* Implements a simple, tcp ingress gateway workflow
This adds a new type of gateway for allowing Ingress traffic into Connect from external services.
Co-authored-by: Chris Piraino <cpiraino@hashicorp.com>
The Init method provided the same functionality as the New constructor.
The constructor is both more widely used, and more idiomatic, so remove
the Init method.
This change is in preparation for fixing printing of these IDs.
* Add Ingress gateway config entry and other relevant structs
* Add api package tests for ingress gateways
* Embed EnterpriseMeta into ingress service struct
* Add namespace fields to api module and test consul config write decoding
* Don't require a port for ingress gateways
* Add snakeJSON and camelJSON cases in command test
* Run Normalize on service's ent metadata
Sadly cannot think of a way to test this in OSS.
* Every protocol requires at least 1 service
* Validate ingress protocols
* Update agent/structs/config_entry_gateways.go
Co-authored-by: Chris Piraino <cpiraino@hashicorp.com>
Co-authored-by: Freddy <freddygv@users.noreply.github.com>
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
We set RawToString=true so that []uint8 => string when decoding an interface{}.
We set the MapType so that map[interface{}]interface{} decodes to map[string]interface{}.
Add tests to ensure that this doesn't break existing usages.
Fixes#7223
* Use consts for well known tagged adress keys
* Add ipv4 and ipv6 tagged addresses for node lan and wan
* Add ipv4 and ipv6 tagged addresses for service lan and wan
* Use IPv4 and IPv6 address in DNS
* Renamed structs.IntentionWildcard to structs.WildcardSpecifier
* Refactor ACL Config
Get rid of remnants of enterprise only renaming.
Add a WildcardName field for specifying what string should be used to indicate a wildcard.
* Add wildcard support in the ACL package
For read operations they can call anyAllowed to determine if any read access to the given resource would be granted.
For write operations they can call allAllowed to ensure that write access is granted to everything.
* Make v1/agent/connect/authorize namespace aware
* Update intention ACL enforcement
This also changes how intention:read is granted. Before the Intention.List RPC would allow viewing an intention if the token had intention:read on the destination. However Intention.Match allowed viewing if access was allowed for either the source or dest side. Now Intention.List and Intention.Get fall in line with Intention.Matches previous behavior.
Due to this being done a few different places ACL enforcement for a singular intention is now done with the CanRead and CanWrite methods on the intention itself.
* Refactor Intention.Apply to make things easier to follow.
Also update the Docs and fixup the HTTP API to return proper errors when someone attempts to use Namespaces with an OSS agent.
Add Namespace HTTP API docs
Make all API endpoints disallow unknown fields
Main Changes:
• method signature updates everywhere to account for passing around enterprise meta.
• populate the EnterpriseAuthorizerContext for all ACL related authorizations.
• ACL resource listings now operate like the catalog or kv listings in that the returned entries are filtered down to what the token is allowed to see. With Namespaces its no longer all or nothing.
• Modified the acl.Policy parsing to abstract away basic decoding so that enterprise can do it slightly differently. Also updated method signatures so that when parsing a policy it can take extra ent metadata to use during rules validation and policy creation.
Secondary Changes:
• Moved protobuf encoding functions out of the agentpb package to eliminate circular dependencies.
• Added custom JSON unmarshalers for a few ACL resource types (to support snake case and to get rid of mapstructure)
• AuthMethod validator cache is now an interface as these will be cached per-namespace for Consul Enterprise.
• Added checks for policy/role link existence at the RPC API so we don’t push the request through raft to have it fail internally.
• Forward ACL token delete request to the primary datacenter when the secondary DC doesn’t have the token.
• Added a bunch of ACL test helpers for inserting ACL resource test data.
In a previous PR I made it so that we had interfaces that would work enough to allow blockingQueries to work. However to complete this we need all fields to be settable and gettable.
Notes:
• If Go ever gets contracts/generics then we could get rid of all the Getters/Setters
• protoc / protoc-gen-gogo are going to generate all the getters for us.
• I copied all the getters/setters from the protobuf funcs into agent/structs/protobuf_compat.go
• Also added JSON marshaling funcs that use jsonpb for protobuf types.
Fixes: #5396
This PR adds a proxy configuration stanza called expose. These flags register
listeners in Connect sidecar proxies to allow requests to specific HTTP paths from outside of the node. This allows services to protect themselves by only
listening on the loopback interface, while still accepting traffic from non
Connect-enabled services.
Under expose there is a boolean checks flag that would automatically expose all
registered HTTP and gRPC check paths.
This stanza also accepts a paths list to expose individual paths. The primary
use case for this functionality would be to expose paths for third parties like
Prometheus or the kubelet.
Listeners for requests to exposed paths are be configured dynamically at run
time. Any time a proxy, or check can be registered, a listener can also be
created.
In this initial implementation requests to these paths are not
authenticated/encrypted.
* Add build system support for protobuf generation
This is done generically so that we don’t have to keep updating the makefile to add another proto generation.
Note: anything not in the vendor directory and with a .proto extension will be run through protoc if the corresponding namespace.pb.go file is not up to date.
If you want to rebuild just a single proto file you can do so with: make proto-rebuild PROTOFILES=<list of proto files to rebuild>
Providing the PROTOFILES var will override the default behavior of finding all the .proto files.
* Start adding types to the agent/proto package
These will be needed for some other work and are by no means comprehensive.
* Add ability to resolve/fixup the agentpb.ACLLinks structure in the state store.
* Use protobuf marshalling of raft requests instead of msgpack for protoc generated types.
This does not change any encoding of existing types.
* Removed structs package automatically encoding with protobuf marshalling
Instead the caller of raftApply that wants to opt-in to protobuf encoding will have to call `raftApplyProtobuf`
* Run update-vendor to fixup modules.txt
Nothing changed as far as dependencies go but the ordering of modules in that file depends on the time they are first seen and its not alphabetical.
* Rename some things and implement the structs.RPCInfo interface bits
agentpb.QueryOptions and agentpb.WriteRequest implement 3 of the 4 RPCInfo funcs and the new TargetDatacenter message type implements the fourth.
* Use the right encoding function.
* Renamed agent/proto package to agent/agentpb to prevent package name conflicts
* Update modules.txt to fix ordering
* Change blockingQuery to take in interfaces for the query options and meta
* Add %T to error output.
* Add/Update some comments
Add parameter local-only to operator keyring list requests to force queries to only hit local servers (no WAN traffic).
HTTP API: GET /operator/keyring?local-only=true
CLI: consul keyring -list --local-only
Sending the local-only flag with any non-GET/list request will result in an error.
* connect: validate upstreams and prevent duplicates
* Actually run Upstream.Validate() instead of ignoring it as dead code.
* Prevent two upstreams from declaring the same bind address and port.
It wouldn't work anyway.
* Prevent two upstreams from being declared that use the same
type+name+namespace+datacenter. Due to how the Upstream.Identity()
function worked this ended up mostly being enforced in xDS at use-time,
but it should be enforced more clearly at register-time.
* Support for maximum size for Output of checks
This PR allows users to limit the size of output produced by checks at the agent
and check level.
When set at the agent level, it will limit the output for all checks monitored
by the agent.
When set at the check level, it can override the agent max for a specific check but
only if it is lower than the agent max.
Default value is 4k, and input must be at least 1.
If a KVSet is performed but does not update the entry, do not trigger
watches for this key.
This avoids releasing blocking queries for KV values that did not
actually changed.
This allows addresses to be tagged at the service level similar to what we allow for nodes already. The address translation that can be enabled with the `translate_wan_addrs` config was updated to take these new addresses into account as well.
The observed bug was that a full restart of a consul datacenter (servers
and clients) in conjunction with a restart of a connect-flavored
application with bring-your-own-service-registration logic would very
frequently cause the envoy sidecar service check to never reflect the
aliased service.
Over the course of investigation several bugs and unfortunate
interactions were corrected:
(1)
local.CheckState objects were only shallow copied, but the key piece of
data that gets read and updated is one of the things not copied (the
underlying Check with a Status field). When the stock code was run with
the race detector enabled this highly-relevant-to-the-test-scenario field
was found to be racy.
Changes:
a) update the existing Clone method to include the Check field
b) copy-on-write when those fields need to change rather than
incrementally updating them in place.
This made the observed behavior occur slightly less often.
(2)
If anything about how the runLocal method for node-local alias check
logic was ever flawed, there was no fallback option. Those checks are
purely edge-triggered and failure to properly notice a single edge
transition would leave the alias check incorrect until the next flap of
the aliased check.
The change was to introduce a fallback timer to act as a control loop to
double check the alias check matches the aliased check every minute
(borrowing the duration from the non-local alias check logic body).
This made the observed behavior eventually go away when it did occur.
(3)
Originally I thought there were two main actions involved in the data race:
A. The act of adding the original check (from disk recovery) and its
first health evaluation.
B. The act of the HTTP API requests coming in and resetting the local
state when re-registering the same services and checks.
It took awhile for me to realize that there's a third action at work:
C. The goroutines associated with the original check and the later
checks.
The actual sequence of actions that was causing the bad behavior was
that the API actions result in the original check to be removed and
re-added _without waiting for the original goroutine to terminate_. This
means for brief windows of time during check definition edits there are
two goroutines that can be sending updates for the alias check status.
In extremely unlikely scenarios the original goroutine sees the aliased
check start up in `critical` before being removed but does not get the
notification about the nearly immediate update of that check to
`passing`.
This is interlaced wit the new goroutine coming up, initializing its
base case to `passing` from the current state and then listening for new
notifications of edge triggers.
If the original goroutine "finishes" its update, it then commits one
more write into the local state of `critical` and exits leaving the
alias check no longer reflecting the underlying check.
The correction here is to enforce that the old goroutines must terminate
before spawning the new one for alias checks.
* Add integration test for central config; fix central config WIP
* Add integration test for central config; fix central config WIP
* Set proxy protocol correctly and begin adding upstream support
* Add upstreams to service config cache key and start new notify watcher if they change.
This doesn't update the tests to pass though.
* Fix some merging logic get things working manually with a hack (TODO fix properly)
* Simplification to not allow enabling sidecars centrally - it makes no sense without upstreams anyway
* Test compile again and obvious ones pass. Lots of failures locally not debugged yet but may be flakes. Pushing up to see what CI does
* Fix up service manageer and API test failures
* Remove the enable command since it no longer makes much sense without being able to turn on sidecar proxies centrally
* Remove version.go hack - will make integration test fail until release
* Remove unused code from commands and upstream merge
* Re-bump version to 1.5.0
Roles are named and can express the same bundle of permissions that can
currently be assigned to a Token (lists of Policies and Service
Identities). The difference with a Role is that it not itself a bearer
token, but just another entity that can be tied to a Token.
This lets an operator potentially curate a set of smaller reusable
Policies and compose them together into reusable Roles, rather than
always exploding that same list of Policies on any Token that needs
similar permissions.
This also refactors the acl replication code to be semi-generic to avoid
3x copypasta.