This enables it to be called for many upstreams or downstreams of a
service while only querying intentions once.
Additionally, decisions are now optionally denied due to L7 permissions
being present. This enables the function to be used to filter for
potential upstreams/downstreams of a service.
* server: fix panic when deleting a non existent intention
* add changelog
* Always return an error when deleting non-existent ixn
Co-authored-by: freddygv <gh@freddygv.xyz>
The Intention.Apply RPC is quite large, so this PR attempts to break it down into smaller functions and dissolves the pre-config-entry approach to the breakdown as it only confused things.
Extend Consul’s intentions model to allow for request-based access control enforcement for HTTP-like protocols in addition to the existing connection-based enforcement for unspecified protocols (e.g. tcp).
- Upgrade the ConfigEntry.ListAll RPC to be kind-aware so that older
copies of consul will not see new config entries it doesn't understand
replicate down.
- Add shim conversion code so that the old API/CLI method of interacting
with intentions will continue to work so long as none of these are
edited via config entry endpoints. Almost all of the read-only APIs will
continue to function indefinitely.
- Add new APIs that operate on individual intentions without IDs so that
the UI doesn't need to implement CAS operations.
- Add a new serf feature flag indicating support for
intentions-as-config-entries.
- The old line-item intentions way of interacting with the state store
will transparently flip between the legacy memdb table and the config
entry representations so that readers will never see a hiccup during
migration where the results are incomplete. It uses a piece of system
metadata to control the flip.
- The primary datacenter will begin migrating intentions into config
entries on startup once all servers in the datacenter are on a version
of Consul with the intentions-as-config-entries feature flag. When it is
complete the old state store representations will be cleared. We also
record a piece of system metadata indicating this has occurred. We use
this metadata to skip ALL of this code the next time the leader starts
up.
- The secondary datacenters continue to run the old intentions
replicator until all servers in the secondary DC and primary DC support
intentions-as-config-entries (via serf flag). Once this condition it met
the old intentions replicator ceases.
- The secondary datacenters replicate the new config entries as they are
migrated in the primary. When they detect that the primary has zeroed
it's old state store table it waits until all config entries up to that
point are replicated and then zeroes its own copy of the old state store
table. We also record a piece of system metadata indicating this has
occurred. We use this metadata to skip ALL of this code the next time
the leader starts up.
Highlights:
- add new endpoint to query for intentions by exact match
- using this endpoint from the CLI instead of the dump+filter approach
- enforcing that OSS can only read/write intentions with a SourceNS or
DestinationNS field of "default".
- preexisting OSS intentions with now-invalid namespace fields will
delete those intentions on initial election or for wildcard namespaces
an attempt will be made to downgrade them to "default" unless one
exists.
- also allow the '-namespace' CLI arg on all of the intention subcommands
- update lots of docs
Found using staticcheck.
binary.Write does not accept int types without a size. The error from binary.Write was ignored, so we never saw this error. Casting the data to uint64 produces a correct hash.
Also deprecate the Default{Addr,Port} fields, and prevent them from being encoded. These fields will always be empty and are not used.
Removing these would break backwards compatibility, so they are left in place for now.
Co-authored-by: Hans Hasselberg <me@hans.io>
* Enable filtering language support for the v1/connect/intentions listing API
* Update website for filtering of Intentions
* Update website/source/api/connect/intentions.html.md
* Renamed structs.IntentionWildcard to structs.WildcardSpecifier
* Refactor ACL Config
Get rid of remnants of enterprise only renaming.
Add a WildcardName field for specifying what string should be used to indicate a wildcard.
* Add wildcard support in the ACL package
For read operations they can call anyAllowed to determine if any read access to the given resource would be granted.
For write operations they can call allAllowed to ensure that write access is granted to everything.
* Make v1/agent/connect/authorize namespace aware
* Update intention ACL enforcement
This also changes how intention:read is granted. Before the Intention.List RPC would allow viewing an intention if the token had intention:read on the destination. However Intention.Match allowed viewing if access was allowed for either the source or dest side. Now Intention.List and Intention.Get fall in line with Intention.Matches previous behavior.
Due to this being done a few different places ACL enforcement for a singular intention is now done with the CanRead and CanWrite methods on the intention itself.
* Refactor Intention.Apply to make things easier to follow.
* ACL Authorizer overhaul
To account for upcoming features every Authorization function can now take an extra *acl.EnterpriseAuthorizerContext. These are unused in OSS and will always be nil.
Additionally the acl package has received some thorough refactoring to enable all of the extra Consul Enterprise specific authorizations including moving sentinel enforcement into the stubbed structs. The Authorizer funcs now return an acl.EnforcementDecision instead of a boolean. This improves the overall interface as it makes multiple Authorizers easily chainable as they now indicate whether they had an authoritative decision or should use some other defaults. A ChainedAuthorizer was added to handle this Authorizer enforcement chain and will never itself return a non-authoritative decision.
* Include stub for extra enterprise rules in the global management policy
* Allow for an upgrade of the global-management policy
This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week.
Description
At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers.
On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though.
Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though.
All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management.
Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are:
A server running the new system must still support other clients using the legacy system.
A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system.
The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode.
So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.