Peer replication is intended to be between separate Consul installs and
effectively should be considered "external". This PR moves the peer
stream replication bidirectional RPC endpoint to the external gRPC
server and ensures that things continue to function.
Require use of mesh gateways in order for service mesh data plane
traffic to flow between peers.
This also adds plumbing for envoy integration tests involving peers, and
one starter peering test.
* Add partition fields to targets like service route destinations
* Update validation to prevent cross-DC + cross-partition references
* Handle partitions when reading config entries for disco chain
* Encode partition in compiled targets
We launch one container as part of the test with --pid=host but
apparently within that container it launches a copy of "tini" as a
process supervisor that prefers to be PID 1.
Because it's not PID 1 it logs a warning message about this to the envoy
integration test logs that can lead to thinking somehow that a test
failure is related when in fact it's completely unrelated.
Adding this environment variable avoids the warning.
The only thing that needed fixing up pertained to this section of the 1.18.x release notes:
> grpc_stats: the default value for stats_for_all_methods is switched from true to false, in order to avoid possible memory exhaustion due to an untrusted downstream sending a large number of unique method names. The previous default value was deprecated in version 1.14.0. This only changes the behavior when the value is not set. The previous behavior can be used by setting the value to true. This behavior change by be overridden by setting runtime feature envoy.deprecated_features.grpc_stats_filter_enable_stats_for_all_methods_by_default.
For now to maintain status-quo I'm explicitly setting `stats_for_all_methods=true` in all versions to avoid relying upon the default.
Additionally the naming of the emitted metrics for these gRPC requests changed slightly so the integration test assertions for `case-grpc` needed adjusting.
This adds support for the Incremental xDS protocol when using xDS v3. This is best reviewed commit-by-commit and will not be squashed when merged.
Union of all commit messages follows to give an overarching summary:
xds: exclusively support incremental xDS when using xDS v3
Attempts to use SoTW via v3 will fail, much like attempts to use incremental via v2 will fail.
Work around a strange older envoy behavior involving empty CDS responses over incremental xDS.
xds: various cleanups and refactors that don't strictly concern the addition of incremental xDS support
Dissolve the connectionInfo struct in favor of per-connection ResourceGenerators instead.
Do a better job of ensuring the xds code uses a well configured logger that accurately describes the connected client.
xds: pull out checkStreamACLs method in advance of a later commit
xds: rewrite SoTW xDS protocol tests to use protobufs rather than hand-rolled json strings
In the test we very lightly reuse some of the more boring protobuf construction helper code that is also technically under test. The important thing of the protocol tests is testing the protocol. The actual inputs and outputs are largely already handled by the xds golden output tests now so these protocol tests don't have to do double-duty.
This also updates the SoTW protocol test to exclusively use xDS v2 which is the only variant of SoTW that will be supported in Consul 1.10.
xds: default xds.Server.AuthCheckFrequency at use-time instead of construction-time
To fix failing integration tests. The latest version (`1.7.4.0-r0`)
appears to not be catting all the bytes, so the expected metrics are
missing in the output.
This has the biggest impact on enterprise test cases that use namespaced
registrations, which prior to this change sometimes failed the initial
registration because the namespace was not yet created.
The key thing here is to use `curl --no-keepalive` so that envoy
pre-1.15 tests will reliably use the latest listener every time.
Extra:
- Switched away from editing line-item intentions the legacy way.
- Removed some teardown scripts, as we don't share anything between cases anyway
- Removed unnecessary use of `run` in some places.
This speeds up individual envoy integration test runs from ~23m to ~14m.
It's also a pre-req for possibly switching to doing the tests entirely within Go (no shell-outs).
Related changes:
- hard-fail the xDS connection attempt if the envoy version is known to be too old to be supported
- remove the RouterMatchSafeRegex proxy feature since all supported envoy versions have it
- stop using --max-obj-name-len (due to: envoyproxy/envoy#11740)
The previous change, which moved test running to Go, appears to have
broken log capturing. I am not entirely sure why, but the run_tests
function seems to exit on the first error.
This change moves test teardown and log capturing out of run_test, and
has the go test runner call them when necessary.
* test/integration: only run against 1 envoy version
These tests are slow enough that it seems unlikely that anyone is
running multiple versions locally. If someone wants to, a for loop
outside of run_test.sh should do the right thing.
Remove unused vars.
* Remove logic to iterate over test cases, run a single case
* Add a golang runner for integration tests
* Use build tags for envoy integration tests
And add junit-xml report
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
* add 1.12.2
* add envoy 1.13.0
* Introduce -envoy-version to get 1.10.0 passing.
* update old version and fix consul-exec case
* add envoy_version and fix check
* Update Envoy CLI tests to account for the 1.13 compatibility changes.
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
* Allow RSA CA certs for consul and vault providers to correctly sign EC leaf certs.
* Ensure key type ad bits are populated from CA cert and clean up tests
* Add integration test and fix error when initializing secondary CA with RSA key.
* Add more tests, fix review feedback
* Update docs with key type config and output
* Apply suggestions from code review
Co-Authored-By: R.B. Boyer <rb@hashicorp.com>