Blocking queries issues will still be uncancellable (that cannot be helped until we get rid of net/rpc). However this makes it so that if calling getWithIndex (like during a cache Notify go routine) we can cancell the outer routine. Previously it would keep issuing more blocking queries until the result state actually changed.
Some of these problems are minor (unused vars), but others are real bugs (ignored errors).
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
Previously the SupportsBlocking option was specified by a method on the
type, and all the other options were specified from RegisterOptions.
This change moves RegisterOptions to a method on the type, and moves
SupportsBlocking into the options struct.
Currently there are only 2 cache-types. So all cache-types can implement
this method by embedding a struct with those predefined values. In the
future if a cache type needs to be registered more than once with different
options it can remove the embedded type and implement the method in a way
that allows for paramaterization.
* Implements a simple, tcp ingress gateway workflow
This adds a new type of gateway for allowing Ingress traffic into Connect from external services.
Co-authored-by: Chris Piraino <cpiraino@hashicorp.com>
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
* Add CreateCSRWithSAN
* Use CreateCSRWithSAN in auto_encrypt and cache
* Copy DNSNames and IPAddresses to cert
* Verify auto_encrypt.sign returns cert with SAN
* provide configuration options for auto_encrypt dnssan and ipsan
* rename CreateCSRWithSAN to CreateCSR
* Allow RSA CA certs for consul and vault providers to correctly sign EC leaf certs.
* Ensure key type ad bits are populated from CA cert and clean up tests
* Add integration test and fix error when initializing secondary CA with RSA key.
* Add more tests, fix review feedback
* Update docs with key type config and output
* Apply suggestions from code review
Co-Authored-By: R.B. Boyer <rb@hashicorp.com>
This fixes an issue where leaf certificates issued in secondary
datacenters would be reissued very frequently (every ~20 seconds)
because the logic meant to detect root rotation was errantly triggering
because a hash of the ultimate root (in the primary) was being compared
against a hash of the local intermediate root (in the secondary) and
always failing.
Fixes: #5396
This PR adds a proxy configuration stanza called expose. These flags register
listeners in Connect sidecar proxies to allow requests to specific HTTP paths from outside of the node. This allows services to protect themselves by only
listening on the loopback interface, while still accepting traffic from non
Connect-enabled services.
Under expose there is a boolean checks flag that would automatically expose all
registered HTTP and gRPC check paths.
This stanza also accepts a paths list to expose individual paths. The primary
use case for this functionality would be to expose paths for third parties like
Prometheus or the kubelet.
Listeners for requests to exposed paths are be configured dynamically at run
time. Any time a proxy, or check can be registered, a listener can also be
created.
In this initial implementation requests to these paths are not
authenticated/encrypted.
The fields in the certs are meant to hold the original binary
representation of this data, not some ascii-encoded version.
The only time we should be colon-hex-encoding fields is for display
purposes or marshaling through non-TLS mediums (like RPC).
In normal operations there is a read/write race related to request
QueryOptions fields. An example race:
WARNING: DATA RACE
Read at 0x00c000836950 by goroutine 30:
github.com/hashicorp/consul/agent/structs.(*ServiceConfigRequest).CacheInfo()
/go/src/github.com/hashicorp/consul/agent/structs/config_entry.go:506 +0x109
github.com/hashicorp/consul/agent/cache.(*Cache).getWithIndex()
/go/src/github.com/hashicorp/consul/agent/cache/cache.go:262 +0x5c
github.com/hashicorp/consul/agent/cache.(*Cache).notifyBlockingQuery()
/go/src/github.com/hashicorp/consul/agent/cache/watch.go:89 +0xd7
Previous write at 0x00c000836950 by goroutine 147:
github.com/hashicorp/consul/agent/cache-types.(*ResolvedServiceConfig).Fetch()
/go/src/github.com/hashicorp/consul/agent/cache-types/resolved_service_config.go:31 +0x219
github.com/hashicorp/consul/agent/cache.(*Cache).fetch.func1()
/go/src/github.com/hashicorp/consul/agent/cache/cache.go:495 +0x112
This patch does a lightweight copy of the request struct so that the
embedded QueryOptions fields that are mutated during Fetch() are scoped
to just that one RPC.
Failover is pushed entirely down to the data plane by creating envoy
clusters and putting each successive destination in a different load
assignment priority band. For example this shows that normally requests
go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080:
- name: foo
load_assignment:
cluster_name: foo
policy:
overprovisioning_factor: 100000
endpoints:
- priority: 0
lb_endpoints:
- endpoint:
address:
socket_address:
address: 1.2.3.4
port_value: 8080
- priority: 1
lb_endpoints:
- endpoint:
address:
socket_address:
address: 6.7.8.9
port_value: 8080
Mesh gateways route requests based solely on the SNI header tacked onto
the TLS layer. Envoy currently only lets you configure the outbound SNI
header at the cluster layer.
If you try to failover through a mesh gateway you ideally would
configure the SNI value per endpoint, but that's not possible in envoy
today.
This PR introduces a simpler way around the problem for now:
1. We identify any target of failover that will use mesh gateway mode local or
remote and then further isolate any resolver node in the compiled discovery
chain that has a failover destination set to one of those targets.
2. For each of these resolvers we will perform a small measurement of
comparative healths of the endpoints that come back from the health API for the
set of primary target and serial failover targets. We walk the list of targets
in order and if any endpoint is healthy we return that target, otherwise we
move on to the next target.
3. The CDS and EDS endpoints both perform the measurements in (2) for the
affected resolver nodes.
4. For CDS this measurement selects which TLS SNI field to use for the cluster
(note the cluster is always going to be named for the primary target)
5. For EDS this measurement selects which set of endpoints will populate the
cluster. Priority tiered failover is ignored.
One of the big downsides to this approach to failover is that the failover
detection and correction is going to be controlled by consul rather than
deferring that entirely to the data plane as with the prior version. This also
means that we are bound to only failover using official health signals and
cannot make use of data plane signals like outlier detection to affect
failover.
In this specific scenario the lack of data plane signals is ok because the
effectiveness is already muted by the fact that the ultimate destination
endpoints will have their data plane signals scrambled when they pass through
the mesh gateway wrapper anyway so we're not losing much.
Another related fix is that we now use the endpoint health from the
underlying service, not the health of the gateway (regardless of
failover mode).
In addition to exposing compilation over the API cleaned up the structures that would be exchanged to be cleaner and easier to support and understand.
Also removed ability to configure the envoy OverprovisioningFactor.
* connect: reconcile how upstream configuration works with discovery chains
The following upstream config fields for connect sidecars sanely
integrate into discovery chain resolution:
- Destination Namespace/Datacenter: Compilation occurs locally but using
different default values for namespaces and datacenters. The xDS
clusters that are created are named as they normally would be.
- Mesh Gateway Mode (single upstream): If set this value overrides any
value computed for any resolver for the entire discovery chain. The xDS
clusters that are created may be named differently (see below).
- Mesh Gateway Mode (whole sidecar): If set this value overrides any
value computed for any resolver for the entire discovery chain. If this
is specifically overridden for a single upstream this value is ignored
in that case. The xDS clusters that are created may be named differently
(see below).
- Protocol (in opaque config): If set this value overrides the value
computed when evaluating the entire discovery chain. If the normal chain
would be TCP or if this override is set to TCP then the result is that
we explicitly disable L7 Routing and Splitting. The xDS clusters that
are created may be named differently (see below).
- Connect Timeout (in opaque config): If set this value overrides the
value for any resolver in the entire discovery chain. The xDS clusters
that are created may be named differently (see below).
If any of the above overrides affect the actual result of compiling the
discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op
override to "tcp") then the relevant parameters are hashed and provided
to the xDS layer as a prefix for use in naming the Clusters. This is to
ensure that if one Upstream discovery chain has no overrides and
tangentially needs a cluster named "api.default.XXX", and another
Upstream does have overrides for "api.default.XXX" that they won't
cross-pollinate against the operator's wishes.
Fixes#6159
* Add integration test for central config; fix central config WIP
* Add integration test for central config; fix central config WIP
* Set proxy protocol correctly and begin adding upstream support
* Add upstreams to service config cache key and start new notify watcher if they change.
This doesn't update the tests to pass though.
* Fix some merging logic get things working manually with a hack (TODO fix properly)
* Simplification to not allow enabling sidecars centrally - it makes no sense without upstreams anyway
* Test compile again and obvious ones pass. Lots of failures locally not debugged yet but may be flakes. Pushing up to see what CI does
* Fix up service manageer and API test failures
* Remove the enable command since it no longer makes much sense without being able to turn on sidecar proxies centrally
* Remove version.go hack - will make integration test fail until release
* Remove unused code from commands and upstream merge
* Re-bump version to 1.5.0
* First conversion
* Use serf 0.8.2 tag and associated updated deps
* * Move freeport and testutil into internal/
* Make internal/ its own module
* Update imports
* Add replace statements so API and normal Consul code are
self-referencing for ease of development
* Adapt to newer goe/values
* Bump to new cleanhttp
* Fix ban nonprintable chars test
* Update lock bad args test
The error message when the duration cannot be parsed changed in Go 1.12
(ae0c435877d3aacb9af5e706c40f9dddde5d3e67). This updates that test.
* Update another test as well
* Bump travis
* Bump circleci
* Bump go-discover and godo to get rid of launchpad dep
* Bump dockerfile go version
* fix tar command
* Bump go-cleanhttp
Adds two new configuration parameters "dns_config.use_cache" and
"dns_config.cache_max_age" controlling how DNS requests use the agent
cache when querying servers.
* Support rate limiting and concurrency limiting CSR requests on servers; handle CA rotations gracefully with jitter and backoff-on-rate-limit in client
* Add CSR rate limiting docs
* Fix config naming and add tests for new CA configs
This adds a MaxQueryTime field to the connect ca leaf cache request type and populates it via the wait query param. The cache will then do the right thing and timeout the operation as expected if no new leaf cert is available within that time.
Fixes#4462
The reproduction scenario in the original issue now times out appropriately.
* Add State storage and LastResult argument into Cache so that cache.Types can safely store additional data that is eventually expired.
* New Leaf cache type working and basic tests passing. TODO: more extensive testing for the Root change jitter across blocking requests, test concurrent fetches for different leaves interact nicely with rootsWatcher.
* Add multi-client and delayed rotation tests.
* Typos and cleanup error handling in roots watch
* Add comment about how the FetchResult can be used and change ca leaf state to use a non-pointer state.
* Plumb test override of root CA jitter through TestAgent so that tests are deterministic again!
* Fix failing config test