Based on work done in https://github.com/hashicorp/memberlist/pull/196
this allows to restrict the IP ranges that can join a given Serf cluster
and be a member of the cluster.
Restrictions on IPs can be done separatly using 2 new differents flags
and config options to restrict IPs for LAN and WAN Serf.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
Currently when using the built-in CA provider for Connect, root certificates are valid for 10 years, however secondary DCs get intermediates that are valid for only 1 year. There is no mechanism currently short of rotating the root in the primary that will cause the secondary DCs to renew their intermediates.
This PR adds a check that renews the cert if it is half way through its validity period.
In order to be able to test these changes, a new configuration option was added: IntermediateCertTTL which is set extremely low in the tests.
* Renamed structs.IntentionWildcard to structs.WildcardSpecifier
* Refactor ACL Config
Get rid of remnants of enterprise only renaming.
Add a WildcardName field for specifying what string should be used to indicate a wildcard.
* Add wildcard support in the ACL package
For read operations they can call anyAllowed to determine if any read access to the given resource would be granted.
For write operations they can call allAllowed to ensure that write access is granted to everything.
* Make v1/agent/connect/authorize namespace aware
* Update intention ACL enforcement
This also changes how intention:read is granted. Before the Intention.List RPC would allow viewing an intention if the token had intention:read on the destination. However Intention.Match allowed viewing if access was allowed for either the source or dest side. Now Intention.List and Intention.Get fall in line with Intention.Matches previous behavior.
Due to this being done a few different places ACL enforcement for a singular intention is now done with the CanRead and CanWrite methods on the intention itself.
* Refactor Intention.Apply to make things easier to follow.
* add NeedsLogger to Provider interface
* implements NeedsLogger in default provider
* pass logger through to provider
* test for proper operation of NeedsLogger
* remove public testServer function
* Switch test to actually assert on logging output rather than reflection.
--amend
* Ooops actually set the logger in all the places we need it - CA config set wasn't and causing segfault
* Fix all the other places in tests where we set the logger
* Add TODO comment
This should cut down on test flakiness.
Problems handled:
- If you had enough parallel test cases running, the former circular
approach to handling the port block could hand out the same port to
multiple cases before they each had a chance to bind them, leading to
one of the two tests to fail.
- The freeport library would allocate out of the ephemeral port range.
This has been corrected for Linux (which should cover CI).
- The library now waits until a formerly-in-use port is verified to be
free before putting it back into circulation.
All these changes should have no side-effects or change behavior:
- Use bytes.Buffer's String() instead of a conversion
- Use time.Since and time.Until where fitting
- Drop unnecessary returns and assignment
* First conversion
* Use serf 0.8.2 tag and associated updated deps
* * Move freeport and testutil into internal/
* Make internal/ its own module
* Update imports
* Add replace statements so API and normal Consul code are
self-referencing for ease of development
* Adapt to newer goe/values
* Bump to new cleanhttp
* Fix ban nonprintable chars test
* Update lock bad args test
The error message when the duration cannot be parsed changed in Go 1.12
(ae0c435877d3aacb9af5e706c40f9dddde5d3e67). This updates that test.
* Update another test as well
* Bump travis
* Bump circleci
* Bump go-discover and godo to get rid of launchpad dep
* Bump dockerfile go version
* fix tar command
* Bump go-cleanhttp
This PR introduces reloading tls configuration. Consul will now be able to reload the TLS configuration which previously required a restart. It is not yet possible to turn TLS ON or OFF with these changes. Only when TLS is already turned on, the configuration can be reloaded. Most importantly the certificates and CAs.
In TestServer_LANReap autopilot is running, so the alternate flow
through the serf reaping function is possible. In that situation the
ReconnectTimeout is not relevant so for parity also override the
TombstoneTimeout value as well.
For additional parity update the TestServer_WANReap and
TestClient_LANReap versions of this test in the same way even though
autopilot is irrelevant here .
Fix error in detecting raft replication errors.
Detect redacted token secrets and prevent attempting to insert.
Add a Redacted field to the TokenBatchRead and TokenRead RPC endpoints
This will indicate whether token secrets have been redacted.
Ensure any token with a redacted secret in secondary datacenters is removed.
Test that redacted tokens cannot be replicated.
In order to be able to reload the TLS configuration, we need one way to generate the different configurations.
This PR introduces a `tlsutil.Configurator` which holds a `tlsutil.Config`. Afterwards it is responsible for rendering every `tls.Config`. In this particular PR I moved `IncomingHTTPSConfig`, `IncomingTLSConfig`, and `OutgoingTLSWrapper` into `tlsutil.Configurator`.
This PR is a pure refactoring - not a single feature added. And not a single test added. I only slightly modified existing tests as necessary.
When tests fail, only the logs for the failing run are dumped to the
console which helps in diagnosis. This is easily added to other test
scenarios as they come up.
* Fix CA pruning when CA config uses string durations.
The tl;dr here is:
- Configuring LeafCertTTL with a string like "72h" is how we do it by default and should be supported
- Most of our tests managed to escape this by defining them as time.Duration directly
- Out actual default value is a string
- Since this is stored in a map[string]interface{} config, when it is written to Raft it goes through a msgpack encode/decode cycle (even though it's written from server not over RPC).
- msgpack decode leaves the string as a `[]uint8`
- Some of our parsers required string and failed
- So after 1 hour, a default configured server would throw an error about pruning old CAs
- If a new CA was configured that set LeafCertTTL as a time.Duration, things might be OK after that, but if a new CA was just configured from config file, intialization would cause same issue but always fail still so would never prune the old CA.
- Mostly this is just a janky error that got passed tests due to many levels of complicated encoding/decoding.
tl;dr of the tl;dr: Yay for type safety. Map[string]interface{} combined with msgpack always goes wrong but we somehow get bitten every time in a new way :D
We already fixed this once! The main CA config had the same problem so @kyhavlov already wrote the mapstructure DecodeHook that fixes it. It wasn't used in several places it needed to be and one of those is notw in `structs` which caused a dependency cycle so I've moved them.
This adds a whole new test thta explicitly tests the case that broke here. It also adds tests that would have failed in other places before (Consul and Vaul provider parsing functions). I'm not sure if they would ever be affected as it is now as we've not seen things broken with them but it seems better to explicitly test that and support it to not be bitten a third time!
* Typo fix
* Fix bad Uint8 usage
* Relaxes Autopilot promotion logic.
When we defaulted the Raft protocol version to 3 in #3477 we made
the numPeers() routine more strict to only count voters (this is
more conservative and more correct). This had the side effect of
breaking rolling updates because it's at odds with the Autopilot
non-voter promotion logic.
That logic used to wait to only promote to maintain an odd quorum
of servers. During a rolling update (add one new server, wait, and
then kill an old server) the dead server cleanup would still count
the old server as a peer, which is conservative and the right thing
to do, and no longer count the non-voter. This would wait to promote,
so you could get into a stalemate. It is safer to promote early than
remove early, so by promoting as soon as possible we have chosen
that as the solution here.
Fixes#3611
* Gets rid of unnecessary extra not-a-voter check.