Fix configuration merging for implicit tproxy upstreams.
Change the merging logic so that the wildcard upstream has correct proxy-defaults
and service-defaults values combined into it. It did not previously merge all fields,
and the wildcard upstream did not exist unless service-defaults existed (it ignored
proxy-defaults, essentially).
Change the way we fetch upstream configuration in the xDS layer so that it falls back
to the wildcard when no matching upstream is found. This is what allows implicit peer
upstreams to have the correct "merged" config.
Change proxycfg to always watch local mesh gateway endpoints whenever a peer upstream
is found. This simplifies the logic so that we do not have to inspect the "merged"
configuration on peer upstreams to extract the mesh gateway mode.
This gets the extensions information for the local service into the snapshot and ExtensionConfigurations for a proxy. It grabs the extensions from config entries and puts them in structs.NodeService.Proxy field, which already is copied into the config snapshot.
Also:
* add EnvoyExtensions to api.AgentService so that it matches structs.NodeService
* Fix mesh gateway proxy-defaults not affecting upstreams.
* Clarify distinction with upstream settings
Top-level mesh gateway mode in proxy-defaults and service-defaults gets
merged into NodeService.Proxy.MeshGateway, and only gets merged with
the mode attached to an an upstream in proxycfg/xds.
* Fix mgw mode usage for peered upstreams
There were a couple issues with how mgw mode was being handled for
peered upstreams.
For starters, mesh gateway mode from proxy-defaults
and the top-level of service-defaults gets stored in
NodeService.Proxy.MeshGateway, but the upstream watch for peered data
was only considering the mesh gateway config attached in
NodeService.Proxy.Upstreams[i]. This means that applying a mesh gateway
mode via global proxy-defaults or service-defaults on the downstream
would not have an effect.
Separately, transparent proxy watches for peered upstreams didn't
consider mesh gateway mode at all.
This commit addresses the first issue by ensuring that we overlay the
upstream config for peered upstreams as we do for non-peered. The second
issue is addressed by re-using setupWatchesForPeeredUpstream when
handling transparent proxy updates.
Note that for transparent proxies we do not yet support mesh gateway
mode per upstream, so the NodeService.Proxy.MeshGateway mode is used.
* Fix upstream mesh gateway mode handling in xds
This commit ensures that when determining the mesh gateway mode for
peered upstreams we consider the NodeService.Proxy.MeshGateway config as
a baseline.
In absense of this change, setting a mesh gateway mode via
proxy-defaults or the top-level of service-defaults will not have an
effect for peered upstreams.
* Merge service/proxy defaults in cfg resolver
Previously the mesh gateway mode for connect proxies would be
merged at three points:
1. On servers, in ComputeResolvedServiceConfig.
2. On clients, in MergeServiceConfig.
3. On clients, in proxycfg/xds.
The first merge returns a ServiceConfigResponse where there is a
top-level MeshGateway config from proxy/service-defaults, along with
per-upstream config.
The second merge combines per-upstream config specified at the service
instance with per-upstream config specified centrally.
The third merge combines the NodeService.Proxy.MeshGateway
config containing proxy/service-defaults data with the per-upstream
mode. This third merge is easy to miss, which led to peered upstreams
not considering the mesh gateway mode from proxy-defaults.
This commit removes the third merge, and ensures that all mesh gateway
config is available at the upstream. This way proxycfg/xds do not need
to do additional overlays.
* Ensure that proxy-defaults is considered in wc
Upstream defaults become a synthetic Upstream definition under a
wildcard key "*". Now that proxycfg/xds expect Upstream definitions to
have the final MeshGateway values, this commit ensures that values from
proxy-defaults/service-defaults are the default for this synthetic
upstream.
* Add changelog.
Co-authored-by: freddygv <freddy@hashicorp.com>
Previously, the MergeNodeServiceWithCentralConfig method accepted a
ServiceSpecificRequest argument, of which only the Datacenter and
QueryOptions fields were used.
Digging a little deeper, it turns out these fields were only passed
down to the ComputeResolvedServiceConfig method (through the
ServiceConfigRequest struct) which didn't actually use them.
As such, not all call-sites passed a valid ServiceSpecificRequest
so it's safer to remove the argument altogether to prevent future
changes from depending on it.
* Config-entry: Support proxy config in service-defaults
* Update website/content/docs/connect/config-entries/service-defaults.mdx
Co-authored-by: Jeff Boruszak <104028618+boruszak@users.noreply.github.com>
This is the OSS portion of enterprise PR 2460.
Introduces a server-local implementation of the proxycfg.ResolvedServiceConfig
interface that sources data from a blocking query against the server's state
store.
It moves the service config resolution logic into the agent/configentry package
so that it can be used in both the RPC handler and data source.
I've also done a little re-arranging and adding comments to call out data
sources for which there is to be no server-local equivalent.
Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect:
- `DiscoveryChain.Get`
- `ConfigEntry.ResolveServiceConfig`
- `Intentions.Match`
All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism.
### No Config Entries Found
In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110.
### No Change Since Last Wakeup
Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110.
This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report.
### Extra Endpoints
Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated:
- `ConfigEntry.List`
- `Internal.IntentionUpstreams` (tproxy)