This implements permissive mTLS , which allows toggling services into "permissive" mTLS mode.
Permissive mTLS mode allows incoming "non Consul-mTLS" traffic to be forward unmodified to the application.
* Update service-defaults and proxy-defaults config entries with a MutualTLSMode field
* Update the mesh config entry with an AllowEnablingPermissiveMutualTLS field and implement the necessary validation. AllowEnablingPermissiveMutualTLS must be true to allow changing to MutualTLSMode=permissive, but this does not require that all proxy-defaults and service-defaults are currently in strict mode.
* Update xDS listener config to add a "permissive filter chain" when MutualTLSMode=permissive for a particular service. The permissive filter chain matches incoming traffic by the destination port. If the destination port matches the service port from the catalog, then no mTLS is required and the traffic sent is forwarded unmodified to the application.
This commit adds the PrioritizeByLocality field to both proxy-config
and service-resolver config entries for locality-aware routing. The
field is currently intended for enterprise only, and will be used to
enable prioritization of service-mesh connections to services based
on geographical region / zone.
- added Sameness Group to config entries
- added Sameness Group to subscriptions
* generated proto files
* added Sameness Group events to the state store
- added test cases
* Refactored health RPC Client
- moved code that is common to rpcclient under rpcclient common.go. This will help set us up to support future RPC clients
* Refactored proxycfg glue views
- Moved views to rpcclient config entry. This will allow us to reuse this code for a config entry client
* added config entry RPC Client
- Copied most of the testing code from rpcclient/health
* hooked up new rpcclient in agent
* fixed documentation and comments for clarity
Introduces `storage.Backend`, which will serve as the interface between the
Resource Service and the underlying storage system (Raft today, but in the
future, who knows!).
The primary design goal of this interface is to keep its surface area small,
and push as much functionality as possible into the layers above, so that new
implementations can be added with little effort, and easily proven to be
correct. To that end, we also provide a suite of "conformance" tests that can
be run against a backend implementation to check it behaves correctly.
In this commit, we introduce an initial in-memory storage backend, which is
suitable for tests and when running Consul in development mode. This backend is
a thin wrapper around the `Store` type, which implements a resource database
using go-memdb and our internal pub/sub system. `Store` will also be used to
handle reads in our Raft backend, and in the future, used as a local cache for
external storage systems.
* Leverage ServiceResolver ConnectTimeout for route timeouts to make TerminatingGateway upstream timeouts configurable
* Regenerate golden files
* Add RequestTimeout field
* Add changelog entry
Protobuf Refactoring for Multi-Module Cleanliness
This commit includes the following:
Moves all packages that were within proto/ to proto/private
Rewrites imports to account for the packages being moved
Adds in buf.work.yaml to enable buf workspaces
Names the proto-public buf module so that we can override the Go package imports within proto/buf.yaml
Bumps the buf version dependency to 1.14.0 (I was trying out the version to see if it would get around an issue - it didn't but it also doesn't break things and it seemed best to keep up with the toolchain changes)
Why:
In the future we will need to consume other protobuf dependencies such as the Google HTTP annotations for openapi generation or grpc-gateway usage.
There were some recent changes to have our own ratelimiting annotations.
The two combined were not working when I was trying to use them together (attempting to rebase another branch)
Buf workspaces should be the solution to the problem
Buf workspaces means that each module will have generated Go code that embeds proto file names relative to the proto dir and not the top level repo root.
This resulted in proto file name conflicts in the Go global protobuf type registry.
The solution to that was to add in a private/ directory into the path within the proto/ directory.
That then required rewriting all the imports.
Is this safe?
AFAICT yes
The gRPC wire protocol doesn't seem to care about the proto file names (although the Go grpc code does tack on the proto file name as Metadata in the ServiceDesc)
Other than imports, there were no changes to any generated code as a result of this.