime > maxQueryTime { queryOpts.MaxQueryTime = maxQueryTime } else if queryOpts.MaxQueryTime <= 0 { queryOpts.MaxQueryTime = defaultQueryTime } // Apply a small amount of jitter to the request. queryOpts.MaxQueryTime += lib.RandomStagger(queryOpts.MaxQueryTime / jitterFraction) // Setup a query timeout. timeout = time.NewTimer(queryOpts.MaxQueryTime) defer timeout.Stop() RUN_QUERY: // Update the query metadata. s.setQueryMeta(queryMeta) // If the read must be consistent we verify that we are still the leader. if queryOpts.RequireConsistent { if err := s.consistentRead(); err != nil { return err } } // Run the query. metrics.IncrCounter([]string{"consul", "rpc", "query"}, 1) metrics.IncrCounter([]string{"rpc", "query"}, 1) // Operate on a consistent set of state. This makes sure that the // abandon channel goes with the state that the caller is using to // build watches. state := s.fsm.State() // We can skip all watch tracking if this isn't a blocking query. var ws memdb.WatchSet if queryOpts.MinQueryIndex > 0 { ws = memdb.NewWatchSet() // This channel will be closed if a snapshot is restored and the // whole state store is abandoned. ws.Add(state.AbandonCh()) } // Block up to the timeout if we didn't see anything fresh. err := fn(ws, state) if err == nil && queryMeta.Index > 0 && queryMeta.Index <= queryOpts.MinQueryIndex { if expired := ws.Watch(timeout.C); !expired { // If a restore may have woken us up then bail out from // the query immediately. This is slightly race-ey since // this might have been interrupted for other reasons, // but it's OK to kick it back to the caller in either // case. select { case <-state.AbandonCh(): default: goto RUN_QUERY } } } return err } // setQueryMeta is used to populate the QueryMeta data for an RPC call func (s *Server) setQueryMeta(m *structs.QueryMeta) { if s.IsLeader() { m.LastContact = 0 m.KnownLeader = true } else { m.LastContact = time.Now().Sub(s.raft.LastContact()) m.KnownLeader = (s.raft.Leader() != "") } } // consistentRead is used to ensure we do not perform a stale // read. This is done by verifying leadership before the read. func (s *Server) consistentRead() error { defer metrics.MeasureSince([]string{"consul", "rpc", "consistentRead"}, time.Now()) defer metrics.MeasureSince([]string{"rpc", "consistentRead"}, time.Now()) future := s.raft.VerifyLeader() if err := future.Error(); err != nil { return err //fail fast if leader verification fails } // poll consistent read readiness, wait for up to RPCHoldTimeout milliseconds if s.isReadyForConsistentReads() { return nil } jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction) deadline := time.Now().Add(s.config.RPCHoldTimeout) for time.Now().Before(deadline) { select { case <-time.After(jitter): // Drop through and check before we loop again. case <-s.shutdownCh: return fmt.Errorf("shutdown waiting for leader") } if s.isReadyForConsistentReads() { return nil } } return structs.ErrNotReadyForConsistentReads }