This is the OSS portion of enterprise PR 2352.
It adds a server-local implementation of the proxycfg.PeeredUpstreams interface
based on a blocking query against the server's state store.
It also fixes an omission in the Virtual IP freeing logic where we were never
updating the max index (and therefore blocking queries against
VirtualIPsForAllImportedServices would not return on service deletion).
* peerstream: dialer should reconnect when stream closes
If the stream is closed unexpectedly (i.e. when we haven't received
a terminated message), the dialer should attempt to re-establish the
stream.
Previously, the `HandleStream` would return `nil` when the stream
was closed. The caller then assumed the stream was terminated on purpose
and so didn't reconnect when instead it was stopped unexpectedly and
the dialer should have attempted to reconnect.
Ensure that the peer stream replication rpc can successfully be used with TLS activated.
Also:
- If key material is configured for the gRPC port but HTTPS is not
enabled now TLS will still be activated for the gRPC port.
- peerstream replication stream opened by the establishing-side will now
ignore grpc.WithBlock so that TLS errors will bubble up instead of
being awkwardly delayed or suppressed
This is the OSS portion of enterprise PR 2242.
This PR introduces a server-local implementation of the proxycfg.ServiceList
interface, backed by streaming events and a local materializer.
Previously, public referred to gRPC services that are both exposed on
the dedicated gRPC port and have their definitions in the proto-public
directory (so were considered usable by 3rd parties). Whereas private
referred to services on the multiplexed server port that are only usable
by agents and other servers.
Now, we're splitting these definitions, such that external/internal
refers to the port and public/private refers to whether they can be used
by 3rd parties.
This is necessary because the peering replication API needs to be
exposed on the dedicated port, but is not (yet) suitable for use by 3rd
parties.
- Use some protobuf construction helper methods for brevity.
- Rename a local variable to avoid later shadowing.
- Rename the Nonce field to be more like xDS's naming.
- Be more explicit about which PeerID fields are empty.
For L4/tcp exported services the mesh gateways will not be terminating
TLS. A caller in one peer will be directly establishing TLS connections
to the ultimate exported service in the other peer.
The caller will be doing SAN validation using the replicated SpiffeID
values shipped from the exporting side. There are a class of discovery
chain edits that could be done on the exporting side that would cause
the introduction of a new SpiffeID value. In between the time of the
config entry update on the exporting side and the importing side getting
updated peer stream data requests to the exported service would fail due
to SAN validation errors.
This is unacceptable so instead prohibit the exporting peer from making
changes that would break peering in this way.
Because peerings are pairwise, between two tuples of (datacenter,
partition) having any exported reference via a discovery chain that
crosses out of the peered datacenter or partition will ultimately not be
able to work for various reasons. The biggest one is that there is no
way in the ultimate destination to configure an intention that can allow
an external SpiffeID to access a service.
This PR ensures that a user simply cannot do this, so they won't run
into weird situations like this.
Peer replication is intended to be between separate Consul installs and
effectively should be considered "external". This PR moves the peer
stream replication bidirectional RPC endpoint to the external gRPC
server and ensures that things continue to function.
Currently servers exchange information about their WAN serf port
and RPC port with serf tags, so that they all learn of each other's
addressing information. We intend to make larger use of the new
public-facing gRPC port exposed on all of the servers, so this PR
addresses that by passing around the gRPC port via serf tags and
then ensuring the generated consul service in the catalog has
metadata about that new port as well for ease of non-serf-based lookup.
These changes are primarily for Consul's UI, where we want to be more
specific about the state a peering is in.
- The "initial" state was renamed to pending, and no longer applies to
peerings being established from a peering token.
- Upon request to establish a peering from a peering token, peerings
will be set as "establishing". This will help distinguish between the
two roles: the cluster that generates the peering token and the
cluster that establishes the peering.
- When marked for deletion, peering state will be set to "deleting".
This way the UI determines the deletion via the state rather than the
"DeletedAt" field.
Co-authored-by: freddygv <freddy@hashicorp.com>
This is the OSS portion of enterprise PR 2157.
It builds on the local blocking query work in #13438 to implement the
proxycfg.IntentionUpstreams interface using server-local data.
Also moves the ACL filtering logic from agent/consul into the acl/filter
package so that it can be reused here.
This is the OSS portion of enterprise PR 2141.
This commit provides a server-local implementation of the `proxycfg.Intentions`
interface that sources data from streaming events.
It adds events for the `service-intentions` config entry type, and then consumes
event streams (via materialized views) for the service's explicit intentions and
any applicable wildcard intentions, merging them into a single list of intentions.
An alternative approach I considered was to consume _all_ intention events (via
`SubjectWildcard`) and filter out the irrelevant ones. This would admittedly
remove some complexity in the `agent/proxycfg-glue` package but at the expense
of considerable overhead from waking potentially many thousands of connect
proxies every time any intention is updated.
This is the OSS portion of enterprise PR 2056.
This commit provides server-local implementations of the proxycfg.ConfigEntry
and proxycfg.ConfigEntryList interfaces, that source data from streaming events.
It makes use of the LocalMaterializer type introduced for peering replication,
adding the necessary support for authorization.
It also adds support for "wildcard" subscriptions (within a topic) to the event
publisher, as this is needed to fetch service-resolvers for all services when
configuring mesh gateways.
Currently, events will be emitted for just the ingress-gateway, service-resolver,
and mesh config entry types, as these are the only entries required by proxycfg
— the events will be emitted on topics named IngressGateway, ServiceResolver,
and MeshConfig topics respectively.
Though these events will only be consumed "locally" for now, they can also be
consumed via the gRPC endpoint (confirmed using grpcurl) so using them from
client agents should be a case of swapping the LocalMaterializer for an
RPCMaterializer.
For initial cluster peering TProxy support we consider all imported services of a partition to be potential upstreams.
We leverage the VirtualIP table because it stores plain service names (e.g. "api", not "api-sidecar-proxy").
When traversing an exported peered service, the discovery chain
evaluation at the other side may re-route the request to a variety of
endpoints. Furthermore we intend to terminate mTLS at the mesh gateway
for arriving peered traffic that is http-like (L7), so the caller needs
to know the mesh gateway's SpiffeID in that case as well.
The following new SpiffeID values will be shipped back in the peerstream
replication:
- tcp: all possible SpiffeIDs resulting from the service-resolver
component of the exported discovery chain
- http-like: the SpiffeID of the mesh gateway
Adds fine-grained node.[node] entries to the index table, allowing blocking queries to return fine-grained indexes that prevent them from returning immediately when unrelated nodes/services are updated.
Co-authored-by: kisunji <ckim@hashicorp.com>
We have many indexer functions in Consul which take interface{} and type assert before building the index. We can use generics to get rid of the initial plumbing and pass around functions with better defined signatures. This has two benefits: 1) Less verbosity; 2) Developers can parse the argument types to memdb schemas without having to introspect the function for the type assertion.
Having this type live in the agent/consul package makes it difficult to
put anything that relies on token resolution (e.g. the new gRPC services)
in separate packages without introducing import cycles.
For example, if package foo imports agent/consul for the ACLResolveResult
type it means that agent/consul cannot import foo to register its service.
We've previously worked around this by wrapping the ACLResolver to
"downgrade" its return type to an acl.Authorizer - aside from the
added complexity, this also loses the resolved identity information.
In the future, we may want to move the whole ACLResolver into the
acl/resolver package. For now, putting the result type there at least,
fixes the immediate import cycle issues.
This is only configured in xDS when a service with an L7 protocol is
exported.
They also load any relevant trust bundles for the peered services to
eventually use for L7 SPIFFE validation during mTLS termination.
Adds the merge-central-config query param option to the /catalog/node-services/:node-name API,
to get a service definition in the response that is merged with central defaults (proxy-defaults/service-defaults).
Updated the consul connect envoy command to use this option when
retrieving the proxy service details so as to render the bootstrap configuration correctly.
When our peer deletes the peering it is locally marked as terminated.
This termination should kick off deleting all imported data, but should
not delete the peering object itself.
Keeping peerings marked as terminated acts as a signal that the action
took place.
Once a peering is marked for deletion a new leader routine will now
clean up all imported resources and then the peering itself.
A lot of the logic was grabbed from the namespace/partitions deferred
deletions but with a handful of simplifications:
- The rate limiting is not configurable.
- Deleting imported nodes/services/checks is done by deleting nodes with
the Txn API. The services and checks are deleted as a side-effect.
- There is no "round rate limiter" like with namespaces and partitions.
This is because peerings are purely local, and deleting a peering in
the datacenter does not depend on deleting data from other DCs like
with WAN-federated namespaces. All rate limiting is handled by the
Raft rate limiter.
1. Fix a bug where the peering leader routine would not track all active
peerings in the "stored" reconciliation map. This could lead to
tearing down streams where the token was generated, since the
ConnectedStreams() method used for reconciliation returns all streams
and not just the ones initiated by this leader routine.
2. Fix a race where stream contexts were being canceled before
termination messages were being processed by a peer.
Previously the leader routine would tear down streams by canceling
their context right after the termination message was sent. This
context cancelation could be propagated to the server side faster
than the termination message. Now there is a change where the
dialing peer uses CloseSend() to signal when no more messages will
be sent. Eventually the server peer will read an EOF after receiving
and processing the preceding termination message.
Using CloseSend() is actually not enough to address the issue
mentioned, since it doesn't wait for the server peer to finish
processing messages. Because of this now the dialing peer also reads
from the stream until an error signals that there are no more
messages. Receiving an EOF from our peer indicates that they
processed the termination message and have no additional work to do.
Given that the stream is being closed, all the messages received by
Recv are discarded. We only check for errors to avoid importing new
data.
When deleting a peering we do not want to delete the peering and all
imported data in a single operation, since deleting a large amount of
data at once could overload Consul.
Instead we defer deletion of peerings so that:
1. When a peering deletion request is received via gRPC the peering is
marked for deletion by setting the DeletedAt field.
2. A leader routine will monitor for peerings that are marked for
deletion and kick off a throttled deletion of all imported resources
before deleting the peering itself.
This commit mostly addresses point #1 by modifying the peering service
to mark peerings for deletion. Another key change is to add a
PeeringListDeleted state store function which can return all peerings
marked for deletion. This function is what will be watched by the
deferred deletion leader routine.
Previously, imported data would never be deleted. As
nodes/services/checks were registered and deregistered, resources
deleted from the exporting cluster would accumulate in the imported
cluster.
This commit makes updates to replication so that whenever an update is
received for a service name we reconcile what was present in the catalog
against what was received.
This handleUpdateService method can handle both updates and deletions.
* when enterprise meta are wildcard assume it's a service intention
* fix partition and namespace
* move kind outside the loops
* get the kind check outside the loop and add a comment
Co-authored-by: github-team-consul-core <github-team-consul-core@hashicorp.com>