Most of these methods are used exclusively for the AutoConfig RPC
endpoint. This PR uses a pattern that we've used in other places as an
incremental step to reducing the scope of Server.
tlsutil.Config already presents an excellent structure for this
configuration. Copying the runtime config fields to agent/consul.Config
makes code harder to trace, and provides no advantage.
Instead of copying the fields around, use the tlsutil.Config struct
directly instead.
This is one small step in removing the many layers of duplicate
configuration.
* WIP reloadable raft config
* Pre-define new raft gauges
* Update go-metrics to change gauge reset behaviour
* Update raft to pull in new metric and reloadable config
* Add snapshot persistance timing and installSnapshot to our 'protected' list as they can be infrequent but are important
* Update telemetry docs
* Update config and telemetry docs
* Add note to oldestLogAge on when it is visible
* Add changelog entry
* Update website/content/docs/agent/options.mdx
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
I believe this commit also fixes a bug. Previously RPCMaxConnsPerClient was not being re-read from the RuntimeConfig, so passing it to Server.ReloadConfig was never changing the value.
Also improve the test runtime by not doing a lot of unnecessary work.
Add a skip condition to all tests slower than 100ms.
This change was made using `gotestsum tool slowest` with data from the
last 3 CI runs of master.
See https://github.com/gotestyourself/gotestsum#finding-and-skipping-slow-tests
With this change:
```
$ time go test -count=1 -short ./agent
ok github.com/hashicorp/consul/agent 0.743s
real 0m4.791s
$ time go test -count=1 -short ./agent/consul
ok github.com/hashicorp/consul/agent/consul 4.229s
real 0m8.769s
```
In an upcoming change we will need to pass a grpc.ClientConnPool from
BaseDeps into Server. While looking at that change I noticed all of the
existing consulOption fields are already on BaseDeps.
Instead of duplicating the fields, we can create a struct used by
agent/consul, and use that struct in BaseDeps. This allows us to pass
along dependencies without translating them into different
representations.
I also looked at moving all of BaseDeps in agent/consul, however that
created some circular imports. Resolving those cycles wouldn't be too
bad (it was only an error in agent/consul being imported from
cache-types), however this change seems a little better by starting to
introduce some structure to BaseDeps.
This change is also a small step in reducing the scope of Agent.
Also remove some constants that were only used by tests, and move the
relevant comment to where the live configuration is set.
Removed some validation from NewServer and NewClient, as these are not
really runtime errors. They would be code errors, which will cause a
panic anyway, so no reason to handle them specially here.
* changes some functions to return data instead of modifying pointer
arguments
* renames globalRPC() to keyringRPCs() to make its purpose more clear
* restructures KeyringOperation() to make it more understandable
NotifyShutdown was only used for testing. Now that t.Cleanup exists, we
can use that instead of attaching cleanup to the Server shutdown.
The Autopilot test which used NotifyShutdown doesn't need this
notification because Shutdown is synchronous. Waiting for the function
to return is equivalent.
Replaces #7559
Running tests in parallel, with background goroutines, results in test output not being associated with the correct test. `go test` does not make any guarantees about output from goroutines being attributed to the correct test case.
Attaching log output from background goroutines also cause data races. If the goroutine outlives the test, it will race with the test being marked done. Previously this was noticed as a panic when logging, but with the race detector enabled it is shown as a data race.
The previous solution did not address the problem of correct test attribution because test output could still be hidden when it was associated with a test that did not fail. You would have to look at all of the log output to find the relevant lines. It also made debugging test failures more difficult because each log line was very long.
This commit attempts a new approach. Instead of printing all the logs, only print when a test fails. This should work well when there are a small number of failures, but may not work well when there are many test failures at the same time. In those cases the failures are unlikely a result of a specific test, and the log output is likely less useful.
All of the logs are printed from the test goroutine, so they should be associated with the correct test.
Also removes some test helpers that were not used, or only had a single caller. Packages which expose many functions with similar names can be difficult to use correctly.
Related:
https://github.com/golang/go/issues/38458 (may be fixed in go1.15)
https://github.com/golang/go/issues/38382#issuecomment-612940030
Right now this is only hooked into the insecure RPC server and requires JWT authorization. If no JWT authorizer is setup in the configuration then we inject a disabled “authorizer” to always report that JWT authorization is disabled.
A Node Identity is very similar to a service identity. Its main targeted use is to allow creating tokens for use by Consul agents that will grant the necessary permissions for all the typical agent operations (node registration, coordinate updates, anti-entropy).
Half of this commit is for golden file based tests of the acl token and role cli output. Another big updates was to refactor many of the tests in agent/consul/acl_endpoint_test.go to use the same style of tests and the same helpers. Besides being less boiler plate in the tests it also uses a common way of starting a test server with ACLs that should operate without any warnings regarding deprecated non-uuid master tokens etc.
The version field has been used to decide which multiplexing to use. It
was introduced in 2457293dceec95ecd12ef4f01442e13710ea131a. But this is
6y ago and there is no need for this differentiation anymore.
Based on work done in https://github.com/hashicorp/memberlist/pull/196
this allows to restrict the IP ranges that can join a given Serf cluster
and be a member of the cluster.
Restrictions on IPs can be done separatly using 2 new differents flags
and config options to restrict IPs for LAN and WAN Serf.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
Currently when using the built-in CA provider for Connect, root certificates are valid for 10 years, however secondary DCs get intermediates that are valid for only 1 year. There is no mechanism currently short of rotating the root in the primary that will cause the secondary DCs to renew their intermediates.
This PR adds a check that renews the cert if it is half way through its validity period.
In order to be able to test these changes, a new configuration option was added: IntermediateCertTTL which is set extremely low in the tests.
* Renamed structs.IntentionWildcard to structs.WildcardSpecifier
* Refactor ACL Config
Get rid of remnants of enterprise only renaming.
Add a WildcardName field for specifying what string should be used to indicate a wildcard.
* Add wildcard support in the ACL package
For read operations they can call anyAllowed to determine if any read access to the given resource would be granted.
For write operations they can call allAllowed to ensure that write access is granted to everything.
* Make v1/agent/connect/authorize namespace aware
* Update intention ACL enforcement
This also changes how intention:read is granted. Before the Intention.List RPC would allow viewing an intention if the token had intention:read on the destination. However Intention.Match allowed viewing if access was allowed for either the source or dest side. Now Intention.List and Intention.Get fall in line with Intention.Matches previous behavior.
Due to this being done a few different places ACL enforcement for a singular intention is now done with the CanRead and CanWrite methods on the intention itself.
* Refactor Intention.Apply to make things easier to follow.
* add NeedsLogger to Provider interface
* implements NeedsLogger in default provider
* pass logger through to provider
* test for proper operation of NeedsLogger
* remove public testServer function
* Switch test to actually assert on logging output rather than reflection.
--amend
* Ooops actually set the logger in all the places we need it - CA config set wasn't and causing segfault
* Fix all the other places in tests where we set the logger
* Add TODO comment
This should cut down on test flakiness.
Problems handled:
- If you had enough parallel test cases running, the former circular
approach to handling the port block could hand out the same port to
multiple cases before they each had a chance to bind them, leading to
one of the two tests to fail.
- The freeport library would allocate out of the ephemeral port range.
This has been corrected for Linux (which should cover CI).
- The library now waits until a formerly-in-use port is verified to be
free before putting it back into circulation.
All these changes should have no side-effects or change behavior:
- Use bytes.Buffer's String() instead of a conversion
- Use time.Since and time.Until where fitting
- Drop unnecessary returns and assignment