In an upcoming change we will need to pass a grpc.ClientConnPool from
BaseDeps into Server. While looking at that change I noticed all of the
existing consulOption fields are already on BaseDeps.
Instead of duplicating the fields, we can create a struct used by
agent/consul, and use that struct in BaseDeps. This allows us to pass
along dependencies without translating them into different
representations.
I also looked at moving all of BaseDeps in agent/consul, however that
created some circular imports. Resolving those cycles wouldn't be too
bad (it was only an error in agent/consul being imported from
cache-types), however this change seems a little better by starting to
introduce some structure to BaseDeps.
This change is also a small step in reducing the scope of Agent.
Also remove some constants that were only used by tests, and move the
relevant comment to where the live configuration is set.
Removed some validation from NewServer and NewClient, as these are not
really runtime errors. They would be code errors, which will cause a
panic anyway, so no reason to handle them specially here.
https server.
In #8234 I changed a few tests to use TestAgent.HTTPAddr() to find the
addr used in the test. Due to the way HTTPAddr() was implemented these
tests were passing, but I think the pass was incidental. HTTPAddr() was
not matching any servers, and was instead returning the last server,
which happened to be the one these tests wanted.
This commit fixes the implementation of HTTPAddr to panic if no match
was found. The tests which require an HTTPS server are changed to use
a new firstAddr() to look up the correct address.
And into token.Store. This change isolates any awareness of token
persistence in a single place.
It is a small step in allowing Agent.New to accept its dependencies.
TestAgent.Key was only used by 3 tests. Extracting it from the common helper that is used in hundreds of
tests helps keep the shared part small and more focused.
This required a second change (which I was planning on making anyway), which was to change the behaviour of
DataDir. Now in all cases the TestAgent will use the DataDir, and clean it up once the test is complete.
Most of the groundwork was laid in previous PRs between adding the cert-monitor package to extracting the logic of signing certificates out of the connect_ca_endpoint.go code and into a method on the server.
This also refactors the auto-config package a bit to split things out into multiple files.
There were several PRs that while all passed CI independently, when they all got merged into the same branch caused compilation errors in test code.
The main changes that caused issues where changing agent/cache.Cache.New to require a concrete options struct instead of a pointer. This broke the cert monitor tests and the catalog_list_services_test.go. Another change was made to unembed the http.Server from the agent.HTTPServer struct. That coupled with another change to add a test to ensure cache rate limiting coming from HTTP requests was working as expected caused compilation failures.
This implements a solution for #7863
It does:
Add a new config cache.entry_fetch_rate to limit the number of calls/s for a given cache entry, default value = rate.Inf
Add cache.entry_fetch_max_burst size of rate limit (default value = 2)
The new configuration now supports the following syntax for instance to allow 1 query every 3s:
command line HCL: -hcl 'cache = { entry_fetch_rate = 0.333}'
in JSON
{
"cache": {
"entry_fetch_rate": 0.333
}
}
Also fix a bug where Consul could segfault if TLS was enabled but no client certificate was provided. How no one has reported this as a problem I am not sure.
The old test case was a very specific regresion test for a case that is no longer possible.
Replaced with a new test that checks the default coordinate is returned.
The envisioned changes would allow extra settings to enable dynamically defined auth methods to be used instead of or in addition to the statically defined one in the configuration.
There are a couple of things in here.
First, just like auto encrypt, any Cluster.AutoConfig RPC will implicitly use the less secure RPC mechanism.
This drastically modifies how the Consul Agent starts up and moves most of the responsibilities (other than signal handling) from the cli command and into the Agent.
In current implementation of Consul, check alias cannot determine
if a service exists or not. Because a service without any check
is semantically considered as passing, so when no healthchecks
are found for an agent, the check was considered as passing.
But this make little sense as the current implementation does not
make any difference between:
* a non-existing service (passing)
* a service without any check (passing as well)
In order to make it work, we have to ensure that when a check did
not find any healthcheck, the service does indeed exists. If it
does not, lets consider the check as failing.
* testing: replace most goe/verify.Values with require.Equal
One difference between these two comparisons is that go/verify considers
nil slices/maps to be equal to empty slices/maps, where as testify/require
does not, and does not appear to provide any way to enable that behaviour.
Because of this difference some expected values were changed from empty
slices to nil slices, and some calls to verify.Values were left.
* Remove github.com/pascaldekloe/goe/verify
Reduce the number of assertion packages we use from 2 to 1
This function now only starts the agent.
Using:
git grep -l 'StartTestAgent(t, true,' | \
xargs sed -i -e 's/StartTestAgent(t, true,/StartTestAgent(t,/g'
Previously the log output included the test name twice and a long date
format. The test output is already grouped by test, so adding the test
name did not add any new information. The date and time are only useful
to understand elapsed time, so using a short format should provide
succident detail.
Also fixed a bug in NewTestAgentWithFields where nil was returned
instead of the test agent.
This test would occasionally fail because we checked for a status of
"critical" initially. This races with the actual healthcheck being run
and declared passing.
We instead use a ttl health check so that we don't rely on timing at all.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
This fixes issue #7318
Between versions 1.5.2 and 1.5.3, a regression has been introduced regarding health
of services. A patch #6144 had been issued for HealthChecks of nodes, but not for healthchecks
of services.
What happened when a reload was:
1. save all healthcheck statuses
2. cleanup everything
3. add new services with healthchecks
In step 3, the state of healthchecks was taken into account locally,
so at step 3, but since we cleaned up at step 2, state was lost.
This PR introduces the snap parameter, so step 3 can use information from step 1
* Use consts for well known tagged adress keys
* Add ipv4 and ipv6 tagged addresses for node lan and wan
* Add ipv4 and ipv6 tagged addresses for service lan and wan
* Use IPv4 and IPv6 address in DNS
Ensure we close the Sentinel Evaluator so as not to leak go routines
Fix a bunch of test logging so that various warnings when starting a test agent go to the ltest logger and not straight to stdout.
Various canned ent meta types always return a valid pointer (no more nils). This allows us to blindly deref + assign in various places.
Update ACL index tracking to ensure oss -> ent upgrades will work as expected.
Update ent meta parsing to include function to disallow wildcarding.
Fixes#6521
Ensure that initial failures to fetch an agent cache entry using the
notify API where the underlying RPC returns a synthetic index of 1
correctly recovers when those RPCs resume working.
The bug in the Cache.notifyBlockingQuery used to incorrectly "fix" the
index for the next query from 0 to 1 for all queries, when it should
have not done so for queries that errored.
Also fixed some things that made debugging difficult:
- config entry read/list endpoints send back QueryMeta headers
- xds event loops don't swallow the cache notification errors
Fixes: #5396
This PR adds a proxy configuration stanza called expose. These flags register
listeners in Connect sidecar proxies to allow requests to specific HTTP paths from outside of the node. This allows services to protect themselves by only
listening on the loopback interface, while still accepting traffic from non
Connect-enabled services.
Under expose there is a boolean checks flag that would automatically expose all
registered HTTP and gRPC check paths.
This stanza also accepts a paths list to expose individual paths. The primary
use case for this functionality would be to expose paths for third parties like
Prometheus or the kubelet.
Listeners for requests to exposed paths are be configured dynamically at run
time. Any time a proxy, or check can be registered, a listener can also be
created.
In this initial implementation requests to these paths are not
authenticated/encrypted.
Also:
* Finished threading replaceExistingChecks setting (from GH-4905)
through service manager.
* Respected the original configSource value that was used to register a
service or a check when restoring persisted data.
* Run several existing tests with and without central config enabled
(not exhaustive yet).
* Switch to ioutil.ReadFile for all types of agent persistence.
This should cut down on test flakiness.
Problems handled:
- If you had enough parallel test cases running, the former circular
approach to handling the port block could hand out the same port to
multiple cases before they each had a chance to bind them, leading to
one of the two tests to fail.
- The freeport library would allocate out of the ephemeral port range.
This has been corrected for Linux (which should cover CI).
- The library now waits until a formerly-in-use port is verified to be
free before putting it back into circulation.