This extends the acl.AllowAuthorizer with source of authority information.
The next step is to unify the AllowAuthorizer and ACLResolveResult structures; that will be done in a separate PR.
Part of #12481
Signed-off-by: Mark Anderson <manderson@hashicorp.com>
Currently the config_entry.go subsystem delegates authorization decisions via the ConfigEntry interface CanRead and CanWrite code. Unfortunately this returns a true/false value and loses the details of the source.
This is not helpful, especially since it the config subsystem can be more complex to understand, since it covers so many domains.
This refactors CanRead/CanWrite to return a structured error message (PermissionDenied or the like) with more details about the reason for denial.
Part of #12241
Signed-off-by: Mark Anderson <manderson@hashicorp.com>
This commit syncs ENT changes to the OSS repo.
Original commit details in ENT:
```
commit 569d25f7f4578981c3801e6e067295668210f748
Author: FFMMM <FFMMM@users.noreply.github.com>
Date: Thu Feb 10 10:23:33 2022 -0800
Vendor fork net rpc (#1538)
* replace net/rpc w consul-net-rpc/net/rpc
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
* replace msgpackrpc and go-msgpack with fork from mono repo
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
* gofmt all files touched
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
```
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
Existing config entries prefixed by service- are specific to individual
services. Since this config entry applies to partitions it is being
renamed.
Additionally, the Partition label was changed to Name because using
Partition at the top-level and in the enterprise meta was leading to the
enterprise meta partition being dropped by msgpack.
The prior solution to call reply.Reset() aged poorly since newer fields
were added to the reply, but not added to Reset() leading serial
blocking query loops on the server to blend replies.
This could manifest as a service-defaults protocol change from
default=>http not reverting back to default after the config entry
reponsible was deleted.
Also fixes a bug with listing kind=mesh config entries. ValidateConfigEntryKind was only being used by
the List endpoint, and was yet another place where we have to enumerate all the kinds.
This commit removes ValidateConfigEntryKind and uses MakeConfigEntry instead. This change removes
the need to maintain two separate functions at the cost of creating an instance of the config entry which will be thrown away immediately.
No config entry needs a Kind field. It is only used to determine the Go type to
target. As we introduce new config entries (like this one) we can remove the kind field
and have the GetKind method return the single supported value.
In this case (similar to proxy-defaults) the Name field is also unnecessary. We always
use the same value. So we can omit the name field entirely.
This config entry is being renamed primarily because in k8s the name
cluster could be confusing given that the config entry applies across
federated datacenters.
Additionally, this config entry will only apply to Consul as a service
mesh, so the more generic "cluster" name is not needed.
The zero value of these flags was already being excluded in the xDS
generation of circuit breaker/outlier detection config.
See: makeThresholdsIfNeeded and ToOutlierDetection.
This PR replaces the original boolean used to configure transparent
proxy mode. It was replaced with a string mode that can be set to:
- "": Empty string is the default for when the setting should be
defaulted from other configuration like config entries.
- "direct": Direct mode is how applications originally opted into the
mesh. Proxy listeners need to be dialed directly.
- "transparent": Transparent mode enables configuring Envoy as a
transparent proxy. Traffic must be captured and redirected to the
inbound and outbound listeners.
This PR also adds a struct for transparent proxy specific configuration.
Initially this is not stored as a pointer. Will revisit that decision
before GA.
This is needed in case the client proxy is in TransparentProxy mode.
Typically they won't have explicit configuration for every upstream, so
this ensures the settings can be applied to all of them when generating
xDS config.
ResolveServiceConfig is called by service manager before the proxy
registration is in the catalog. Therefore we should pass proxy
registration flags in the request rather than trying to fetch
them from the state store (where they may not exist yet).
This is done because after removing ID and NodeName from
ServiceConfigRequest we will no longer know whether a request coming in
is for a Consul client earlier than v1.10.
Previously this type was defined in structs, but unlike the other types in structs this type
is not used by RPC requests. By moving it to state we can better indicate that this is not
an API type, but part of the state implementation.
These types are used as values (not pointers) in other structs. Using a pointer receiver causes
problems when the value is printed. fmt will not call the String method if it is passed a value
and the String method has a pointer receiver. By using a value receiver the correct string is printed.
Also remove some unused methods.
Previously config entries sharing a kind & name but in different
namespaces could occasionally cause "stuck states" in replication
because the namespace fields were ignored during the differential
comparison phase.
Example:
Two config entries written to the primary:
kind=A,name=web,namespace=bar
kind=A,name=web,namespace=foo
Under the covers these both get saved to memdb, so they are sorted by
all 3 components (kind,name,namespace) during natural iteration. This
means that before the replication code does it's own incomplete sort,
the underlying data IS sorted by namespace ascending (bar comes before
foo).
After one pass of replication the primary and secondary datacenters have
the same set of config entries present. If
"kind=A,name=web,namespace=bar" were to be deleted, then things get
weird. Before replication the two sides look like:
primary: [
kind=A,name=web,namespace=foo
]
secondary: [
kind=A,name=web,namespace=bar
kind=A,name=web,namespace=foo
]
The differential comparison phase walks these two lists in sorted order
and first compares "kind=A,name=web,namespace=foo" vs
"kind=A,name=web,namespace=bar" and falsely determines they are the SAME
and are thus cause an update of "kind=A,name=web,namespace=foo". Then it
compares "<nothing>" with "kind=A,name=web,namespace=foo" and falsely
determines that the latter should be DELETED.
During reconciliation the deletes are processed before updates, and so
for a brief moment in the secondary "kind=A,name=web,namespace=foo" is
erroneously deleted and then immediately restored.
Unfortunately after this replication phase the final state is identical
to the initial state, so when it loops around again (rate limited) it
repeats the same set of operations indefinitely.