* Protobuf Modernization
Remove direct usage of golang/protobuf in favor of google.golang.org/protobuf
Marshallers (protobuf and json) needed some changes to account for different APIs.
Moved to using the google.golang.org/protobuf/types/known/* for the well known types including replacing some custom Struct manipulation with whats available in the structpb well known type package.
This also updates our devtools script to install protoc-gen-go from the right location so that files it generates conform to the correct interfaces.
* Fix go-mod-tidy make target to work on all modules
There are a few changes that needed to be made to to handle authorizing
reads for imported data:
- If the data was imported from a peer we should not attempt to read the
data using the traditional authz rules. This is because the name of
services/nodes in a peer cluster are not equivalent to those of the
importing cluster.
- If the data was imported from a peer we need to check whether the
token corresponds to a service, meaning that it has service:write
permissions, or to a local read only token that can read all
nodes/services in a namespace.
This required changes at the policyAuthorizer level, since that is the
only view available to OSS Consul, and at the enterprise
partition/namespace level.
To support Destinations on the service-defaults (for tproxy with terminating gateway), we need to now also make servers watch service-defaults config entries.
Prior to #13244, connect proxies and gateways could only be configured by an
xDS session served by the local client agent.
In an upcoming release, it will be possible to deploy a Consul service mesh
without client agents. In this model, xDS sessions will be handled by the
servers themselves, which necessitates load-balancing to prevent a single
server from receiving a disproportionate amount of load and becoming
overwhelmed.
This introduces a simple form of load-balancing where Consul will attempt to
achieve an even spread of load (xDS sessions) between all healthy servers.
It does so by implementing a concurrent session limiter (limiter.SessionLimiter)
and adjusting the limit according to autopilot state and proxy service
registrations in the catalog.
If a server is already over capacity (i.e. the session limit is lowered),
Consul will begin draining sessions to rebalance the load. This will result
in the client receiving a `RESOURCE_EXHAUSTED` status code. It is the client's
responsibility to observe this response and reconnect to a different server.
Users of the gRPC client connection brokered by the
consul-server-connection-manager library will get this for free.
The rate at which Consul will drain sessions to rebalance load is scaled
dynamically based on the number of proxies in the catalog.
Peerings are terminated when a peer decides to delete the peering from
their end. Deleting a peering sends a termination message to the peer
and triggers them to mark the peering as terminated but does NOT delete
the peering itself. This is to prevent peerings from disappearing from
both sides just because one side deleted them.
Previously the Delete endpoint was skipping the deletion if the peering
was not marked as active. However, terminated peerings are also
inactive.
This PR makes some updates so that peerings marked as terminated can be
deleted by users.
We need to watch for changes to peerings and update the server addresses which get served by the ring buffer.
Also, if there is an active connection for a peer, we are getting up-to-date server addresses from the replication stream and can safely ignore the token's addresses which may be stale.
Contains 2 changes to the GetEnvoyBootstrapParams response to support
consul-dataplane.
Exposing node_name and node_id:
consul-dataplane will support providing either the node_id or node_name in its
configuration. Unfortunately, supporting both in the xDS meta adds a fair amount
of complexity (partly because most tables are currently indexed on node_name)
so for now we're going to return them both from the bootstrap params endpoint,
allowing consul-dataplane to exchange a node_id for a node_name (which it will
supply in the xDS meta).
Properly setting service for gateways:
To avoid the need to special case gateways in consul-dataplane, service will now
either be the destination service name for connect proxies, or the gateway
service name. This means it can be used as-is in Envoy configuration (i.e. as a
cluster name or in metric tags).
1. Create a bexpr filter for performing the filtering
2. Change the state store functions to return the raw (not aggregated)
list of ServiceNodes.
3. Move the aggregate service tags by name logic out of the state store
functions into a new function called from the RPC endpoint
4. Perform the filtering in the endpoint before aggregation.
Previously establishment and pending secrets were only checked at the
RPC layer. However, given that these are Check-and-Set transactions we
should ensure that the given secrets are still valid when persisting a
secret exchange or promotion.
Otherwise it would be possible for concurrent requests to overwrite each
other.
Previously there was a field indicating the operation that triggered a
secrets write. Now there is a message for each operation and it contains
the secret ID being persisted.
Previously the updates to the peering secrets UUID table relied on
inferring what action triggered the update based on a reconciliation
against the existing secrets.
Instead we now explicitly require the operation to be given so that the
inference isn't necessary. This makes the UUID table logic easier to
reason about and fixes some related bugs.
There is also an update so that the peering secrets get handled on
snapshots/restores.
Dialers do not keep track of peering secret UUIDs, so they should not
attempt to clean up data from that table when their peering is deleted.
We also now keep peer server addresses when marking peerings for
deletion. Peer server addresses are used by the ShouldDial() helper
when determining whether the peering is for a dialer or an acceptor.
We need to keep this data so that peering secrets can be cleaned up
accordingly.
This is the OSS portion of enterprise PR 2352.
It adds a server-local implementation of the proxycfg.PeeredUpstreams interface
based on a blocking query against the server's state store.
It also fixes an omission in the Virtual IP freeing logic where we were never
updating the max index (and therefore blocking queries against
VirtualIPsForAllImportedServices would not return on service deletion).
This is the OSS portion of enterprise PR 2242.
This PR introduces a server-local implementation of the proxycfg.ServiceList
interface, backed by streaming events and a local materializer.
For L4/tcp exported services the mesh gateways will not be terminating
TLS. A caller in one peer will be directly establishing TLS connections
to the ultimate exported service in the other peer.
The caller will be doing SAN validation using the replicated SpiffeID
values shipped from the exporting side. There are a class of discovery
chain edits that could be done on the exporting side that would cause
the introduction of a new SpiffeID value. In between the time of the
config entry update on the exporting side and the importing side getting
updated peer stream data requests to the exported service would fail due
to SAN validation errors.
This is unacceptable so instead prohibit the exporting peer from making
changes that would break peering in this way.
Because peerings are pairwise, between two tuples of (datacenter,
partition) having any exported reference via a discovery chain that
crosses out of the peered datacenter or partition will ultimately not be
able to work for various reasons. The biggest one is that there is no
way in the ultimate destination to configure an intention that can allow
an external SpiffeID to access a service.
This PR ensures that a user simply cannot do this, so they won't run
into weird situations like this.
These changes are primarily for Consul's UI, where we want to be more
specific about the state a peering is in.
- The "initial" state was renamed to pending, and no longer applies to
peerings being established from a peering token.
- Upon request to establish a peering from a peering token, peerings
will be set as "establishing". This will help distinguish between the
two roles: the cluster that generates the peering token and the
cluster that establishes the peering.
- When marked for deletion, peering state will be set to "deleting".
This way the UI determines the deletion via the state rather than the
"DeletedAt" field.
Co-authored-by: freddygv <freddy@hashicorp.com>