In all cases (oss/ent, client/server) this method was returning a value from config. Since the
value is consistent, it doesn't need to be part of the delegate interface.
A Node Identity is very similar to a service identity. Its main targeted use is to allow creating tokens for use by Consul agents that will grant the necessary permissions for all the typical agent operations (node registration, coordinate updates, anti-entropy).
Half of this commit is for golden file based tests of the acl token and role cli output. Another big updates was to refactor many of the tests in agent/consul/acl_endpoint_test.go to use the same style of tests and the same helpers. Besides being less boiler plate in the tests it also uses a common way of starting a test server with ACLs that should operate without any warnings regarding deprecated non-uuid master tokens etc.
The ACL.GetPolicy RPC endpoint was supposed to return the “parent” policy and not always the default policy. In the case of legacy management tokens the parent policy was supposed to be “manage”. The result of us not sending this properly was that operations that required specifically a management token such as saving a snapshot would not work in secondary DCs until they were upgraded.
Previously this happened to be using the method on the Server/Client that was meant to allow the ACLResolver to locally resolve tokens. On Servers that had tokens (primary or secondary dc + token replication) this function would lookup the token from raft and return the ACLIdentity. On clients this was always a noop. We inadvertently used this function instead of creating a new one when we added logging accessor ids for permission denied RPC requests.
With this commit, a new method is used for resolving the identity properly via the ACLResolver which may still resolve locally in the case of being on a server with tokens but also supports remote token resolution.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
* Renamed structs.IntentionWildcard to structs.WildcardSpecifier
* Refactor ACL Config
Get rid of remnants of enterprise only renaming.
Add a WildcardName field for specifying what string should be used to indicate a wildcard.
* Add wildcard support in the ACL package
For read operations they can call anyAllowed to determine if any read access to the given resource would be granted.
For write operations they can call allAllowed to ensure that write access is granted to everything.
* Make v1/agent/connect/authorize namespace aware
* Update intention ACL enforcement
This also changes how intention:read is granted. Before the Intention.List RPC would allow viewing an intention if the token had intention:read on the destination. However Intention.Match allowed viewing if access was allowed for either the source or dest side. Now Intention.List and Intention.Get fall in line with Intention.Matches previous behavior.
Due to this being done a few different places ACL enforcement for a singular intention is now done with the CanRead and CanWrite methods on the intention itself.
* Refactor Intention.Apply to make things easier to follow.
• Renamed EnterpriseACLConfig to just Config
• Removed chained_authorizer_oss.go as it was empty
• Renamed acl.go to errors.go to more closely describe its contents
Ensure we close the Sentinel Evaluator so as not to leak go routines
Fix a bunch of test logging so that various warnings when starting a test agent go to the ltest logger and not straight to stdout.
Various canned ent meta types always return a valid pointer (no more nils). This allows us to blindly deref + assign in various places.
Update ACL index tracking to ensure oss -> ent upgrades will work as expected.
Update ent meta parsing to include function to disallow wildcarding.
Main Changes:
• method signature updates everywhere to account for passing around enterprise meta.
• populate the EnterpriseAuthorizerContext for all ACL related authorizations.
• ACL resource listings now operate like the catalog or kv listings in that the returned entries are filtered down to what the token is allowed to see. With Namespaces its no longer all or nothing.
• Modified the acl.Policy parsing to abstract away basic decoding so that enterprise can do it slightly differently. Also updated method signatures so that when parsing a policy it can take extra ent metadata to use during rules validation and policy creation.
Secondary Changes:
• Moved protobuf encoding functions out of the agentpb package to eliminate circular dependencies.
• Added custom JSON unmarshalers for a few ACL resource types (to support snake case and to get rid of mapstructure)
• AuthMethod validator cache is now an interface as these will be cached per-namespace for Consul Enterprise.
• Added checks for policy/role link existence at the RPC API so we don’t push the request through raft to have it fail internally.
• Forward ACL token delete request to the primary datacenter when the secondary DC doesn’t have the token.
• Added a bunch of ACL test helpers for inserting ACL resource test data.
* ACL Authorizer overhaul
To account for upcoming features every Authorization function can now take an extra *acl.EnterpriseAuthorizerContext. These are unused in OSS and will always be nil.
Additionally the acl package has received some thorough refactoring to enable all of the extra Consul Enterprise specific authorizations including moving sentinel enforcement into the stubbed structs. The Authorizer funcs now return an acl.EnforcementDecision instead of a boolean. This improves the overall interface as it makes multiple Authorizers easily chainable as they now indicate whether they had an authoritative decision or should use some other defaults. A ChainedAuthorizer was added to handle this Authorizer enforcement chain and will never itself return a non-authoritative decision.
* Include stub for extra enterprise rules in the global management policy
* Allow for an upgrade of the global-management policy
With ACLs enabled if an agent is wiped and restarted without a leave
it can no longer deregister the services it had previously registered
because it no longer has the tokens the services were registered with.
To remedy that we allow service deregistration from tokens with node
write permission.
Roles are named and can express the same bundle of permissions that can
currently be assigned to a Token (lists of Policies and Service
Identities). The difference with a Role is that it not itself a bearer
token, but just another entity that can be tied to a Token.
This lets an operator potentially curate a set of smaller reusable
Policies and compose them together into reusable Roles, rather than
always exploding that same list of Policies on any Token that needs
similar permissions.
This also refactors the acl replication code to be semi-generic to avoid
3x copypasta.
These act like a special cased version of a Policy Template for granting
a token the privileges necessary to register a service and its connect
proxy, and read upstreams from the catalog.
acl: reduce complexity of token resolution process with alternative singleflighting
Switches acl resolution to use golang.org/x/sync/singleflight. For the
identity/legacy lookups this is a drop-in replacement with the same
overall approach to request coalescing.
For policies this is technically a change in behavior, but when
considered holistically is approximately performance neutral (with the
benefit of less code).
There are two goals with this blob of code (speaking specifically of
policy resolution here):
1) Minimize cross-DC requests.
2) Minimize client-to-server LAN requests.
The previous iteration of this code was optimizing for the case of many
possibly different tokens being resolved concurrently that have a
significant overlap in linked policies such that deduplication would be
worth the complexity. While this is laudable there are some things to
consider that can help to adjust expectations:
1) For v1.4+ policies are always replicated, and once a single policy
shows up in a secondary DC the replicated data is considered
authoritative for requests made in that DC. This means that our
earlier concerns about minimizing cross-DC requests are irrelevant
because there will be no cross-DC policy reads that occur.
2) For Server nodes the in-memory ACL policy cache is capped at zero,
meaning it has no caching. Only Client nodes run with a cache. This
means that instead of having an entire DC's worth of tokens (what a
Server might see) that can have policy resolutions coalesced these
nodes will only ever be seeing node-local token resolutions. In a
reasonable worst-case scenario where a scheduler like Kubernetes has
"filled" a node with Connect services, even that will only schedule
~100 connect services per node. If every service has a unique token
there will only be 100 tokens to coalesce and even then those requests
have to occur concurrently AND be hitting an empty consul cache.
Instead of seeing a great coalescing opportunity for cutting down on
redundant Policy resolutions, in practice it's far more likely given
node densities that you'd see requests for the same token concurrently
than you would for two tokens sharing a policy concurrently (to a degree
that would warrant the overhead of the current variation of
singleflighting.
Given that, this patch switches the Policy resolution process to only
singleflight by requesting token (but keeps the cache as by-policy).
* Fix 2 remote ACL policy resolution issues
1 - Use the right method to fire async not found errors when the ACL.PolicyResolve RPC returns that error. This was previously accidentally firing a token result instead of a policy result which would have effectively done nothing (unless there happened to be a token with a secret id == the policy id being resolved.
2. When concurrent policy resolution is being done we single flight the requests. The bug before was that for the policy resolution that was going to piggy back on anothers RPC results it wasn’t waiting long enough for the results to come back due to looping with the wrong variable.
* Fix a handful of other edge case ACL scenarios
The main issue was that token specific issues (not able to access a particular policy or the token being deleted after initial fetching) were poisoning the policy cache.
A second issue was that for concurrent token resolutions, the first resolution to get started would go fetch all the policies. If before the policies were retrieved a second resolution request came in, the new request would register watchers for those policies but then never block waiting for them to complete. This resulted in using the default policy when it shouldn't have.
* Add leader token upgrade test and fix various ACL enablement bugs
* Update the leader ACL initialization tests.
* Add a StateStore ACL tests for ACLTokenSet and ACLTokenGetBy* functions
* Advertise the agents acl support status with the agent/self endpoint.
* Make batch token upsert CAS’able to prevent consistency issues with token auto-upgrade
* Finish up the ACL state store token tests
* Finish the ACL state store unit tests
Also rename some things to make them more consistent.
* Do as much ACL replication testing as I can.
This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week.
Description
At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers.
On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though.
Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though.
All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management.
Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are:
A server running the new system must still support other clients using the legacy system.
A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system.
The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode.
So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.