This is the OSS portion of enterprise PR 1994
Rather than directly interrogating the agent-local state for HTTP
checks using the `HTTPCheckFetcher` interface, we now rely on the
config snapshot containing the checks.
This reduces the number of changes required to support server xDS
sessions.
It's not clear why the fetching approach was introduced in
931d167ebb2300839b218d08871f22323c60175d.
Envoy's SPIFFE certificate validation extension allows for us to
validate against different root certificates depending on the trust
domain of the dialing proxy.
If there are any trust bundles from peers in the config snapshot then we
use the SPIFFE validator as the validation context, rather than the
usual TrustedCA.
The injected validation config includes the local root certificates as
well.
There are a handful of changes in this commit:
* When querying trust bundles for a service we need to be able to
specify the namespace of the service.
* The endpoint needs to track the index because the cache watches use
it.
* Extracted bulk of the endpoint's logic to a state store function
so that index tracking could be tested more easily.
* Removed check for service existence, deferring that sort of work to ACL authz
* Added the cache type
Given that the exported-services config entry can use wildcards, the
precedence for wildcards is handled as with intentions. The most exact
match is the match that applies for any given service. We do not take
the union of all that apply.
Another update that was made was to reflect that only one
exported-services config entry applies to any given service in a
partition. This is a pre-existing constraint that gets enforced by
the Normalize() method on that config entry type.
For mTLS to work between two proxies in peered clusters with different root CAs,
proxies need to configure their outbound listener to use different root certificates
for validation.
Up until peering was introduced proxies would only ever use one set of root certificates
to validate all mesh traffic, both inbound and outbound. Now an upstream proxy
may have a leaf certificate signed by a CA that's different from the dialing proxy's.
This PR makes changes to proxycfg and xds so that the upstream TLS validation
uses different root certificates depending on which cluster is being dialed.
This is the OSS portion of enterprise PRs 1904, 1905, 1906, 1907, 1949,
and 1971.
It replaces the proxycfg manager's direct dependency on the agent cache
with interfaces that will be implemented differently when serving xDS
sessions from a Consul server.
* update gateway-services table with endpoints
* fix failing test
* remove unneeded config in test
* rename "endpoint" to "destination"
* more endpoint renaming to destination in tests
* update isDestination based on service-defaults config entry creation
* use a 3 state kind to be able to set the kind to unknown (when neither a service or a destination exist)
* set unknown state to empty to avoid modifying alot of tests
* fix logic to set the kind correctly on CRUD
* fix failing tests
* add missing tests and fix service delete
* fix failing test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* fix a bug with kind and add relevant test
* fix compile error
* fix failing tests
* add kind to clone
* fix failing tests
* fix failing tests in catalog endpoint
* fix service dump test
* Apply suggestions from code review
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
* remove duplicate tests
* rename consts and fix kind when no destination is defined in the service-defaults.
* rename Kind to ServiceKind and change switch to use .(type)
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
Replace bindata packages with stdlib go:embed.
Modernize some uiserver code with newer interfaces introduced in go 1.16 (mainly working with fs.File instead of http.File.
Remove steps that are no longer used from our build files.
Add Github Action to detect differences in agent/uiserver/dist and verify that the files are correct (by compiling UI assets and comparing contents).
Proxies dialing exporting services need to know the SPIFFE ID of
services dialed so that the upstream's SANs can be validated.
This commit attaches the SPIFFE ID to all connect proxies exported over
the peering stream so that they are available to importing clusters.
The data in the SPIFFE ID cannot be re-constructed in peer clusters
because the partition of exported services is overwritten on imports.
At the end of this test we were trying to ensure that updating a service in the local state causes it to re-register the service with the config manager.
The config manager in the same method will also call RegisteredProxies to determine if any need to be removed. This portion of the test is not attempting to verify that behavior.
Because the test is only blocked waiting for the Register event before it can end and assert all the mock expectations were met, we may not see the call to RegisteredProxies. This is especially apparent when tests are run with the race detector.
As we don’t actually care if that method is executed before the end of the test we can simply transition from expecting it to be called exactly once to a 0 or 1 times assertion.
OSS port of enterprise PR 1822
Includes the necessary changes to the `proxycfg` and `xds` packages to enable
Consul servers to configure arbitrary proxies using catalog data.
Broadly, `proxycfg.Manager` now has public methods for registering,
deregistering, and listing registered proxies — the existing local agent
state-sync behavior has been moved into a separate component that makes use of
these methods.
When an xDS session is started for a proxy service in the catalog, a goroutine
will be spawned to watch the service in the server's state store and
re-register it with the `proxycfg.Manager` whenever it is updated (and clean
it up when the client goes away).
Signed-off-by: acpana <8968914+acpana@users.noreply.github.com>
Co-authored-by: Chris S. Kim <ckim@hashicorp.com>
Co-authored-by: Freddy <freddygv@users.noreply.github.com>
Adds a new query param merge-central-config for use with the below endpoints:
/catalog/service/:service
/catalog/connect/:service
/health/service/:service
/health/connect/:service
If set on the request, the response will include a fully resolved service definition which is merged with the proxy-defaults/global and service-defaults/:service config entries (on-demand style). This is useful to view the full service definition for a mesh service (connect-proxy kind or gateway kind) which might not be merged before being written into the catalog (example: in case of services in the agentless model).
I noticed that the JSON api endpoints for peerings json encodes protobufs directly, rather than converting them into their `api` package equivalents before marshal/unmarshaling them.
I updated this and used `mog` to do the annoying part in the middle.
Other changes:
- the status enum was converted into the friendlier string form of the enum for readability with tools like `curl`
- some of the `api` library functions were slightly modified to match other similar endpoints in UX (cc: @ndhanushkodi )
- peeringRead returns `nil` if not found
- partitions are NOT inferred from the agent's partition (matching 1.11-style logic)
The importing peer will need to know what SNI and SPIFFE name
corresponds to each exported service. Additionally it will need to know
at a high level the protocol in use (L4/L7) to generate the appropriate
connection pool and local metrics.
For replicated connect synthetic entities we edit the `Connect{}` part
of a `NodeService` to have a new section:
{
"PeerMeta": {
"SNI": [
"web.default.default.owt.external.183150d5-1033-3672-c426-c29205a576b8.consul"
],
"SpiffeID": [
"spiffe://183150d5-1033-3672-c426-c29205a576b8.consul/ns/default/dc/dc1/svc/web"
],
"Protocol": "tcp"
}
}
This data is then replicated and saved as-is at the importing side. Both
SNI and SpiffeID are slices for now until I can be sure we don't need
them for how mesh gateways will ultimately work.
* fix: non-leader agents return 404 on Get Intention exact api
- rpc call method appends extra error message, so change == to
"Strings.Contains"
Co-authored-by: Chris S. Kim <ckim@hashicorp.com>
* Install `buf` instead of `protoc`
* Created `buf.yaml` and `buf.gen.yaml` files in the two proto directories to control how `buf` generates/lints proto code.
* Invoke `buf` instead of `protoc`
* Added a `proto-format` make target.
* Committed the reformatted proto files.
* Added a `proto-lint` make target.
* Integrated proto linting with CI
* Fixed tons of proto linter warnings.
* Got rid of deprecated builtin protoc-gen-go grpc plugin usage. Moved to direct usage of protoc-gen-go-grpc.
* Unified all proto directories / go packages around using pb prefixes but ensuring all proto packages do not have the prefix.
Occasionally we had seen the TestWatchServers_ACLToken_PermissionDenied be flagged as flaky in circleci. This change should fix that.
Why it fixes it is complicated. The test was failing with a panic when a mocked ACL Resolver was being called more times than expected. I struggled for a while to determine how that could be. This test should call authorize once and only once and the error returned should cause the stream to be terminated and the error returned to the gRPC client. Another oddity was no amount of running this test locally seemed to be able to reproduce the issue. I ran the test hundreds of thousands of time and it always passed.
It turns out that there is nothing wrong with the test. It just so happens that the panic from unexpected invocation of a mocked call happened during the test but was caused by a previous test (specifically the TestWatchServers_StreamLifecycle test)
The stream from the previous test remained open after all the test Cleanup functions were run and it just so happened that when the EventPublisher eventually picked up that the context was cancelled during cleanup, it force closes all subscriptions which causes some loops to be re-entered and the streams to be reauthorized. Its that looping in response to forced subscription closures that causes the mock to eventually panic. All the components, publisher, server, client all operate based on contexts. We cancel all those contexts but there is no syncrhonous way to know when they are stopped.
We could have implemented a syncrhonous stop but in the context of an actual running Consul, context cancellation + async stopping is perfectly fine. What we (Dan and I) eventually thought was that the behavior of grpc streams such as this when a server was shutting down wasn’t super helpful. What we would want is for a client to be able to distinguish between subscription closed because something may have changed requiring re-authentication and subscription closed because the server is shutting down. That way we can send back appropriate error messages to detail that the server is shutting down and not confuse users with potentially needing to resubscribe.
So thats what this PR does. We have introduced a shutting down state to our event subscriptions and the various streaming gRPC services that rely on the event publisher will all just behave correctly and actually stop the stream (not attempt transparent reauthorization) if this particular error is the one we get from the stream. Additionally the error that gets transmitted back through gRPC when this does occur indicates to the consumer that the server is going away. That is more helpful so that a client can then attempt to reconnect to another server.
OSS portion of enterprise PR 1857.
This removes (most) references to the `cache.UpdateEvent` type in the
`proxycfg` package.
As we're going to be direct usage of the agent cache with interfaces that
can be satisfied by alternative server-local datasources, it doesn't make
sense to depend on this type everywhere anymore (particularly on the
`state.ch` channel).
We also plan to extract `proxycfg` out of Consul into a shared library in
the future, which would require removing this dependency.
Aside from a fairly rote find-and-replace, the main change is that the
`cache.Cache` and `health.Client` types now accept a callback function
parameter, rather than a `chan<- cache.UpdateEvents`. This allows us to
do the type conversion without running another goroutine.