* backport of commit 57bb6f3d729e4d76d1043efa2fa6a46137398d32
* backport of commit b2dad880653285a975795e89b0d77a6ea2fa60f1
* backport of commit 753d3c0d3f4797b6cf2d3490df996dffa8e885de
---------
Co-authored-by: Chris S. Kim <ckim@hashicorp.com>
* Rename Intermediate cert references to LeafSigningCert
Within the Consul CA subsystem, the term "Intermediate"
is confusing because the meaning changes depending on
provider and datacenter (primary vs secondary). For
example, when using the Consul CA the "ActiveIntermediate"
may return the root certificate in a primary datacenter.
At a high level, we are interested in knowing which
CA is responsible for signing leaf certs, regardless of
its position in a certificate chain. This rename makes
the intent clearer.
* Move provider state check earlier
* Remove calls to GenerateLeafSigningCert
GenerateLeafSigningCert (formerly known
as GenerateIntermediate) is vestigial in
non-Vault providers, as it simply returns
the root certificate in primary
datacenters.
By folding Vault's intermediate cert logic
into `GenerateRoot` we can encapsulate
the intermediate cert handling within
`newCARoot`.
* Move GenerateLeafSigningCert out of PrimaryProvidder
Now that the Vault Provider calls
GenerateLeafSigningCert within
GenerateRoot, we can remove the method
from all other providers that never
used it in a meaningful way.
* Add test for IntermediatePEM
* Rename GenerateRoot to GenerateCAChain
"Root" was being overloaded in the Consul CA
context, as different providers and configs
resulted in a single root certificate or
a chain originating from an external trusted
CA. Since the Vault provider also generates
intermediates, it seems more accurate to
call this a CAChain.
All of the current integration tests where Vault is the Connect CA now use non-root tokens for the test. This helps us detect privilege changes in the vault model so we can keep our guides up to date.
One larger change was that the RenewIntermediate function got refactored slightly so it could be used from a test, rather than the large duplicated function we were testing in a test which seemed error prone.
* update go version to 1.18 for api and sdk, go mod tidy
* removes ioutil usage everywhere which was deprecated in go1.16 in favour of io and os packages. Also introduces a lint rule which forbids use of ioutil going forward.
Co-authored-by: R.B. Boyer <4903+rboyer@users.noreply.github.com>
There were 16 combinations of tests but 4 of them were duplicates since the default key type and bits were "ec" and 256. That entry was commented out to reduce the subtest count to 12.
testrpc.WaitForLeader was failing on arm64 environments; the cause is unknown but it might be due to the environment being flooded with parallel tests making RPC calls. The RPC polling+retry was replaced with a simpler check for leadership based on raft.
This commit syncs ENT changes to the OSS repo.
Original commit details in ENT:
```
commit 569d25f7f4578981c3801e6e067295668210f748
Author: FFMMM <FFMMM@users.noreply.github.com>
Date: Thu Feb 10 10:23:33 2022 -0800
Vendor fork net rpc (#1538)
* replace net/rpc w consul-net-rpc/net/rpc
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
* replace msgpackrpc and go-msgpack with fork from mono repo
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
* gofmt all files touched
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
```
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
set -euo pipefail
unset CDPATH
cd "$(dirname "$0")"
for f in $(git grep '\brequire := require\.New(' | cut -d':' -f1 | sort -u); do
echo "=== require: $f ==="
sed -i '/require := require.New(t)/d' $f
# require.XXX(blah) but not require.XXX(tblah) or require.XXX(rblah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\([^tr]\)/require.\1(t,\2/g' $f
# require.XXX(tblah) but not require.XXX(t, blah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\(t[^,]\)/require.\1(t,\2/g' $f
# require.XXX(rblah) but not require.XXX(r, blah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\(r[^,]\)/require.\1(t,\2/g' $f
gofmt -s -w $f
done
for f in $(git grep '\bassert := assert\.New(' | cut -d':' -f1 | sort -u); do
echo "=== assert: $f ==="
sed -i '/assert := assert.New(t)/d' $f
# assert.XXX(blah) but not assert.XXX(tblah) or assert.XXX(rblah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\([^tr]\)/assert.\1(t,\2/g' $f
# assert.XXX(tblah) but not assert.XXX(t, blah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\(t[^,]\)/assert.\1(t,\2/g' $f
# assert.XXX(rblah) but not assert.XXX(r, blah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\(r[^,]\)/assert.\1(t,\2/g' $f
gofmt -s -w $f
done
I suspect one problem was that we set structs.IntermediateCertRenewInterval to 1ms, which meant
that in some cases the intermediate could renew before we stored the original value.
Another problem was that the 'wait for intermediate' loop was calling the provider.ActiveIntermediate,
but the comparison needs to use the RPC endpoint to accurately represent a user request. So
changing the 'wait for' to use the state store ensures we don't race.
Also moves the patching into a separate function.
Removes the addition of ca.CertificateTimeDriftBuffer as part of calculating halfTime. This was added
in a previous commit to attempt to fix the flake, but it did not appear to fix the problem. Adding the
time here was making the tests fail when using the shared patch
function. It's not clear to me why, but there's no reason we should be
including this time in the halfTime calculation.
Use the new verifyLearfCert to show the cert verifies with intermediates
from both sources. This required using the RPC interface so that the
leaf pem was constructed correctly.
Add IndexedCARoots.Active since that is a common operation we see in a
few places.
While working on the CA system it is important to be able to run all the
tests related to the system, without having to wait for unrelated tests.
There are many slow and unrelated tests in agent/consul, so we need some
way to filter to only the relevant tests.
This PR renames all the CA system related tests to start with either
`TestCAMananger` for tests of internal operations that don't have RPC
endpoint, or `TestConnectCA` for tests of RPC endpoints. This allows us
to run all the test with:
go test -run 'TestCAMananger|TestConnectCA' ./agent/consul
The test naming follows an undocumented convention of naming tests as
follows:
Test[<struct name>_]<function name>[_<test case description>]
I tried to always keep Primary/Secondary at the end of the description,
and _Vault_ has to be in the middle because of our regex to run those
tests as a separate CI job.
You may notice some of the test names changed quite a bit. I did my best
to identify the underlying method being tested, but I may have been
slightly off in some cases.
As a method on the struct type this would not be safe to call without first checking
c.isIntermediateUsedToSignLeaf.
So for now, move this logic to the CAMananger, so that it is always correct.
We were not adding the local signing cert to the CARoot. This commit
fixes that bug, and also adds support for fixing existing CARoot on
upgrade.
Also update the tests for both primary and secondary to be more strict.
Check the SigningKeyID is correct after initialization and rotation.
Previously secondaryInitialize would return nil in this case, which prevented the
deferred initialize from happening, and left the CA in an uninitialized state until a config
update or root rotation.
To fix this I extracted the common parts into the delegate implementation. However looking at this
again, it seems like the handling in secondaryUpdateRoots is impossible, because that function
should never be called before the secondary is initialzied. I beleive we can remove some of that
logic in a follow up.
The constructor for Server is not at all the appropriate place to be setting default
values for a config struct that was passed in.
In production this value is always set from agent/config. In tests we should set the
default in a test helper.
This field has been unnecessary for a while now. It was always set to the same value
as PrimaryDatacenter. So we can remove the duplicate field and use PrimaryDatacenter
directly.
This change was made by GoLand refactor, which did most of the work for me.
Some global variables are patched to shorter values in these tests. But the goroutines that read
them can outlive the test because nothing waited for them to exit.
This commit adds a Wait() method to the routine manager, so that tests can wait for the goroutines
to exit. This prevents the data race because the 'reset to original value' can happen
after all other goroutines have stopped.
Previously we were inconsistently checking the response for errors. This
PR moves the response-is-error check into raftApply, so that all callers
can look at only the error response, instead of having to know that
errors could come from two places.
This should expose a few more errors that were previously hidden because
in some calls to raftApply we were ignoring the response return value.
Also handle errors more consistently. In some cases we would log the
error before returning it. This can be very confusing because it can
result in the same error being logged multiple times. Instead return
a wrapped error.
This fixes an issue where leaf certificates issued in primary
datacenters using Vault as a Connect CA would be reissued very
frequently (every ~20 seconds) because the logic meant to detect root
rotation was errantly triggering.
The hash of the rootCA was being compared against a hash of the
intermediateCA and always failing. This doesn't apply to the Consul
built-in CA provider because there is no intermediate in use in the
primary DC.
This is reminiscent of #6513
This allows setting ForceWithoutCrossSigning when reconfiguring the CA
for any provider, in order to forcibly move to a new root in cases where
the old provider isn't reachable or able to cross-sign for whatever
reason.
After fixing that bug I uncovered a couple more:
Fix an issue where we might try to cross sign a cert when we never had a valid root.
Fix a potential issue where reconfiguring the CA could cause either the Vault or AWS PCA CA providers to delete resources that are still required by the new incarnation of the CA.
Add a skip condition to all tests slower than 100ms.
This change was made using `gotestsum tool slowest` with data from the
last 3 CI runs of master.
See https://github.com/gotestyourself/gotestsum#finding-and-skipping-slow-tests
With this change:
```
$ time go test -count=1 -short ./agent
ok github.com/hashicorp/consul/agent 0.743s
real 0m4.791s
$ time go test -count=1 -short ./agent/consul
ok github.com/hashicorp/consul/agent/consul 4.229s
real 0m8.769s
```
- Upgrade the ConfigEntry.ListAll RPC to be kind-aware so that older
copies of consul will not see new config entries it doesn't understand
replicate down.
- Add shim conversion code so that the old API/CLI method of interacting
with intentions will continue to work so long as none of these are
edited via config entry endpoints. Almost all of the read-only APIs will
continue to function indefinitely.
- Add new APIs that operate on individual intentions without IDs so that
the UI doesn't need to implement CAS operations.
- Add a new serf feature flag indicating support for
intentions-as-config-entries.
- The old line-item intentions way of interacting with the state store
will transparently flip between the legacy memdb table and the config
entry representations so that readers will never see a hiccup during
migration where the results are incomplete. It uses a piece of system
metadata to control the flip.
- The primary datacenter will begin migrating intentions into config
entries on startup once all servers in the datacenter are on a version
of Consul with the intentions-as-config-entries feature flag. When it is
complete the old state store representations will be cleared. We also
record a piece of system metadata indicating this has occurred. We use
this metadata to skip ALL of this code the next time the leader starts
up.
- The secondary datacenters continue to run the old intentions
replicator until all servers in the secondary DC and primary DC support
intentions-as-config-entries (via serf flag). Once this condition it met
the old intentions replicator ceases.
- The secondary datacenters replicate the new config entries as they are
migrated in the primary. When they detect that the primary has zeroed
it's old state store table it waits until all config entries up to that
point are replicated and then zeroes its own copy of the old state store
table. We also record a piece of system metadata indicating this has
occurred. We use this metadata to skip ALL of this code the next time
the leader starts up.