This endpoint shows total services, connect service instances and
billable service instances in the local datacenter or globally. Billable
instances = total service instances - connect services - consul server instances.
* remove legacy tokens
* Update test comment
Co-authored-by: Paul Glass <pglass@hashicorp.com>
* fix imports
* update docs for additional CLI changes
* add test case for anonymous token
* set deprecated api fields to json ignore and fix patch errors
* update changelog to breaking-change
* fix import
* update api docs to remove legacy reference
* fix docs nav data
---------
Co-authored-by: Paul Glass <pglass@hashicorp.com>
* add leadership transfer command
* add RPC call test (flaky)
* add missing import
* add changelog
* add command registration
* Apply suggestions from code review
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
* add the possibility of providing an id to raft leadership transfer. Add few tests.
* delete old file from cherry pick
* rename changelog filename to PR #
* rename changelog and fix import
* fix failing test
* check for OperatorWrite
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
* rename from leader-transfer to transfer-leader
* remove version check and add test for operator read
* move struct to operator.go
* first pass
* add code for leader transfer in the grpc backend and tests
* wire the http endpoint to the new grpc endpoint
* remove the RPC endpoint
* remove non needed struct
* fix naming
* add mog glue to API
* fix comment
* remove dead code
* fix linter error
* change package name for proto file
* remove error wrapping
* fix failing test
* add command registration
* add grpc service mock tests
* fix receiver to be pointer
* use defined values
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
* reuse MockAclAuthorizer
* add documentation
* remove usage of external.TokenFromContext
* fix failing tests
* fix proto generation
* Apply suggestions from code review
Co-authored-by: Jared Kirschner <85913323+jkirschner-hashicorp@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Jared Kirschner <85913323+jkirschner-hashicorp@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Jared Kirschner <85913323+jkirschner-hashicorp@users.noreply.github.com>
* Apply suggestions from code review
* add more context in doc for the reason
* Apply suggestions from docs code review
Co-authored-by: Jeff Boruszak <104028618+boruszak@users.noreply.github.com>
* regenerate proto
* fix linter errors
Co-authored-by: github-team-consul-core <github-team-consul-core@hashicorp.com>
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
Co-authored-by: Jared Kirschner <85913323+jkirschner-hashicorp@users.noreply.github.com>
Co-authored-by: Jeff Boruszak <104028618+boruszak@users.noreply.github.com>
- Upgrade the ConfigEntry.ListAll RPC to be kind-aware so that older
copies of consul will not see new config entries it doesn't understand
replicate down.
- Add shim conversion code so that the old API/CLI method of interacting
with intentions will continue to work so long as none of these are
edited via config entry endpoints. Almost all of the read-only APIs will
continue to function indefinitely.
- Add new APIs that operate on individual intentions without IDs so that
the UI doesn't need to implement CAS operations.
- Add a new serf feature flag indicating support for
intentions-as-config-entries.
- The old line-item intentions way of interacting with the state store
will transparently flip between the legacy memdb table and the config
entry representations so that readers will never see a hiccup during
migration where the results are incomplete. It uses a piece of system
metadata to control the flip.
- The primary datacenter will begin migrating intentions into config
entries on startup once all servers in the datacenter are on a version
of Consul with the intentions-as-config-entries feature flag. When it is
complete the old state store representations will be cleared. We also
record a piece of system metadata indicating this has occurred. We use
this metadata to skip ALL of this code the next time the leader starts
up.
- The secondary datacenters continue to run the old intentions
replicator until all servers in the secondary DC and primary DC support
intentions-as-config-entries (via serf flag). Once this condition it met
the old intentions replicator ceases.
- The secondary datacenters replicate the new config entries as they are
migrated in the primary. When they detect that the primary has zeroed
it's old state store table it waits until all config entries up to that
point are replicated and then zeroes its own copy of the old state store
table. We also record a piece of system metadata indicating this has
occurred. We use this metadata to skip ALL of this code the next time
the leader starts up.
Highlights:
- add new endpoint to query for intentions by exact match
- using this endpoint from the CLI instead of the dump+filter approach
- enforcing that OSS can only read/write intentions with a SourceNS or
DestinationNS field of "default".
- preexisting OSS intentions with now-invalid namespace fields will
delete those intentions on initial election or for wildcard namespaces
an attempt will be made to downgrade them to "default" unless one
exists.
- also allow the '-namespace' CLI arg on all of the intention subcommands
- update lots of docs
In discussion with team, it was pointed out that query parameters tend
to be filter mechanism, and that semantically the "/v1/health/connect"
endpoint should return "all healthy connect-enabled endpoints (e.g.
could be side car proxies or native instances) for this service so I can
connect with mTLS".
That does not fit an ingress gateway, so we remove the query parameter
and add a new endpoint "/v1/health/ingress" that semantically means
"all the healthy ingress gateway instances that I can connect to
to access this connect-enabled service without mTLS"
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
The backing RPC already existed but the endpoint will be useful for other service syncing processes such as consul-k8s as this endpoint can return all services registered with a node regardless of namespacing.
* Implement endpoint to query whether the given token is authorized for a set of operations
* Updates to allow for remote ACL authorization via RPC
This is only used when making an authorization request to a different datacenter.
Main Changes:
• method signature updates everywhere to account for passing around enterprise meta.
• populate the EnterpriseAuthorizerContext for all ACL related authorizations.
• ACL resource listings now operate like the catalog or kv listings in that the returned entries are filtered down to what the token is allowed to see. With Namespaces its no longer all or nothing.
• Modified the acl.Policy parsing to abstract away basic decoding so that enterprise can do it slightly differently. Also updated method signatures so that when parsing a policy it can take extra ent metadata to use during rules validation and policy creation.
Secondary Changes:
• Moved protobuf encoding functions out of the agentpb package to eliminate circular dependencies.
• Added custom JSON unmarshalers for a few ACL resource types (to support snake case and to get rid of mapstructure)
• AuthMethod validator cache is now an interface as these will be cached per-namespace for Consul Enterprise.
• Added checks for policy/role link existence at the RPC API so we don’t push the request through raft to have it fail internally.
• Forward ACL token delete request to the primary datacenter when the secondary DC doesn’t have the token.
• Added a bunch of ACL test helpers for inserting ACL resource test data.