This is the OSS portion of enterprise PR 2352.
It adds a server-local implementation of the proxycfg.PeeredUpstreams interface
based on a blocking query against the server's state store.
It also fixes an omission in the Virtual IP freeing logic where we were never
updating the max index (and therefore blocking queries against
VirtualIPsForAllImportedServices would not return on service deletion).
This is the OSS portion of enterprise PR 2242.
This PR introduces a server-local implementation of the proxycfg.ServiceList
interface, backed by streaming events and a local materializer.
For L4/tcp exported services the mesh gateways will not be terminating
TLS. A caller in one peer will be directly establishing TLS connections
to the ultimate exported service in the other peer.
The caller will be doing SAN validation using the replicated SpiffeID
values shipped from the exporting side. There are a class of discovery
chain edits that could be done on the exporting side that would cause
the introduction of a new SpiffeID value. In between the time of the
config entry update on the exporting side and the importing side getting
updated peer stream data requests to the exported service would fail due
to SAN validation errors.
This is unacceptable so instead prohibit the exporting peer from making
changes that would break peering in this way.
Because peerings are pairwise, between two tuples of (datacenter,
partition) having any exported reference via a discovery chain that
crosses out of the peered datacenter or partition will ultimately not be
able to work for various reasons. The biggest one is that there is no
way in the ultimate destination to configure an intention that can allow
an external SpiffeID to access a service.
This PR ensures that a user simply cannot do this, so they won't run
into weird situations like this.
These changes are primarily for Consul's UI, where we want to be more
specific about the state a peering is in.
- The "initial" state was renamed to pending, and no longer applies to
peerings being established from a peering token.
- Upon request to establish a peering from a peering token, peerings
will be set as "establishing". This will help distinguish between the
two roles: the cluster that generates the peering token and the
cluster that establishes the peering.
- When marked for deletion, peering state will be set to "deleting".
This way the UI determines the deletion via the state rather than the
"DeletedAt" field.
Co-authored-by: freddygv <freddy@hashicorp.com>
This is the OSS portion of enterprise PR 2141.
This commit provides a server-local implementation of the `proxycfg.Intentions`
interface that sources data from streaming events.
It adds events for the `service-intentions` config entry type, and then consumes
event streams (via materialized views) for the service's explicit intentions and
any applicable wildcard intentions, merging them into a single list of intentions.
An alternative approach I considered was to consume _all_ intention events (via
`SubjectWildcard`) and filter out the irrelevant ones. This would admittedly
remove some complexity in the `agent/proxycfg-glue` package but at the expense
of considerable overhead from waking potentially many thousands of connect
proxies every time any intention is updated.
This is the OSS portion of enterprise PR 2056.
This commit provides server-local implementations of the proxycfg.ConfigEntry
and proxycfg.ConfigEntryList interfaces, that source data from streaming events.
It makes use of the LocalMaterializer type introduced for peering replication,
adding the necessary support for authorization.
It also adds support for "wildcard" subscriptions (within a topic) to the event
publisher, as this is needed to fetch service-resolvers for all services when
configuring mesh gateways.
Currently, events will be emitted for just the ingress-gateway, service-resolver,
and mesh config entry types, as these are the only entries required by proxycfg
— the events will be emitted on topics named IngressGateway, ServiceResolver,
and MeshConfig topics respectively.
Though these events will only be consumed "locally" for now, they can also be
consumed via the gRPC endpoint (confirmed using grpcurl) so using them from
client agents should be a case of swapping the LocalMaterializer for an
RPCMaterializer.
For initial cluster peering TProxy support we consider all imported services of a partition to be potential upstreams.
We leverage the VirtualIP table because it stores plain service names (e.g. "api", not "api-sidecar-proxy").
When traversing an exported peered service, the discovery chain
evaluation at the other side may re-route the request to a variety of
endpoints. Furthermore we intend to terminate mTLS at the mesh gateway
for arriving peered traffic that is http-like (L7), so the caller needs
to know the mesh gateway's SpiffeID in that case as well.
The following new SpiffeID values will be shipped back in the peerstream
replication:
- tcp: all possible SpiffeIDs resulting from the service-resolver
component of the exported discovery chain
- http-like: the SpiffeID of the mesh gateway
Adds fine-grained node.[node] entries to the index table, allowing blocking queries to return fine-grained indexes that prevent them from returning immediately when unrelated nodes/services are updated.
Co-authored-by: kisunji <ckim@hashicorp.com>
We have many indexer functions in Consul which take interface{} and type assert before building the index. We can use generics to get rid of the initial plumbing and pass around functions with better defined signatures. This has two benefits: 1) Less verbosity; 2) Developers can parse the argument types to memdb schemas without having to introspect the function for the type assertion.
This is only configured in xDS when a service with an L7 protocol is
exported.
They also load any relevant trust bundles for the peered services to
eventually use for L7 SPIFFE validation during mTLS termination.
1. Fix a bug where the peering leader routine would not track all active
peerings in the "stored" reconciliation map. This could lead to
tearing down streams where the token was generated, since the
ConnectedStreams() method used for reconciliation returns all streams
and not just the ones initiated by this leader routine.
2. Fix a race where stream contexts were being canceled before
termination messages were being processed by a peer.
Previously the leader routine would tear down streams by canceling
their context right after the termination message was sent. This
context cancelation could be propagated to the server side faster
than the termination message. Now there is a change where the
dialing peer uses CloseSend() to signal when no more messages will
be sent. Eventually the server peer will read an EOF after receiving
and processing the preceding termination message.
Using CloseSend() is actually not enough to address the issue
mentioned, since it doesn't wait for the server peer to finish
processing messages. Because of this now the dialing peer also reads
from the stream until an error signals that there are no more
messages. Receiving an EOF from our peer indicates that they
processed the termination message and have no additional work to do.
Given that the stream is being closed, all the messages received by
Recv are discarded. We only check for errors to avoid importing new
data.
When deleting a peering we do not want to delete the peering and all
imported data in a single operation, since deleting a large amount of
data at once could overload Consul.
Instead we defer deletion of peerings so that:
1. When a peering deletion request is received via gRPC the peering is
marked for deletion by setting the DeletedAt field.
2. A leader routine will monitor for peerings that are marked for
deletion and kick off a throttled deletion of all imported resources
before deleting the peering itself.
This commit mostly addresses point #1 by modifying the peering service
to mark peerings for deletion. Another key change is to add a
PeeringListDeleted state store function which can return all peerings
marked for deletion. This function is what will be watched by the
deferred deletion leader routine.
* when enterprise meta are wildcard assume it's a service intention
* fix partition and namespace
* move kind outside the loops
* get the kind check outside the loop and add a comment
Co-authored-by: github-team-consul-core <github-team-consul-core@hashicorp.com>
* update gateway-services table with endpoints
* fix failing test
* remove unneeded config in test
* rename "endpoint" to "destination"
* more endpoint renaming to destination in tests
* update isDestination based on service-defaults config entry creation
* use a 3 state kind to be able to set the kind to unknown (when neither a service or a destination exist)
* set unknown state to empty to avoid modifying alot of tests
* fix logic to set the kind correctly on CRUD
* fix failing tests
* add missing tests and fix service delete
* fix failing test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* fix a bug with kind and add relevant test
* fix compile error
* fix failing tests
* add kind to clone
* fix failing tests
* fix failing tests in catalog endpoint
* fix service dump test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* remove duplicate tests
* first draft of destinations intention in connect proxy
* remove ServiceDestinationList
* fix failing tests
* fix agent/consul failing tests
* change to filter intentions in the state store instead of adding a field.
* fix failing tests
* fix comment
* fix comments
* store service kind destination and add relevant tests
* changes based on review
* filter on destinations when querying source match
* change state store API to get an IntentionTarget parameter
* add intentions tests
* add destination upstream endpoint
* fix failing test
* fix failing test and a bug with wildcard intentions
* fix failing test
* Apply suggestions from code review
Co-authored-by: alex <8968914+acpana@users.noreply.github.com>
* add missing test and clarify doc
* fix style
* gofmt intention.go
* fix merge introduced issue
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
Co-authored-by: alex <8968914+acpana@users.noreply.github.com>
Co-authored-by: github-team-consul-core <github-team-consul-core@hashicorp.com>
* update gateway-services table with endpoints
* fix failing test
* remove unneeded config in test
* rename "endpoint" to "destination"
* more endpoint renaming to destination in tests
* update isDestination based on service-defaults config entry creation
* use a 3 state kind to be able to set the kind to unknown (when neither a service or a destination exist)
* set unknown state to empty to avoid modifying alot of tests
* fix logic to set the kind correctly on CRUD
* fix failing tests
* add missing tests and fix service delete
* fix failing test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* fix a bug with kind and add relevant test
* fix compile error
* fix failing tests
* add kind to clone
* fix failing tests
* fix failing tests in catalog endpoint
* fix service dump test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* remove duplicate tests
* first draft of destinations intention in connect proxy
* remove ServiceDestinationList
* fix failing tests
* fix agent/consul failing tests
* change to filter intentions in the state store instead of adding a field.
* fix failing tests
* fix comment
* fix comments
* store service kind destination and add relevant tests
* changes based on review
* filter on destinations when querying source match
* Apply suggestions from code review
Co-authored-by: alex <8968914+acpana@users.noreply.github.com>
* fix style
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* rename destinationType to targetType.
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
Co-authored-by: alex <8968914+acpana@users.noreply.github.com>
Co-authored-by: github-team-consul-core <github-team-consul-core@hashicorp.com>
Mesh gateways will now enable tcp connections with SNI names including peering information so that those connections may be proxied.
Note: this does not change the callers to use these mesh gateways.
There are a handful of changes in this commit:
* When querying trust bundles for a service we need to be able to
specify the namespace of the service.
* The endpoint needs to track the index because the cache watches use
it.
* Extracted bulk of the endpoint's logic to a state store function
so that index tracking could be tested more easily.
* Removed check for service existence, deferring that sort of work to ACL authz
* Added the cache type
Given that the exported-services config entry can use wildcards, the
precedence for wildcards is handled as with intentions. The most exact
match is the match that applies for any given service. We do not take
the union of all that apply.
Another update that was made was to reflect that only one
exported-services config entry applies to any given service in a
partition. This is a pre-existing constraint that gets enforced by
the Normalize() method on that config entry type.
* update gateway-services table with endpoints
* fix failing test
* remove unneeded config in test
* rename "endpoint" to "destination"
* more endpoint renaming to destination in tests
* update isDestination based on service-defaults config entry creation
* use a 3 state kind to be able to set the kind to unknown (when neither a service or a destination exist)
* set unknown state to empty to avoid modifying alot of tests
* fix logic to set the kind correctly on CRUD
* fix failing tests
* add missing tests and fix service delete
* fix failing test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* fix a bug with kind and add relevant test
* fix compile error
* fix failing tests
* add kind to clone
* fix failing tests
* fix failing tests in catalog endpoint
* fix service dump test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* remove duplicate tests
* rename consts and fix kind when no destination is defined in the service-defaults.
* rename Kind to ServiceKind and change switch to use .(type)
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
OSS port of enterprise PR 1822
Includes the necessary changes to the `proxycfg` and `xds` packages to enable
Consul servers to configure arbitrary proxies using catalog data.
Broadly, `proxycfg.Manager` now has public methods for registering,
deregistering, and listing registered proxies — the existing local agent
state-sync behavior has been moved into a separate component that makes use of
these methods.
When an xDS session is started for a proxy service in the catalog, a goroutine
will be spawned to watch the service in the server's state store and
re-register it with the `proxycfg.Manager` whenever it is updated (and clean
it up when the client goes away).
The importing peer will need to know what SNI and SPIFFE name
corresponds to each exported service. Additionally it will need to know
at a high level the protocol in use (L4/L7) to generate the appropriate
connection pool and local metrics.
For replicated connect synthetic entities we edit the `Connect{}` part
of a `NodeService` to have a new section:
{
"PeerMeta": {
"SNI": [
"web.default.default.owt.external.183150d5-1033-3672-c426-c29205a576b8.consul"
],
"SpiffeID": [
"spiffe://183150d5-1033-3672-c426-c29205a576b8.consul/ns/default/dc/dc1/svc/web"
],
"Protocol": "tcp"
}
}
This data is then replicated and saved as-is at the importing side. Both
SNI and SpiffeID are slices for now until I can be sure we don't need
them for how mesh gateways will ultimately work.
Treat each exported service as a "discovery chain" and replicate one
synthetic CheckServiceNode for each chain and remote mesh gateway.
The health will be a flattened generated check of the checks for that
mesh gateway node.
Adds a new gRPC endpoint to get envoy bootstrap params. The new consul-dataplane service will use this
endpoint to generate an envoy bootstrap configuration.
Whenever autopilot updates its state it notifies Consul. That notification will then trigger Consul to extract out the ready server information. If the ready servers have changed, then an event will be published to notify any subscribers of the full set of ready servers.
All these ready server event things are contained within an autopilotevents package instead of the consul package to make importing them into the grpc related packages possible
Previously we had 1 EventPublisher per state.Store. When a state store was closed/abandoned such as during a consul snapshot restore, this had the behavior of force closing subscriptions for that topic and evicting event snapshots from the cache.
The intention of this commit is to keep all that behavior. To that end, the shared EventPublisher now supports the ability to refresh a topic. That will perform the force close + eviction. The FSM upon abandoning the previous state.Store will call RefreshTopic for all the topics with events generated by the state.Store.
Adds a new gRPC streaming endpoint (WatchRoots) that dataplane clients will
use to fetch the current list of active Connect CA roots and receive new
lists whenever the roots are rotated.
Minor fix for behavior in #12362
IsDefault sometimes returns true even if there was a proxy-defaults or service-defaults config entry that was consulted. This PR fixes that.
Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect:
- `DiscoveryChain.Get`
- `ConfigEntry.ResolveServiceConfig`
- `Intentions.Match`
All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism.
### No Config Entries Found
In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110.
### No Change Since Last Wakeup
Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110.
This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report.
### Extra Endpoints
Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated:
- `ConfigEntry.List`
- `Internal.IntentionUpstreams` (tproxy)
Many places in consul already treated node names case insensitively.
The state store indexes already do it, but there are a few places that
did a direct byte comparison which have now been corrected.
One place of particular consideration is ensureCheckIfNodeMatches
which is executed during snapshot restore (among other places). If a
node check used a slightly different casing than the casing of the node
during register then the snapshot restore here would deterministically
fail. This has been fixed.
Primary approach:
git grep -i "node.*[!=]=.*node" -- ':!*_test.go' ':!docs'
git grep -i '\[[^]]*member[^]]*\]
git grep -i '\[[^]]*\(member\|name\|node\)[^]]*\]' -- ':!*_test.go' ':!website' ':!ui' ':!agent/proxycfg/testing.go:' ':!*.md'