Just like standard upstreams the order of applicability in descending precedence:
1. caller's `service-defaults` upstream override for destination
2. caller's `service-defaults` upstream defaults
3. destination's `service-resolver` ConnectTimeout
4. system default of 5s
Co-authored-by: mrspanishviking <kcardenas@hashicorp.com>
- `tls.incoming`: applies to the inbound mTLS targeting the public
listener on `connect-proxy` and `terminating-gateway` envoy instances
- `tls.outgoing`: applies to the outbound mTLS dialing upstreams from
`connect-proxy` and `ingress-gateway` envoy instances
Fixes#11966
Due to timing, a transparent proxy could have two upstreams to dial
directly with the same address.
For example:
- The orders service can dial upstreams shipping and payment directly.
- An instance of shipping at address 10.0.0.1 is deregistered.
- Payments is scaled up and scheduled to have address 10.0.0.1.
- The orders service receives the event for the new payments instance
before seeing the deregistration for the shipping instance. At this
point two upstreams have the same passthrough address and Envoy will
reject the listener configuration.
To disambiguate this commit considers the Raft index when storing
passthrough addresses. In the example above, 10.0.0.1 would only be
associated with the newer payments service instance.
Transparent proxies can set up filter chains that allow direct
connections to upstream service instances. Services that can be dialed
directly are stored in the PassthroughUpstreams map of the proxycfg
snapshot.
Previously these addresses were not being cleaned up based on new
service health data. The list of addresses associated with an upstream
service would only ever grow.
As services scale up and down, eventually they will have instances
assigned to an IP that was previously assigned to a different service.
When IP addresses are duplicated across filter chain match rules the
listener config will be rejected by Envoy.
This commit updates the proxycfg snapshot management so that passthrough
addresses can get cleaned up when no longer associated with a given
upstream.
There is still the possibility of a race condition here where due to
timing an address is shared between multiple passthrough upstreams.
That concern is mitigated by #12195, but will be further addressed
in a follow-up.
The gist here is that now we use a value-type struct proxycfg.UpstreamID
as the map key in ConfigSnapshot maps where we used to use "upstream
id-ish" strings. These are internal only and used just for bidirectional
trips through the agent cache keyspace (like the discovery chain target
struct).
For the few places where the upstream id needs to be projected into xDS,
that's what (proxycfg.UpstreamID).EnvoyID() is for. This lets us ALWAYS
inject the partition and namespace into these things without making
stuff like the golden testdata diverge.
These methods only called a single function. Wrappers like this end up making code harder to read
because it adds extra ways of doing things.
We already have many helper functions for constructing these types, we don't need additional methods.
There is no interaction between these handlers, so splitting them into separate files
makes it easier to discover the full implementation of each kindHandler.