Fixes broken HTTP header and method for health checks. (#3178)

* Fixes broken HTTP header and method for health checks.
* Adds a fuzz utility and test to make sure copy is complete.
This commit is contained in:
James Phillips 2017-06-23 01:15:48 -07:00 committed by GitHub
parent 5a88c33156
commit 728971afdb
8 changed files with 913 additions and 5 deletions

View File

@ -55,10 +55,15 @@ func (c *CheckDefinition) HealthCheck(node string) *HealthCheck {
func (c *CheckDefinition) CheckType() *CheckType {
return &CheckType{
CheckID: c.ID,
Name: c.Name,
CheckID: c.ID,
Name: c.Name,
Status: c.Status,
Notes: c.Notes,
Script: c.Script,
HTTP: c.HTTP,
Header: c.Header,
Method: c.Method,
TCP: c.TCP,
Interval: c.Interval,
DockerContainerID: c.DockerContainerID,
@ -67,7 +72,5 @@ func (c *CheckDefinition) CheckType() *CheckType {
Timeout: c.Timeout,
TTL: c.TTL,
DeregisterCriticalServiceAfter: c.DeregisterCriticalServiceAfter,
Status: c.Status,
Notes: c.Notes,
}
}

View File

@ -1,12 +1,15 @@
package structs
import (
"reflect"
"testing"
"github.com/google/gofuzz"
"github.com/hashicorp/consul/api"
"github.com/mitchellh/reflectwalk"
)
func TestAgentStructs_HealthCheck(t *testing.T) {
func TestCheckDefinition_Defaults(t *testing.T) {
t.Parallel()
def := CheckDefinition{}
check := def.HealthCheck("node1")
@ -16,3 +19,54 @@ func TestAgentStructs_HealthCheck(t *testing.T) {
t.Fatalf("bad: %v", check.Status)
}
}
type walker struct {
fields map[string]reflect.Value
}
func (w *walker) Struct(reflect.Value) error {
return nil
}
func (w *walker) StructField(f reflect.StructField, v reflect.Value) error {
w.fields[f.Name] = v
return nil
}
func mapFields(obj interface{}) map[string]reflect.Value {
w := &walker{make(map[string]reflect.Value)}
if err := reflectwalk.Walk(obj, w); err != nil {
panic(err)
}
return w.fields
}
func TestCheckDefinition_CheckType(t *testing.T) {
t.Parallel()
// Fuzz a definition to fill all its fields with data.
var def CheckDefinition
fuzz.New().Fuzz(&def)
orig := mapFields(def)
// Remap the ID field which changes name, and redact fields we don't
// expect in the copy.
orig["CheckID"] = orig["ID"]
delete(orig, "ID")
delete(orig, "ServiceID")
delete(orig, "Token")
// Now convert to a check type and ensure that all fields left match.
chk := def.CheckType()
copy := mapFields(chk)
for f, vo := range orig {
vc, ok := copy[f]
if !ok {
t.Fatalf("struct is missing field %q", f)
}
if !reflect.DeepEqual(vo.Interface(), vc.Interface()) {
t.Fatalf("copy skipped field %q", f)
}
}
}

67
vendor/github.com/google/gofuzz/CONTRIBUTING.md generated vendored Normal file
View File

@ -0,0 +1,67 @@
# How to contribute #
We'd love to accept your patches and contributions to this project. There are
a just a few small guidelines you need to follow.
## Contributor License Agreement ##
Contributions to any Google project must be accompanied by a Contributor
License Agreement. This is not a copyright **assignment**, it simply gives
Google permission to use and redistribute your contributions as part of the
project.
* If you are an individual writing original source code and you're sure you
own the intellectual property, then you'll need to sign an [individual
CLA][].
* If you work for a company that wants to allow you to contribute your work,
then you'll need to sign a [corporate CLA][].
You generally only need to submit a CLA once, so if you've already submitted
one (even if it was for a different project), you probably don't need to do it
again.
[individual CLA]: https://developers.google.com/open-source/cla/individual
[corporate CLA]: https://developers.google.com/open-source/cla/corporate
## Submitting a patch ##
1. It's generally best to start by opening a new issue describing the bug or
feature you're intending to fix. Even if you think it's relatively minor,
it's helpful to know what people are working on. Mention in the initial
issue that you are planning to work on that bug or feature so that it can
be assigned to you.
1. Follow the normal process of [forking][] the project, and setup a new
branch to work in. It's important that each group of changes be done in
separate branches in order to ensure that a pull request only includes the
commits related to that bug or feature.
1. Go makes it very simple to ensure properly formatted code, so always run
`go fmt` on your code before committing it. You should also run
[golint][] over your code. As noted in the [golint readme][], it's not
strictly necessary that your code be completely "lint-free", but this will
help you find common style issues.
1. Any significant changes should almost always be accompanied by tests. The
project already has good test coverage, so look at some of the existing
tests if you're unsure how to go about it. [gocov][] and [gocov-html][]
are invaluable tools for seeing which parts of your code aren't being
exercised by your tests.
1. Do your best to have [well-formed commit messages][] for each change.
This provides consistency throughout the project, and ensures that commit
messages are able to be formatted properly by various git tools.
1. Finally, push the commits to your fork and submit a [pull request][].
[forking]: https://help.github.com/articles/fork-a-repo
[golint]: https://github.com/golang/lint
[golint readme]: https://github.com/golang/lint/blob/master/README
[gocov]: https://github.com/axw/gocov
[gocov-html]: https://github.com/matm/gocov-html
[well-formed commit messages]: http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
[squash]: http://git-scm.com/book/en/Git-Tools-Rewriting-History#Squashing-Commits
[pull request]: https://help.github.com/articles/creating-a-pull-request

202
vendor/github.com/google/gofuzz/LICENSE generated vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

71
vendor/github.com/google/gofuzz/README.md generated vendored Normal file
View File

@ -0,0 +1,71 @@
gofuzz
======
gofuzz is a library for populating go objects with random values.
[![GoDoc](https://godoc.org/github.com/google/gofuzz?status.png)](https://godoc.org/github.com/google/gofuzz)
[![Travis](https://travis-ci.org/google/gofuzz.svg?branch=master)](https://travis-ci.org/google/gofuzz)
This is useful for testing:
* Do your project's objects really serialize/unserialize correctly in all cases?
* Is there an incorrectly formatted object that will cause your project to panic?
Import with ```import "github.com/google/gofuzz"```
You can use it on single variables:
```go
f := fuzz.New()
var myInt int
f.Fuzz(&myInt) // myInt gets a random value.
```
You can use it on maps:
```go
f := fuzz.New().NilChance(0).NumElements(1, 1)
var myMap map[ComplexKeyType]string
f.Fuzz(&myMap) // myMap will have exactly one element.
```
Customize the chance of getting a nil pointer:
```go
f := fuzz.New().NilChance(.5)
var fancyStruct struct {
A, B, C, D *string
}
f.Fuzz(&fancyStruct) // About half the pointers should be set.
```
You can even customize the randomization completely if needed:
```go
type MyEnum string
const (
A MyEnum = "A"
B MyEnum = "B"
)
type MyInfo struct {
Type MyEnum
AInfo *string
BInfo *string
}
f := fuzz.New().NilChance(0).Funcs(
func(e *MyInfo, c fuzz.Continue) {
switch c.Intn(2) {
case 0:
e.Type = A
c.Fuzz(&e.AInfo)
case 1:
e.Type = B
c.Fuzz(&e.BInfo)
}
},
)
var myObject MyInfo
f.Fuzz(&myObject) // Type will correspond to whether A or B info is set.
```
See more examples in ```example_test.go```.
Happy testing!

18
vendor/github.com/google/gofuzz/doc.go generated vendored Normal file
View File

@ -0,0 +1,18 @@
/*
Copyright 2014 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Package fuzz is a library for populating go objects with random values.
package fuzz

487
vendor/github.com/google/gofuzz/fuzz.go generated vendored Normal file
View File

@ -0,0 +1,487 @@
/*
Copyright 2014 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package fuzz
import (
"fmt"
"math/rand"
"reflect"
"time"
)
// fuzzFuncMap is a map from a type to a fuzzFunc that handles that type.
type fuzzFuncMap map[reflect.Type]reflect.Value
// Fuzzer knows how to fill any object with random fields.
type Fuzzer struct {
fuzzFuncs fuzzFuncMap
defaultFuzzFuncs fuzzFuncMap
r *rand.Rand
nilChance float64
minElements int
maxElements int
maxDepth int
}
// New returns a new Fuzzer. Customize your Fuzzer further by calling Funcs,
// RandSource, NilChance, or NumElements in any order.
func New() *Fuzzer {
return NewWithSeed(time.Now().UnixNano())
}
func NewWithSeed(seed int64) *Fuzzer {
f := &Fuzzer{
defaultFuzzFuncs: fuzzFuncMap{
reflect.TypeOf(&time.Time{}): reflect.ValueOf(fuzzTime),
},
fuzzFuncs: fuzzFuncMap{},
r: rand.New(rand.NewSource(seed)),
nilChance: .2,
minElements: 1,
maxElements: 10,
maxDepth: 100,
}
return f
}
// Funcs adds each entry in fuzzFuncs as a custom fuzzing function.
//
// Each entry in fuzzFuncs must be a function taking two parameters.
// The first parameter must be a pointer or map. It is the variable that
// function will fill with random data. The second parameter must be a
// fuzz.Continue, which will provide a source of randomness and a way
// to automatically continue fuzzing smaller pieces of the first parameter.
//
// These functions are called sensibly, e.g., if you wanted custom string
// fuzzing, the function `func(s *string, c fuzz.Continue)` would get
// called and passed the address of strings. Maps and pointers will always
// be made/new'd for you, ignoring the NilChange option. For slices, it
// doesn't make much sense to pre-create them--Fuzzer doesn't know how
// long you want your slice--so take a pointer to a slice, and make it
// yourself. (If you don't want your map/pointer type pre-made, take a
// pointer to it, and make it yourself.) See the examples for a range of
// custom functions.
func (f *Fuzzer) Funcs(fuzzFuncs ...interface{}) *Fuzzer {
for i := range fuzzFuncs {
v := reflect.ValueOf(fuzzFuncs[i])
if v.Kind() != reflect.Func {
panic("Need only funcs!")
}
t := v.Type()
if t.NumIn() != 2 || t.NumOut() != 0 {
panic("Need 2 in and 0 out params!")
}
argT := t.In(0)
switch argT.Kind() {
case reflect.Ptr, reflect.Map:
default:
panic("fuzzFunc must take pointer or map type")
}
if t.In(1) != reflect.TypeOf(Continue{}) {
panic("fuzzFunc's second parameter must be type fuzz.Continue")
}
f.fuzzFuncs[argT] = v
}
return f
}
// RandSource causes f to get values from the given source of randomness.
// Use if you want deterministic fuzzing.
func (f *Fuzzer) RandSource(s rand.Source) *Fuzzer {
f.r = rand.New(s)
return f
}
// NilChance sets the probability of creating a nil pointer, map, or slice to
// 'p'. 'p' should be between 0 (no nils) and 1 (all nils), inclusive.
func (f *Fuzzer) NilChance(p float64) *Fuzzer {
if p < 0 || p > 1 {
panic("p should be between 0 and 1, inclusive.")
}
f.nilChance = p
return f
}
// NumElements sets the minimum and maximum number of elements that will be
// added to a non-nil map or slice.
func (f *Fuzzer) NumElements(atLeast, atMost int) *Fuzzer {
if atLeast > atMost {
panic("atLeast must be <= atMost")
}
if atLeast < 0 {
panic("atLeast must be >= 0")
}
f.minElements = atLeast
f.maxElements = atMost
return f
}
func (f *Fuzzer) genElementCount() int {
if f.minElements == f.maxElements {
return f.minElements
}
return f.minElements + f.r.Intn(f.maxElements-f.minElements+1)
}
func (f *Fuzzer) genShouldFill() bool {
return f.r.Float64() > f.nilChance
}
// MaxDepth sets the maximum number of recursive fuzz calls that will be made
// before stopping. This includes struct members, pointers, and map and slice
// elements.
func (f *Fuzzer) MaxDepth(d int) *Fuzzer {
f.maxDepth = d
return f
}
// Fuzz recursively fills all of obj's fields with something random. First
// this tries to find a custom fuzz function (see Funcs). If there is no
// custom function this tests whether the object implements fuzz.Interface and,
// if so, calls Fuzz on it to fuzz itself. If that fails, this will see if
// there is a default fuzz function provided by this package. If all of that
// fails, this will generate random values for all primitive fields and then
// recurse for all non-primitives.
//
// This is safe for cyclic or tree-like structs, up to a limit. Use the
// MaxDepth method to adjust how deep you need it to recurse.
//
// obj must be a pointer. Only exported (public) fields can be set (thanks,
// golang :/ ) Intended for tests, so will panic on bad input or unimplemented
// fields.
func (f *Fuzzer) Fuzz(obj interface{}) {
v := reflect.ValueOf(obj)
if v.Kind() != reflect.Ptr {
panic("needed ptr!")
}
v = v.Elem()
f.fuzzWithContext(v, 0)
}
// FuzzNoCustom is just like Fuzz, except that any custom fuzz function for
// obj's type will not be called and obj will not be tested for fuzz.Interface
// conformance. This applies only to obj and not other instances of obj's
// type.
// Not safe for cyclic or tree-like structs!
// obj must be a pointer. Only exported (public) fields can be set (thanks, golang :/ )
// Intended for tests, so will panic on bad input or unimplemented fields.
func (f *Fuzzer) FuzzNoCustom(obj interface{}) {
v := reflect.ValueOf(obj)
if v.Kind() != reflect.Ptr {
panic("needed ptr!")
}
v = v.Elem()
f.fuzzWithContext(v, flagNoCustomFuzz)
}
const (
// Do not try to find a custom fuzz function. Does not apply recursively.
flagNoCustomFuzz uint64 = 1 << iota
)
func (f *Fuzzer) fuzzWithContext(v reflect.Value, flags uint64) {
fc := &fuzzerContext{fuzzer: f}
fc.doFuzz(v, flags)
}
// fuzzerContext carries context about a single fuzzing run, which lets Fuzzer
// be thread-safe.
type fuzzerContext struct {
fuzzer *Fuzzer
curDepth int
}
func (fc *fuzzerContext) doFuzz(v reflect.Value, flags uint64) {
if fc.curDepth >= fc.fuzzer.maxDepth {
return
}
fc.curDepth++
defer func() { fc.curDepth-- }()
if !v.CanSet() {
return
}
if flags&flagNoCustomFuzz == 0 {
// Check for both pointer and non-pointer custom functions.
if v.CanAddr() && fc.tryCustom(v.Addr()) {
return
}
if fc.tryCustom(v) {
return
}
}
if fn, ok := fillFuncMap[v.Kind()]; ok {
fn(v, fc.fuzzer.r)
return
}
switch v.Kind() {
case reflect.Map:
if fc.fuzzer.genShouldFill() {
v.Set(reflect.MakeMap(v.Type()))
n := fc.fuzzer.genElementCount()
for i := 0; i < n; i++ {
key := reflect.New(v.Type().Key()).Elem()
fc.doFuzz(key, 0)
val := reflect.New(v.Type().Elem()).Elem()
fc.doFuzz(val, 0)
v.SetMapIndex(key, val)
}
return
}
v.Set(reflect.Zero(v.Type()))
case reflect.Ptr:
if fc.fuzzer.genShouldFill() {
v.Set(reflect.New(v.Type().Elem()))
fc.doFuzz(v.Elem(), 0)
return
}
v.Set(reflect.Zero(v.Type()))
case reflect.Slice:
if fc.fuzzer.genShouldFill() {
n := fc.fuzzer.genElementCount()
v.Set(reflect.MakeSlice(v.Type(), n, n))
for i := 0; i < n; i++ {
fc.doFuzz(v.Index(i), 0)
}
return
}
v.Set(reflect.Zero(v.Type()))
case reflect.Array:
if fc.fuzzer.genShouldFill() {
n := v.Len()
for i := 0; i < n; i++ {
fc.doFuzz(v.Index(i), 0)
}
return
}
v.Set(reflect.Zero(v.Type()))
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
fc.doFuzz(v.Field(i), 0)
}
case reflect.Chan:
fallthrough
case reflect.Func:
fallthrough
case reflect.Interface:
fallthrough
default:
panic(fmt.Sprintf("Can't handle %#v", v.Interface()))
}
}
// tryCustom searches for custom handlers, and returns true iff it finds a match
// and successfully randomizes v.
func (fc *fuzzerContext) tryCustom(v reflect.Value) bool {
// First: see if we have a fuzz function for it.
doCustom, ok := fc.fuzzer.fuzzFuncs[v.Type()]
if !ok {
// Second: see if it can fuzz itself.
if v.CanInterface() {
intf := v.Interface()
if fuzzable, ok := intf.(Interface); ok {
fuzzable.Fuzz(Continue{fc: fc, Rand: fc.fuzzer.r})
return true
}
}
// Finally: see if there is a default fuzz function.
doCustom, ok = fc.fuzzer.defaultFuzzFuncs[v.Type()]
if !ok {
return false
}
}
switch v.Kind() {
case reflect.Ptr:
if v.IsNil() {
if !v.CanSet() {
return false
}
v.Set(reflect.New(v.Type().Elem()))
}
case reflect.Map:
if v.IsNil() {
if !v.CanSet() {
return false
}
v.Set(reflect.MakeMap(v.Type()))
}
default:
return false
}
doCustom.Call([]reflect.Value{v, reflect.ValueOf(Continue{
fc: fc,
Rand: fc.fuzzer.r,
})})
return true
}
// Interface represents an object that knows how to fuzz itself. Any time we
// find a type that implements this interface we will delegate the act of
// fuzzing itself.
type Interface interface {
Fuzz(c Continue)
}
// Continue can be passed to custom fuzzing functions to allow them to use
// the correct source of randomness and to continue fuzzing their members.
type Continue struct {
fc *fuzzerContext
// For convenience, Continue implements rand.Rand via embedding.
// Use this for generating any randomness if you want your fuzzing
// to be repeatable for a given seed.
*rand.Rand
}
// Fuzz continues fuzzing obj. obj must be a pointer.
func (c Continue) Fuzz(obj interface{}) {
v := reflect.ValueOf(obj)
if v.Kind() != reflect.Ptr {
panic("needed ptr!")
}
v = v.Elem()
c.fc.doFuzz(v, 0)
}
// FuzzNoCustom continues fuzzing obj, except that any custom fuzz function for
// obj's type will not be called and obj will not be tested for fuzz.Interface
// conformance. This applies only to obj and not other instances of obj's
// type.
func (c Continue) FuzzNoCustom(obj interface{}) {
v := reflect.ValueOf(obj)
if v.Kind() != reflect.Ptr {
panic("needed ptr!")
}
v = v.Elem()
c.fc.doFuzz(v, flagNoCustomFuzz)
}
// RandString makes a random string up to 20 characters long. The returned string
// may include a variety of (valid) UTF-8 encodings.
func (c Continue) RandString() string {
return randString(c.Rand)
}
// RandUint64 makes random 64 bit numbers.
// Weirdly, rand doesn't have a function that gives you 64 random bits.
func (c Continue) RandUint64() uint64 {
return randUint64(c.Rand)
}
// RandBool returns true or false randomly.
func (c Continue) RandBool() bool {
return randBool(c.Rand)
}
func fuzzInt(v reflect.Value, r *rand.Rand) {
v.SetInt(int64(randUint64(r)))
}
func fuzzUint(v reflect.Value, r *rand.Rand) {
v.SetUint(randUint64(r))
}
func fuzzTime(t *time.Time, c Continue) {
var sec, nsec int64
// Allow for about 1000 years of random time values, which keeps things
// like JSON parsing reasonably happy.
sec = c.Rand.Int63n(1000 * 365 * 24 * 60 * 60)
c.Fuzz(&nsec)
*t = time.Unix(sec, nsec)
}
var fillFuncMap = map[reflect.Kind]func(reflect.Value, *rand.Rand){
reflect.Bool: func(v reflect.Value, r *rand.Rand) {
v.SetBool(randBool(r))
},
reflect.Int: fuzzInt,
reflect.Int8: fuzzInt,
reflect.Int16: fuzzInt,
reflect.Int32: fuzzInt,
reflect.Int64: fuzzInt,
reflect.Uint: fuzzUint,
reflect.Uint8: fuzzUint,
reflect.Uint16: fuzzUint,
reflect.Uint32: fuzzUint,
reflect.Uint64: fuzzUint,
reflect.Uintptr: fuzzUint,
reflect.Float32: func(v reflect.Value, r *rand.Rand) {
v.SetFloat(float64(r.Float32()))
},
reflect.Float64: func(v reflect.Value, r *rand.Rand) {
v.SetFloat(r.Float64())
},
reflect.Complex64: func(v reflect.Value, r *rand.Rand) {
panic("unimplemented")
},
reflect.Complex128: func(v reflect.Value, r *rand.Rand) {
panic("unimplemented")
},
reflect.String: func(v reflect.Value, r *rand.Rand) {
v.SetString(randString(r))
},
reflect.UnsafePointer: func(v reflect.Value, r *rand.Rand) {
panic("unimplemented")
},
}
// randBool returns true or false randomly.
func randBool(r *rand.Rand) bool {
if r.Int()&1 == 1 {
return true
}
return false
}
type charRange struct {
first, last rune
}
// choose returns a random unicode character from the given range, using the
// given randomness source.
func (r *charRange) choose(rand *rand.Rand) rune {
count := int64(r.last - r.first)
return r.first + rune(rand.Int63n(count))
}
var unicodeRanges = []charRange{
{' ', '~'}, // ASCII characters
{'\u00a0', '\u02af'}, // Multi-byte encoded characters
{'\u4e00', '\u9fff'}, // Common CJK (even longer encodings)
}
// randString makes a random string up to 20 characters long. The returned string
// may include a variety of (valid) UTF-8 encodings.
func randString(r *rand.Rand) string {
n := r.Intn(20)
runes := make([]rune, n)
for i := range runes {
runes[i] = unicodeRanges[r.Intn(len(unicodeRanges))].choose(r)
}
return string(runes)
}
// randUint64 makes random 64 bit numbers.
// Weirdly, rand doesn't have a function that gives you 64 random bits.
func randUint64(r *rand.Rand) uint64 {
return uint64(r.Uint32())<<32 | uint64(r.Uint32())
}

6
vendor/vendor.json vendored
View File

@ -227,6 +227,12 @@
"revision": "5e9c030faf78847db7aa77e3661b9cc449de29b7",
"revisionTime": "2016-11-16T06:46:58Z"
},
{
"checksumSHA1": "PFtXkXPO7pwRtykVUUXtc07wc7U=",
"path": "github.com/google/gofuzz",
"revision": "24818f796faf91cd76ec7bddd72458fbced7a6c1",
"revisionTime": "2017-06-12T17:47:53Z"
},
{
"checksumSHA1": "cdOCt0Yb+hdErz8NAQqayxPmRsY=",
"path": "github.com/hashicorp/errwrap",