vendor: Update github.com/hashicorp/hil
This commit is contained in:
parent
02e282a7ab
commit
3cd60e1d72
2
go.mod
2
go.mod
|
@ -50,7 +50,7 @@ require (
|
|||
github.com/hashicorp/go-version v1.2.1
|
||||
github.com/hashicorp/golang-lru v0.5.4
|
||||
github.com/hashicorp/hcl v1.0.0
|
||||
github.com/hashicorp/hil v0.0.0-20160711231837-1e86c6b523c5
|
||||
github.com/hashicorp/hil v0.0.0-20200423225030-a18a1cd20038
|
||||
github.com/hashicorp/memberlist v0.2.2
|
||||
github.com/hashicorp/net-rpc-msgpackrpc v0.0.0-20151116020338-a14192a58a69
|
||||
github.com/hashicorp/raft v1.2.0
|
||||
|
|
4
go.sum
4
go.sum
|
@ -273,8 +273,8 @@ github.com/hashicorp/golang-lru v0.5.4 h1:YDjusn29QI/Das2iO9M0BHnIbxPeyuCHsjMW+l
|
|||
github.com/hashicorp/golang-lru v0.5.4/go.mod h1:iADmTwqILo4mZ8BN3D2Q6+9jd8WM5uGBxy+E8yxSoD4=
|
||||
github.com/hashicorp/hcl v1.0.0 h1:0Anlzjpi4vEasTeNFn2mLJgTSwt0+6sfsiTG8qcWGx4=
|
||||
github.com/hashicorp/hcl v1.0.0/go.mod h1:E5yfLk+7swimpb2L/Alb/PJmXilQ/rhwaUYs4T20WEQ=
|
||||
github.com/hashicorp/hil v0.0.0-20160711231837-1e86c6b523c5 h1:uk280DXEbQiCOZgCOI3elFSeNxf8YIZiNsbr2pQLYD0=
|
||||
github.com/hashicorp/hil v0.0.0-20160711231837-1e86c6b523c5/go.mod h1:KHvg/R2/dPtaePb16oW4qIyzkMxXOL38xjRN64adsts=
|
||||
github.com/hashicorp/hil v0.0.0-20200423225030-a18a1cd20038 h1:n9J0rwVWXDpNd5iZnwY7w4WZyq53/rROeI7OVvLW8Ok=
|
||||
github.com/hashicorp/hil v0.0.0-20200423225030-a18a1cd20038/go.mod h1:n2TSygSNwsLJ76m8qFXTSc7beTb+auJxYdqrnoqwZWE=
|
||||
github.com/hashicorp/logutils v1.0.0/go.mod h1:QIAnNjmIWmVIIkWDTG1z5v++HQmx9WQRO+LraFDTW64=
|
||||
github.com/hashicorp/mdns v1.0.1 h1:XFSOubp8KWB+Jd2PDyaX5xUd5bhSP/+pTDZVDMzZJM8=
|
||||
github.com/hashicorp/mdns v1.0.1/go.mod h1:4gW7WsVCke5TE7EPeYliwHlRUyBtfCwuFwuMg2DmyNY=
|
||||
|
|
|
@ -1,3 +0,0 @@
|
|||
sudo: false
|
||||
language: go
|
||||
go: 1.5
|
|
@ -1,6 +1,6 @@
|
|||
# HIL
|
||||
|
||||
[![GoDoc](https://godoc.org/github.com/hashicorp/hil?status.png)](https://godoc.org/github.com/hashicorp/hil) [![Build Status](https://travis-ci.org/hashicorp/hil.svg?branch=master)](https://travis-ci.org/hashicorp/hil)
|
||||
[![GoDoc](https://godoc.org/github.com/hashicorp/hil?status.png)](https://godoc.org/github.com/hashicorp/hil) [![Build Status](https://circleci.com/gh/hashicorp/hil/tree/master.svg?style=svg)](https://circleci.com/gh/hashicorp/hil/tree/master)
|
||||
|
||||
HIL (HashiCorp Interpolation Language) is a lightweight embedded language used
|
||||
primarily for configuration interpolation. The goal of HIL is to make a simple
|
||||
|
@ -43,7 +43,7 @@ better tested for general purpose use.
|
|||
## Syntax
|
||||
|
||||
For a complete grammar, please see the parser itself. A high-level overview
|
||||
of the syntax and grammer is listed here.
|
||||
of the syntax and grammar is listed here.
|
||||
|
||||
Code begins within `${` and `}`. Outside of this, text is treated
|
||||
literally. For example, `foo` is a valid HIL program that is just the
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
version: "build-{branch}-{build}"
|
||||
image: Visual Studio 2015
|
||||
clone_folder: c:\gopath\src\github.com\hashicorp\hil
|
||||
environment:
|
||||
GOPATH: c:\gopath
|
||||
init:
|
||||
- git config --global core.autocrlf true
|
||||
install:
|
||||
- cmd: >-
|
||||
echo %Path%
|
||||
|
||||
go version
|
||||
|
||||
go env
|
||||
|
||||
go get -d -v -t ./...
|
||||
build_script:
|
||||
- cmd: go test -v ./...
|
|
@ -5,9 +5,20 @@ type ArithmeticOp int
|
|||
|
||||
const (
|
||||
ArithmeticOpInvalid ArithmeticOp = 0
|
||||
ArithmeticOpAdd ArithmeticOp = iota
|
||||
|
||||
ArithmeticOpAdd ArithmeticOp = iota
|
||||
ArithmeticOpSub
|
||||
ArithmeticOpMul
|
||||
ArithmeticOpDiv
|
||||
ArithmeticOpMod
|
||||
|
||||
ArithmeticOpLogicalAnd
|
||||
ArithmeticOpLogicalOr
|
||||
|
||||
ArithmeticOpEqual
|
||||
ArithmeticOpNotEqual
|
||||
ArithmeticOpLessThan
|
||||
ArithmeticOpLessThanOrEqual
|
||||
ArithmeticOpGreaterThan
|
||||
ArithmeticOpGreaterThanOrEqual
|
||||
)
|
||||
|
|
|
@ -19,13 +19,22 @@ type Node interface {
|
|||
|
||||
// Pos is the starting position of an AST node
|
||||
type Pos struct {
|
||||
Column, Line int // Column/Line number, starting at 1
|
||||
Column, Line int // Column/Line number, starting at 1
|
||||
Filename string // Optional source filename, if known
|
||||
}
|
||||
|
||||
func (p Pos) String() string {
|
||||
return fmt.Sprintf("%d:%d", p.Line, p.Column)
|
||||
if p.Filename == "" {
|
||||
return fmt.Sprintf("%d:%d", p.Line, p.Column)
|
||||
} else {
|
||||
return fmt.Sprintf("%s:%d:%d", p.Filename, p.Line, p.Column)
|
||||
}
|
||||
}
|
||||
|
||||
// InitPos is an initiaial position value. This should be used as
|
||||
// the starting position (presets the column and line to 1).
|
||||
var InitPos = Pos{Column: 1, Line: 1}
|
||||
|
||||
// Visitors are just implementations of this function.
|
||||
//
|
||||
// The function must return the Node to replace this node with. "nil" is
|
||||
|
@ -49,11 +58,19 @@ type Type uint32
|
|||
const (
|
||||
TypeInvalid Type = 0
|
||||
TypeAny Type = 1 << iota
|
||||
TypeBool
|
||||
TypeString
|
||||
TypeInt
|
||||
TypeFloat
|
||||
TypeList
|
||||
TypeMap
|
||||
|
||||
// This is a special type used by Terraform to mark "unknown" values.
|
||||
// It is impossible for this type to be introduced into your HIL programs
|
||||
// unless you explicitly set a variable to this value. In that case,
|
||||
// any operation including the variable will return "TypeUnknown" as the
|
||||
// type.
|
||||
TypeUnknown
|
||||
)
|
||||
|
||||
func (t Type) Printable() string {
|
||||
|
@ -62,6 +79,8 @@ func (t Type) Printable() string {
|
|||
return "invalid type"
|
||||
case TypeAny:
|
||||
return "any type"
|
||||
case TypeBool:
|
||||
return "type bool"
|
||||
case TypeString:
|
||||
return "type string"
|
||||
case TypeInt:
|
||||
|
@ -72,6 +91,8 @@ func (t Type) Printable() string {
|
|||
return "type list"
|
||||
case TypeMap:
|
||||
return "type map"
|
||||
case TypeUnknown:
|
||||
return "type unknown"
|
||||
default:
|
||||
return "unknown type"
|
||||
}
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
package ast
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
)
|
||||
|
||||
type Conditional struct {
|
||||
CondExpr Node
|
||||
TrueExpr Node
|
||||
FalseExpr Node
|
||||
Posx Pos
|
||||
}
|
||||
|
||||
// Accept passes the given visitor to the child nodes in this order:
|
||||
// CondExpr, TrueExpr, FalseExpr. It then finally passes itself to the visitor.
|
||||
func (n *Conditional) Accept(v Visitor) Node {
|
||||
n.CondExpr = n.CondExpr.Accept(v)
|
||||
n.TrueExpr = n.TrueExpr.Accept(v)
|
||||
n.FalseExpr = n.FalseExpr.Accept(v)
|
||||
|
||||
return v(n)
|
||||
}
|
||||
|
||||
func (n *Conditional) Pos() Pos {
|
||||
return n.Posx
|
||||
}
|
||||
|
||||
func (n *Conditional) Type(Scope) (Type, error) {
|
||||
// This is not actually a useful value; the type checker ignores
|
||||
// this function when analyzing conditionals, just as with Arithmetic.
|
||||
return TypeInt, nil
|
||||
}
|
||||
|
||||
func (n *Conditional) GoString() string {
|
||||
return fmt.Sprintf("*%#v", *n)
|
||||
}
|
|
@ -13,6 +13,8 @@ type Index struct {
|
|||
}
|
||||
|
||||
func (n *Index) Accept(v Visitor) Node {
|
||||
n.Target = n.Target.Accept(v)
|
||||
n.Key = n.Key.Accept(v)
|
||||
return v(n)
|
||||
}
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@ package ast
|
|||
|
||||
import (
|
||||
"fmt"
|
||||
"reflect"
|
||||
)
|
||||
|
||||
// LiteralNode represents a single literal value, such as "foo" or
|
||||
|
@ -12,6 +13,51 @@ type LiteralNode struct {
|
|||
Posx Pos
|
||||
}
|
||||
|
||||
// NewLiteralNode returns a new literal node representing the given
|
||||
// literal Go value, which must correspond to one of the primitive types
|
||||
// supported by HIL. Lists and maps cannot currently be constructed via
|
||||
// this function.
|
||||
//
|
||||
// If an inappropriately-typed value is provided, this function will
|
||||
// return an error. The main intended use of this function is to produce
|
||||
// "synthetic" literals from constants in code, where the value type is
|
||||
// well known at compile time. To easily store these in global variables,
|
||||
// see also MustNewLiteralNode.
|
||||
func NewLiteralNode(value interface{}, pos Pos) (*LiteralNode, error) {
|
||||
goType := reflect.TypeOf(value)
|
||||
var hilType Type
|
||||
|
||||
switch goType.Kind() {
|
||||
case reflect.Bool:
|
||||
hilType = TypeBool
|
||||
case reflect.Int:
|
||||
hilType = TypeInt
|
||||
case reflect.Float64:
|
||||
hilType = TypeFloat
|
||||
case reflect.String:
|
||||
hilType = TypeString
|
||||
default:
|
||||
return nil, fmt.Errorf("unsupported literal node type: %T", value)
|
||||
}
|
||||
|
||||
return &LiteralNode{
|
||||
Value: value,
|
||||
Typex: hilType,
|
||||
Posx: pos,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// MustNewLiteralNode wraps NewLiteralNode and panics if an error is
|
||||
// returned, thus allowing valid literal nodes to be easily assigned to
|
||||
// global variables.
|
||||
func MustNewLiteralNode(value interface{}, pos Pos) *LiteralNode {
|
||||
node, err := NewLiteralNode(value, pos)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
return node
|
||||
}
|
||||
|
||||
func (n *LiteralNode) Accept(v Visitor) Node {
|
||||
return v(n)
|
||||
}
|
||||
|
@ -31,3 +77,12 @@ func (n *LiteralNode) String() string {
|
|||
func (n *LiteralNode) Type(Scope) (Type, error) {
|
||||
return n.Typex, nil
|
||||
}
|
||||
|
||||
// IsUnknown returns true either if the node's value is itself unknown
|
||||
// of if it is a collection containing any unknown elements, deeply.
|
||||
func (n *LiteralNode) IsUnknown() bool {
|
||||
return IsUnknown(Variable{
|
||||
Type: n.Typex,
|
||||
Value: n.Value,
|
||||
})
|
||||
}
|
||||
|
|
|
@ -7,21 +7,25 @@ import "fmt"
|
|||
const (
|
||||
_Type_name_0 = "TypeInvalid"
|
||||
_Type_name_1 = "TypeAny"
|
||||
_Type_name_2 = "TypeString"
|
||||
_Type_name_3 = "TypeInt"
|
||||
_Type_name_4 = "TypeFloat"
|
||||
_Type_name_5 = "TypeList"
|
||||
_Type_name_6 = "TypeMap"
|
||||
_Type_name_2 = "TypeBool"
|
||||
_Type_name_3 = "TypeString"
|
||||
_Type_name_4 = "TypeInt"
|
||||
_Type_name_5 = "TypeFloat"
|
||||
_Type_name_6 = "TypeList"
|
||||
_Type_name_7 = "TypeMap"
|
||||
_Type_name_8 = "TypeUnknown"
|
||||
)
|
||||
|
||||
var (
|
||||
_Type_index_0 = [...]uint8{0, 11}
|
||||
_Type_index_1 = [...]uint8{0, 7}
|
||||
_Type_index_2 = [...]uint8{0, 10}
|
||||
_Type_index_3 = [...]uint8{0, 7}
|
||||
_Type_index_4 = [...]uint8{0, 9}
|
||||
_Type_index_5 = [...]uint8{0, 8}
|
||||
_Type_index_6 = [...]uint8{0, 7}
|
||||
_Type_index_2 = [...]uint8{0, 8}
|
||||
_Type_index_3 = [...]uint8{0, 10}
|
||||
_Type_index_4 = [...]uint8{0, 7}
|
||||
_Type_index_5 = [...]uint8{0, 9}
|
||||
_Type_index_6 = [...]uint8{0, 8}
|
||||
_Type_index_7 = [...]uint8{0, 7}
|
||||
_Type_index_8 = [...]uint8{0, 11}
|
||||
)
|
||||
|
||||
func (i Type) String() string {
|
||||
|
@ -40,6 +44,10 @@ func (i Type) String() string {
|
|||
return _Type_name_5
|
||||
case i == 64:
|
||||
return _Type_name_6
|
||||
case i == 128:
|
||||
return _Type_name_7
|
||||
case i == 256:
|
||||
return _Type_name_8
|
||||
default:
|
||||
return fmt.Sprintf("Type(%d)", i)
|
||||
}
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
package ast
|
||||
|
||||
// IsUnknown reports whether a variable is unknown or contains any value
|
||||
// that is unknown. This will recurse into lists and maps and so on.
|
||||
func IsUnknown(v Variable) bool {
|
||||
// If it is unknown itself, return true
|
||||
if v.Type == TypeUnknown {
|
||||
return true
|
||||
}
|
||||
|
||||
// If it is a container type, check the values
|
||||
switch v.Type {
|
||||
case TypeList:
|
||||
for _, el := range v.Value.([]Variable) {
|
||||
if IsUnknown(el) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
case TypeMap:
|
||||
for _, el := range v.Value.(map[string]Variable) {
|
||||
if IsUnknown(el) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
default:
|
||||
}
|
||||
|
||||
// Not a container type or survive the above checks
|
||||
return false
|
||||
}
|
|
@ -3,43 +3,61 @@ package ast
|
|||
import "fmt"
|
||||
|
||||
func VariableListElementTypesAreHomogenous(variableName string, list []Variable) (Type, error) {
|
||||
listTypes := make(map[Type]struct{})
|
||||
if len(list) == 0 {
|
||||
return TypeInvalid, fmt.Errorf("list %q does not have any elements so cannot determine type.", variableName)
|
||||
}
|
||||
|
||||
elemType := TypeUnknown
|
||||
for _, v := range list {
|
||||
if _, ok := listTypes[v.Type]; ok {
|
||||
if v.Type == TypeUnknown {
|
||||
continue
|
||||
}
|
||||
listTypes[v.Type] = struct{}{}
|
||||
|
||||
if elemType == TypeUnknown {
|
||||
elemType = v.Type
|
||||
continue
|
||||
}
|
||||
|
||||
if v.Type != elemType {
|
||||
return TypeInvalid, fmt.Errorf(
|
||||
"list %q does not have homogenous types. found %s and then %s",
|
||||
variableName,
|
||||
elemType, v.Type,
|
||||
)
|
||||
}
|
||||
|
||||
elemType = v.Type
|
||||
}
|
||||
|
||||
if len(listTypes) != 1 && len(list) != 0 {
|
||||
return TypeInvalid, fmt.Errorf("list %q does not have homogenous types. found %s", variableName, reportTypes(listTypes))
|
||||
}
|
||||
|
||||
if len(list) > 0 {
|
||||
return list[0].Type, nil
|
||||
}
|
||||
|
||||
return TypeInvalid, fmt.Errorf("list %q does not have any elements so cannot determine type.", variableName)
|
||||
return elemType, nil
|
||||
}
|
||||
|
||||
func VariableMapValueTypesAreHomogenous(variableName string, vmap map[string]Variable) (Type, error) {
|
||||
valueTypes := make(map[Type]struct{})
|
||||
if len(vmap) == 0 {
|
||||
return TypeInvalid, fmt.Errorf("map %q does not have any elements so cannot determine type.", variableName)
|
||||
}
|
||||
|
||||
elemType := TypeUnknown
|
||||
for _, v := range vmap {
|
||||
if _, ok := valueTypes[v.Type]; ok {
|
||||
if v.Type == TypeUnknown {
|
||||
continue
|
||||
}
|
||||
valueTypes[v.Type] = struct{}{}
|
||||
|
||||
if elemType == TypeUnknown {
|
||||
elemType = v.Type
|
||||
continue
|
||||
}
|
||||
|
||||
if v.Type != elemType {
|
||||
return TypeInvalid, fmt.Errorf(
|
||||
"map %q does not have homogenous types. found %s and then %s",
|
||||
variableName,
|
||||
elemType, v.Type,
|
||||
)
|
||||
}
|
||||
|
||||
elemType = v.Type
|
||||
}
|
||||
|
||||
if len(valueTypes) != 1 && len(vmap) != 0 {
|
||||
return TypeInvalid, fmt.Errorf("map %q does not have homogenous value types. found %s", variableName, reportTypes(valueTypes))
|
||||
}
|
||||
|
||||
// For loop here is an easy way to get a single key, we return immediately.
|
||||
for _, v := range vmap {
|
||||
return v.Type, nil
|
||||
}
|
||||
|
||||
// This means the map is empty
|
||||
return TypeInvalid, fmt.Errorf("map %q does not have any elements so cannot determine type.", variableName)
|
||||
return elemType, nil
|
||||
}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
package hil
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"strconv"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
|
@ -17,16 +18,23 @@ func registerBuiltins(scope *ast.BasicScope) *ast.BasicScope {
|
|||
}
|
||||
|
||||
// Implicit conversions
|
||||
scope.FuncMap["__builtin_BoolToString"] = builtinBoolToString()
|
||||
scope.FuncMap["__builtin_FloatToInt"] = builtinFloatToInt()
|
||||
scope.FuncMap["__builtin_FloatToString"] = builtinFloatToString()
|
||||
scope.FuncMap["__builtin_IntToFloat"] = builtinIntToFloat()
|
||||
scope.FuncMap["__builtin_IntToString"] = builtinIntToString()
|
||||
scope.FuncMap["__builtin_StringToInt"] = builtinStringToInt()
|
||||
scope.FuncMap["__builtin_StringToFloat"] = builtinStringToFloat()
|
||||
scope.FuncMap["__builtin_StringToBool"] = builtinStringToBool()
|
||||
|
||||
// Math operations
|
||||
scope.FuncMap["__builtin_IntMath"] = builtinIntMath()
|
||||
scope.FuncMap["__builtin_FloatMath"] = builtinFloatMath()
|
||||
scope.FuncMap["__builtin_BoolCompare"] = builtinBoolCompare()
|
||||
scope.FuncMap["__builtin_FloatCompare"] = builtinFloatCompare()
|
||||
scope.FuncMap["__builtin_IntCompare"] = builtinIntCompare()
|
||||
scope.FuncMap["__builtin_StringCompare"] = builtinStringCompare()
|
||||
scope.FuncMap["__builtin_Logical"] = builtinLogical()
|
||||
return scope
|
||||
}
|
||||
|
||||
|
@ -77,8 +85,16 @@ func builtinIntMath() ast.Function {
|
|||
case ast.ArithmeticOpMul:
|
||||
result *= arg
|
||||
case ast.ArithmeticOpDiv:
|
||||
if arg == 0 {
|
||||
return nil, errors.New("divide by zero")
|
||||
}
|
||||
|
||||
result /= arg
|
||||
case ast.ArithmeticOpMod:
|
||||
if arg == 0 {
|
||||
return nil, errors.New("divide by zero")
|
||||
}
|
||||
|
||||
result = result % arg
|
||||
}
|
||||
}
|
||||
|
@ -88,6 +104,136 @@ func builtinIntMath() ast.Function {
|
|||
}
|
||||
}
|
||||
|
||||
func builtinBoolCompare() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeInt, ast.TypeBool, ast.TypeBool},
|
||||
Variadic: false,
|
||||
ReturnType: ast.TypeBool,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
op := args[0].(ast.ArithmeticOp)
|
||||
lhs := args[1].(bool)
|
||||
rhs := args[2].(bool)
|
||||
|
||||
switch op {
|
||||
case ast.ArithmeticOpEqual:
|
||||
return lhs == rhs, nil
|
||||
case ast.ArithmeticOpNotEqual:
|
||||
return lhs != rhs, nil
|
||||
default:
|
||||
return nil, errors.New("invalid comparison operation")
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinFloatCompare() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeInt, ast.TypeFloat, ast.TypeFloat},
|
||||
Variadic: false,
|
||||
ReturnType: ast.TypeBool,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
op := args[0].(ast.ArithmeticOp)
|
||||
lhs := args[1].(float64)
|
||||
rhs := args[2].(float64)
|
||||
|
||||
switch op {
|
||||
case ast.ArithmeticOpEqual:
|
||||
return lhs == rhs, nil
|
||||
case ast.ArithmeticOpNotEqual:
|
||||
return lhs != rhs, nil
|
||||
case ast.ArithmeticOpLessThan:
|
||||
return lhs < rhs, nil
|
||||
case ast.ArithmeticOpLessThanOrEqual:
|
||||
return lhs <= rhs, nil
|
||||
case ast.ArithmeticOpGreaterThan:
|
||||
return lhs > rhs, nil
|
||||
case ast.ArithmeticOpGreaterThanOrEqual:
|
||||
return lhs >= rhs, nil
|
||||
default:
|
||||
return nil, errors.New("invalid comparison operation")
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinIntCompare() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeInt, ast.TypeInt, ast.TypeInt},
|
||||
Variadic: false,
|
||||
ReturnType: ast.TypeBool,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
op := args[0].(ast.ArithmeticOp)
|
||||
lhs := args[1].(int)
|
||||
rhs := args[2].(int)
|
||||
|
||||
switch op {
|
||||
case ast.ArithmeticOpEqual:
|
||||
return lhs == rhs, nil
|
||||
case ast.ArithmeticOpNotEqual:
|
||||
return lhs != rhs, nil
|
||||
case ast.ArithmeticOpLessThan:
|
||||
return lhs < rhs, nil
|
||||
case ast.ArithmeticOpLessThanOrEqual:
|
||||
return lhs <= rhs, nil
|
||||
case ast.ArithmeticOpGreaterThan:
|
||||
return lhs > rhs, nil
|
||||
case ast.ArithmeticOpGreaterThanOrEqual:
|
||||
return lhs >= rhs, nil
|
||||
default:
|
||||
return nil, errors.New("invalid comparison operation")
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinStringCompare() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeInt, ast.TypeString, ast.TypeString},
|
||||
Variadic: false,
|
||||
ReturnType: ast.TypeBool,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
op := args[0].(ast.ArithmeticOp)
|
||||
lhs := args[1].(string)
|
||||
rhs := args[2].(string)
|
||||
|
||||
switch op {
|
||||
case ast.ArithmeticOpEqual:
|
||||
return lhs == rhs, nil
|
||||
case ast.ArithmeticOpNotEqual:
|
||||
return lhs != rhs, nil
|
||||
default:
|
||||
return nil, errors.New("invalid comparison operation")
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinLogical() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeInt},
|
||||
Variadic: true,
|
||||
VariadicType: ast.TypeBool,
|
||||
ReturnType: ast.TypeBool,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
op := args[0].(ast.ArithmeticOp)
|
||||
result := args[1].(bool)
|
||||
for _, raw := range args[2:] {
|
||||
arg := raw.(bool)
|
||||
switch op {
|
||||
case ast.ArithmeticOpLogicalOr:
|
||||
result = result || arg
|
||||
case ast.ArithmeticOpLogicalAnd:
|
||||
result = result && arg
|
||||
default:
|
||||
return nil, errors.New("invalid logical operator")
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinFloatToInt() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeFloat},
|
||||
|
@ -158,3 +304,28 @@ func builtinStringToFloat() ast.Function {
|
|||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinBoolToString() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeBool},
|
||||
ReturnType: ast.TypeString,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
return strconv.FormatBool(args[0].(bool)), nil
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func builtinStringToBool() ast.Function {
|
||||
return ast.Function{
|
||||
ArgTypes: []ast.Type{ast.TypeString},
|
||||
ReturnType: ast.TypeBool,
|
||||
Callback: func(args []interface{}) (interface{}, error) {
|
||||
v, err := strconv.ParseBool(args[0].(string))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return v, nil
|
||||
},
|
||||
}
|
||||
}
|
||||
|
|
|
@ -44,6 +44,12 @@ func (v *TypeCheck) Visit(root ast.Node) error {
|
|||
defer v.lock.Unlock()
|
||||
defer v.reset()
|
||||
root.Accept(v.visit)
|
||||
|
||||
// If the resulting type is unknown, then just let the whole thing go.
|
||||
if v.err == errExitUnknown {
|
||||
v.err = nil
|
||||
}
|
||||
|
||||
return v.err
|
||||
}
|
||||
|
||||
|
@ -61,6 +67,9 @@ func (v *TypeCheck) visit(raw ast.Node) ast.Node {
|
|||
case *ast.Call:
|
||||
tc := &typeCheckCall{n}
|
||||
result, err = tc.TypeCheck(v)
|
||||
case *ast.Conditional:
|
||||
tc := &typeCheckConditional{n}
|
||||
result, err = tc.TypeCheck(v)
|
||||
case *ast.Index:
|
||||
tc := &typeCheckIndex{n}
|
||||
result, err = tc.TypeCheck(v)
|
||||
|
@ -103,6 +112,28 @@ func (tc *typeCheckArithmetic) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
exprs[len(tc.n.Exprs)-1-i] = v.StackPop()
|
||||
}
|
||||
|
||||
// If any operand is unknown then our result is automatically unknown
|
||||
for _, ty := range exprs {
|
||||
if ty == ast.TypeUnknown {
|
||||
v.StackPush(ast.TypeUnknown)
|
||||
return tc.n, nil
|
||||
}
|
||||
}
|
||||
|
||||
switch tc.n.Op {
|
||||
case ast.ArithmeticOpLogicalAnd, ast.ArithmeticOpLogicalOr:
|
||||
return tc.checkLogical(v, exprs)
|
||||
case ast.ArithmeticOpEqual, ast.ArithmeticOpNotEqual,
|
||||
ast.ArithmeticOpLessThan, ast.ArithmeticOpGreaterThan,
|
||||
ast.ArithmeticOpGreaterThanOrEqual, ast.ArithmeticOpLessThanOrEqual:
|
||||
return tc.checkComparison(v, exprs)
|
||||
default:
|
||||
return tc.checkNumeric(v, exprs)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (tc *typeCheckArithmetic) checkNumeric(v *TypeCheck, exprs []ast.Type) (ast.Node, error) {
|
||||
// Determine the resulting type we want. We do this by going over
|
||||
// every expression until we find one with a type we recognize.
|
||||
// We do this because the first expr might be a string ("var.foo")
|
||||
|
@ -110,20 +141,11 @@ func (tc *typeCheckArithmetic) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
mathFunc := "__builtin_IntMath"
|
||||
mathType := ast.TypeInt
|
||||
for _, v := range exprs {
|
||||
exit := true
|
||||
switch v {
|
||||
case ast.TypeInt:
|
||||
mathFunc = "__builtin_IntMath"
|
||||
mathType = v
|
||||
case ast.TypeFloat:
|
||||
// We assume int math but if we find ANY float, the entire
|
||||
// expression turns into floating point math.
|
||||
if v == ast.TypeFloat {
|
||||
mathFunc = "__builtin_FloatMath"
|
||||
mathType = v
|
||||
default:
|
||||
exit = false
|
||||
}
|
||||
|
||||
// We found the type, so leave
|
||||
if exit {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
@ -167,6 +189,131 @@ func (tc *typeCheckArithmetic) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
}, nil
|
||||
}
|
||||
|
||||
func (tc *typeCheckArithmetic) checkComparison(v *TypeCheck, exprs []ast.Type) (ast.Node, error) {
|
||||
if len(exprs) != 2 {
|
||||
// This should never happen, because the parser never produces
|
||||
// nodes that violate this.
|
||||
return nil, fmt.Errorf(
|
||||
"comparison operators must have exactly two operands",
|
||||
)
|
||||
}
|
||||
|
||||
// The first operand always dictates the type for a comparison.
|
||||
compareFunc := ""
|
||||
compareType := exprs[0]
|
||||
switch compareType {
|
||||
case ast.TypeBool:
|
||||
compareFunc = "__builtin_BoolCompare"
|
||||
case ast.TypeFloat:
|
||||
compareFunc = "__builtin_FloatCompare"
|
||||
case ast.TypeInt:
|
||||
compareFunc = "__builtin_IntCompare"
|
||||
case ast.TypeString:
|
||||
compareFunc = "__builtin_StringCompare"
|
||||
default:
|
||||
return nil, fmt.Errorf(
|
||||
"comparison operators apply only to bool, float, int, and string",
|
||||
)
|
||||
}
|
||||
|
||||
// For non-equality comparisons, we will do implicit conversions to
|
||||
// integer types if possible. In this case, we need to go through and
|
||||
// determine the type of comparison we're doing to enable the implicit
|
||||
// conversion.
|
||||
if tc.n.Op != ast.ArithmeticOpEqual && tc.n.Op != ast.ArithmeticOpNotEqual {
|
||||
compareFunc = "__builtin_IntCompare"
|
||||
compareType = ast.TypeInt
|
||||
for _, expr := range exprs {
|
||||
if expr == ast.TypeFloat {
|
||||
compareFunc = "__builtin_FloatCompare"
|
||||
compareType = ast.TypeFloat
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verify (and possibly, convert) the args
|
||||
for i, arg := range exprs {
|
||||
if arg != compareType {
|
||||
cn := v.ImplicitConversion(exprs[i], compareType, tc.n.Exprs[i])
|
||||
if cn != nil {
|
||||
tc.n.Exprs[i] = cn
|
||||
continue
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf(
|
||||
"operand %d should be %s, got %s",
|
||||
i+1, compareType, arg,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Only ints and floats can have the <, >, <= and >= operators applied
|
||||
switch tc.n.Op {
|
||||
case ast.ArithmeticOpEqual, ast.ArithmeticOpNotEqual:
|
||||
// anything goes
|
||||
default:
|
||||
switch compareType {
|
||||
case ast.TypeFloat, ast.TypeInt:
|
||||
// fine
|
||||
default:
|
||||
return nil, fmt.Errorf(
|
||||
"<, >, <= and >= may apply only to int and float values",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// Comparison operators always return bool
|
||||
v.StackPush(ast.TypeBool)
|
||||
|
||||
// Replace our node with a call to the proper function. This isn't
|
||||
// type checked but we already verified types.
|
||||
args := make([]ast.Node, len(tc.n.Exprs)+1)
|
||||
args[0] = &ast.LiteralNode{
|
||||
Value: tc.n.Op,
|
||||
Typex: ast.TypeInt,
|
||||
Posx: tc.n.Pos(),
|
||||
}
|
||||
copy(args[1:], tc.n.Exprs)
|
||||
return &ast.Call{
|
||||
Func: compareFunc,
|
||||
Args: args,
|
||||
Posx: tc.n.Pos(),
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (tc *typeCheckArithmetic) checkLogical(v *TypeCheck, exprs []ast.Type) (ast.Node, error) {
|
||||
for i, t := range exprs {
|
||||
if t != ast.TypeBool {
|
||||
cn := v.ImplicitConversion(t, ast.TypeBool, tc.n.Exprs[i])
|
||||
if cn == nil {
|
||||
return nil, fmt.Errorf(
|
||||
"logical operators require boolean operands, not %s",
|
||||
t,
|
||||
)
|
||||
}
|
||||
tc.n.Exprs[i] = cn
|
||||
}
|
||||
}
|
||||
|
||||
// Return type is always boolean
|
||||
v.StackPush(ast.TypeBool)
|
||||
|
||||
// Arithmetic nodes are replaced with a call to a built-in function
|
||||
args := make([]ast.Node, len(tc.n.Exprs)+1)
|
||||
args[0] = &ast.LiteralNode{
|
||||
Value: tc.n.Op,
|
||||
Typex: ast.TypeInt,
|
||||
Posx: tc.n.Pos(),
|
||||
}
|
||||
copy(args[1:], tc.n.Exprs)
|
||||
return &ast.Call{
|
||||
Func: "__builtin_Logical",
|
||||
Args: args,
|
||||
Posx: tc.n.Pos(),
|
||||
}, nil
|
||||
}
|
||||
|
||||
type typeCheckCall struct {
|
||||
n *ast.Call
|
||||
}
|
||||
|
@ -190,6 +337,11 @@ func (tc *typeCheckCall) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
continue
|
||||
}
|
||||
|
||||
if args[i] == ast.TypeUnknown {
|
||||
v.StackPush(ast.TypeUnknown)
|
||||
return tc.n, nil
|
||||
}
|
||||
|
||||
if args[i] != expected {
|
||||
cn := v.ImplicitConversion(args[i], expected, tc.n.Args[i])
|
||||
if cn != nil {
|
||||
|
@ -207,6 +359,11 @@ func (tc *typeCheckCall) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
if function.Variadic && function.VariadicType != ast.TypeAny {
|
||||
args = args[len(function.ArgTypes):]
|
||||
for i, t := range args {
|
||||
if t == ast.TypeUnknown {
|
||||
v.StackPush(ast.TypeUnknown)
|
||||
return tc.n, nil
|
||||
}
|
||||
|
||||
if t != function.VariadicType {
|
||||
realI := i + len(function.ArgTypes)
|
||||
cn := v.ImplicitConversion(
|
||||
|
@ -230,6 +387,90 @@ func (tc *typeCheckCall) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
return tc.n, nil
|
||||
}
|
||||
|
||||
type typeCheckConditional struct {
|
||||
n *ast.Conditional
|
||||
}
|
||||
|
||||
func (tc *typeCheckConditional) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
||||
// On the stack we have the types of the condition, true and false
|
||||
// expressions, but they are in reverse order.
|
||||
falseType := v.StackPop()
|
||||
trueType := v.StackPop()
|
||||
condType := v.StackPop()
|
||||
|
||||
if condType == ast.TypeUnknown {
|
||||
v.StackPush(ast.TypeUnknown)
|
||||
return tc.n, nil
|
||||
}
|
||||
|
||||
if condType != ast.TypeBool {
|
||||
cn := v.ImplicitConversion(condType, ast.TypeBool, tc.n.CondExpr)
|
||||
if cn == nil {
|
||||
return nil, fmt.Errorf(
|
||||
"condition must be type bool, not %s", condType.Printable(),
|
||||
)
|
||||
}
|
||||
tc.n.CondExpr = cn
|
||||
}
|
||||
|
||||
// The types of the true and false expression must match
|
||||
if trueType != falseType && trueType != ast.TypeUnknown && falseType != ast.TypeUnknown {
|
||||
|
||||
// Since passing around stringified versions of other types is
|
||||
// common, we pragmatically allow the false expression to dictate
|
||||
// the result type when the true expression is a string.
|
||||
if trueType == ast.TypeString {
|
||||
cn := v.ImplicitConversion(trueType, falseType, tc.n.TrueExpr)
|
||||
if cn == nil {
|
||||
return nil, fmt.Errorf(
|
||||
"true and false expression types must match; have %s and %s",
|
||||
trueType.Printable(), falseType.Printable(),
|
||||
)
|
||||
}
|
||||
tc.n.TrueExpr = cn
|
||||
trueType = falseType
|
||||
} else {
|
||||
cn := v.ImplicitConversion(falseType, trueType, tc.n.FalseExpr)
|
||||
if cn == nil {
|
||||
return nil, fmt.Errorf(
|
||||
"true and false expression types must match; have %s and %s",
|
||||
trueType.Printable(), falseType.Printable(),
|
||||
)
|
||||
}
|
||||
tc.n.FalseExpr = cn
|
||||
falseType = trueType
|
||||
}
|
||||
}
|
||||
|
||||
// Currently list and map types cannot be used, because we cannot
|
||||
// generally assert that their element types are consistent.
|
||||
// Such support might be added later, either by improving the type
|
||||
// system or restricting usage to only variable and literal expressions,
|
||||
// but for now this is simply prohibited because it doesn't seem to
|
||||
// be a common enough case to be worth the complexity.
|
||||
switch trueType {
|
||||
case ast.TypeList:
|
||||
return nil, fmt.Errorf(
|
||||
"conditional operator cannot be used with list values",
|
||||
)
|
||||
case ast.TypeMap:
|
||||
return nil, fmt.Errorf(
|
||||
"conditional operator cannot be used with map values",
|
||||
)
|
||||
}
|
||||
|
||||
// Result type (guaranteed to also match falseType due to the above)
|
||||
if trueType == ast.TypeUnknown {
|
||||
// falseType may also be unknown, but that's okay because two
|
||||
// unknowns means our result is unknown anyway.
|
||||
v.StackPush(falseType)
|
||||
} else {
|
||||
v.StackPush(trueType)
|
||||
}
|
||||
|
||||
return tc.n, nil
|
||||
}
|
||||
|
||||
type typeCheckOutput struct {
|
||||
n *ast.Output
|
||||
}
|
||||
|
@ -241,20 +482,33 @@ func (tc *typeCheckOutput) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
types[len(n.Exprs)-1-i] = v.StackPop()
|
||||
}
|
||||
|
||||
// If there is only one argument and it is a list, we evaluate to a list
|
||||
if len(types) == 1 && types[0] == ast.TypeList {
|
||||
v.StackPush(ast.TypeList)
|
||||
return n, nil
|
||||
for _, ty := range types {
|
||||
if ty == ast.TypeUnknown {
|
||||
v.StackPush(ast.TypeUnknown)
|
||||
return tc.n, nil
|
||||
}
|
||||
}
|
||||
|
||||
// If there is only one argument and it is a map, we evaluate to a map
|
||||
if len(types) == 1 && types[0] == ast.TypeMap {
|
||||
v.StackPush(ast.TypeMap)
|
||||
return n, nil
|
||||
// If there is only one argument and it is a list, we evaluate to a list
|
||||
if len(types) == 1 {
|
||||
switch t := types[0]; t {
|
||||
case ast.TypeList:
|
||||
fallthrough
|
||||
case ast.TypeMap:
|
||||
v.StackPush(t)
|
||||
return n, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise, all concat args must be strings, so validate that
|
||||
resultType := ast.TypeString
|
||||
for i, t := range types {
|
||||
|
||||
if t == ast.TypeUnknown {
|
||||
resultType = ast.TypeUnknown
|
||||
continue
|
||||
}
|
||||
|
||||
if t != ast.TypeString {
|
||||
cn := v.ImplicitConversion(t, ast.TypeString, n.Exprs[i])
|
||||
if cn != nil {
|
||||
|
@ -267,8 +521,8 @@ func (tc *typeCheckOutput) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
}
|
||||
}
|
||||
|
||||
// This always results in type string
|
||||
v.StackPush(ast.TypeString)
|
||||
// This always results in type string, unless there are unknowns
|
||||
v.StackPush(resultType)
|
||||
|
||||
return n, nil
|
||||
}
|
||||
|
@ -305,30 +559,40 @@ type typeCheckIndex struct {
|
|||
}
|
||||
|
||||
func (tc *typeCheckIndex) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
||||
keyType := v.StackPop()
|
||||
targetType := v.StackPop()
|
||||
|
||||
if keyType == ast.TypeUnknown || targetType == ast.TypeUnknown {
|
||||
v.StackPush(ast.TypeUnknown)
|
||||
return tc.n, nil
|
||||
}
|
||||
|
||||
// Ensure we have a VariableAccess as the target
|
||||
varAccessNode, ok := tc.n.Target.(*ast.VariableAccess)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("target of an index must be a VariableAccess node, was %T", tc.n.Target)
|
||||
return nil, fmt.Errorf(
|
||||
"target of an index must be a VariableAccess node, was %T", tc.n.Target)
|
||||
}
|
||||
|
||||
// Get the variable
|
||||
variable, ok := v.Scope.LookupVar(varAccessNode.Name)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("unknown variable accessed: %s", varAccessNode.Name)
|
||||
return nil, fmt.Errorf(
|
||||
"unknown variable accessed: %s", varAccessNode.Name)
|
||||
}
|
||||
|
||||
keyType, err := tc.n.Key.Type(v.Scope)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch variable.Type {
|
||||
switch targetType {
|
||||
case ast.TypeList:
|
||||
if keyType != ast.TypeInt {
|
||||
return nil, fmt.Errorf("key of an index must be an int, was %s", keyType)
|
||||
tc.n.Key = v.ImplicitConversion(keyType, ast.TypeInt, tc.n.Key)
|
||||
if tc.n.Key == nil {
|
||||
return nil, fmt.Errorf(
|
||||
"key of an index must be an int, was %s", keyType)
|
||||
}
|
||||
}
|
||||
|
||||
valType, err := ast.VariableListElementTypesAreHomogenous(varAccessNode.Name, variable.Value.([]ast.Variable))
|
||||
valType, err := ast.VariableListElementTypesAreHomogenous(
|
||||
varAccessNode.Name, variable.Value.([]ast.Variable))
|
||||
if err != nil {
|
||||
return tc.n, err
|
||||
}
|
||||
|
@ -337,10 +601,15 @@ func (tc *typeCheckIndex) TypeCheck(v *TypeCheck) (ast.Node, error) {
|
|||
return tc.n, nil
|
||||
case ast.TypeMap:
|
||||
if keyType != ast.TypeString {
|
||||
return nil, fmt.Errorf("key of an index must be a string, was %s", keyType)
|
||||
tc.n.Key = v.ImplicitConversion(keyType, ast.TypeString, tc.n.Key)
|
||||
if tc.n.Key == nil {
|
||||
return nil, fmt.Errorf(
|
||||
"key of an index must be a string, was %s", keyType)
|
||||
}
|
||||
}
|
||||
|
||||
valType, err := ast.VariableMapValueTypesAreHomogenous(varAccessNode.Name, variable.Value.(map[string]ast.Variable))
|
||||
valType, err := ast.VariableMapValueTypesAreHomogenous(
|
||||
varAccessNode.Name, variable.Value.(map[string]ast.Variable))
|
||||
if err != nil {
|
||||
return tc.n, err
|
||||
}
|
||||
|
@ -389,3 +658,11 @@ func (v *TypeCheck) StackPop() ast.Type {
|
|||
x, v.Stack = v.Stack[len(v.Stack)-1], v.Stack[:len(v.Stack)-1]
|
||||
return x
|
||||
}
|
||||
|
||||
func (v *TypeCheck) StackPeek() ast.Type {
|
||||
if len(v.Stack) == 0 {
|
||||
return ast.TypeInvalid
|
||||
}
|
||||
|
||||
return v.Stack[len(v.Stack)-1]
|
||||
}
|
||||
|
|
|
@ -8,6 +8,11 @@ import (
|
|||
"github.com/mitchellh/mapstructure"
|
||||
)
|
||||
|
||||
// UnknownValue is a sentinel value that can be used to denote
|
||||
// that a value of a variable (or map element, list element, etc.)
|
||||
// is unknown. This will always have the type ast.TypeUnknown.
|
||||
const UnknownValue = "74D93920-ED26-11E3-AC10-0800200C9A66"
|
||||
|
||||
var hilMapstructureDecodeHookSlice []interface{}
|
||||
var hilMapstructureDecodeHookStringSlice []string
|
||||
var hilMapstructureDecodeHookMap map[string]interface{}
|
||||
|
@ -42,12 +47,33 @@ func hilMapstructureWeakDecode(m interface{}, rawVal interface{}) error {
|
|||
}
|
||||
|
||||
func InterfaceToVariable(input interface{}) (ast.Variable, error) {
|
||||
if inputVariable, ok := input.(ast.Variable); ok {
|
||||
return inputVariable, nil
|
||||
if iv, ok := input.(ast.Variable); ok {
|
||||
return iv, nil
|
||||
}
|
||||
|
||||
// This is just to maintain backward compatibility
|
||||
// after https://github.com/mitchellh/mapstructure/pull/98
|
||||
if v, ok := input.([]ast.Variable); ok {
|
||||
return ast.Variable{
|
||||
Type: ast.TypeList,
|
||||
Value: v,
|
||||
}, nil
|
||||
}
|
||||
if v, ok := input.(map[string]ast.Variable); ok {
|
||||
return ast.Variable{
|
||||
Type: ast.TypeMap,
|
||||
Value: v,
|
||||
}, nil
|
||||
}
|
||||
|
||||
var stringVal string
|
||||
if err := hilMapstructureWeakDecode(input, &stringVal); err == nil {
|
||||
// Special case the unknown value to turn into "unknown"
|
||||
if stringVal == UnknownValue {
|
||||
return ast.Variable{Value: UnknownValue, Type: ast.TypeUnknown}, nil
|
||||
}
|
||||
|
||||
// Otherwise return the string value
|
||||
return ast.Variable{
|
||||
Type: ast.TypeString,
|
||||
Value: stringVal,
|
||||
|
|
|
@ -2,6 +2,7 @@ package hil
|
|||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"sync"
|
||||
|
||||
|
@ -23,19 +24,6 @@ type EvalConfig struct {
|
|||
// semantic check on an AST tree. This will be called with the root node.
|
||||
type SemanticChecker func(ast.Node) error
|
||||
|
||||
// EvalType represents the type of the output returned from a HIL
|
||||
// evaluation.
|
||||
type EvalType uint32
|
||||
|
||||
const (
|
||||
TypeInvalid EvalType = 0
|
||||
TypeString EvalType = 1 << iota
|
||||
TypeList
|
||||
TypeMap
|
||||
)
|
||||
|
||||
//go:generate stringer -type=EvalType
|
||||
|
||||
// EvaluationResult is a struct returned from the hil.Eval function,
|
||||
// representing the result of an interpolation. Results are returned in their
|
||||
// "natural" Go structure rather than in terms of the HIL AST. For the types
|
||||
|
@ -45,6 +33,7 @@ const (
|
|||
// TypeString: string
|
||||
// TypeList: []interface{}
|
||||
// TypeMap: map[string]interface{}
|
||||
// TypBool: bool
|
||||
type EvaluationResult struct {
|
||||
Type EvalType
|
||||
Value interface{}
|
||||
|
@ -55,12 +44,24 @@ type EvaluationResult struct {
|
|||
// The error is described out of band in the accompanying error return value.
|
||||
var InvalidResult = EvaluationResult{Type: TypeInvalid, Value: nil}
|
||||
|
||||
// errExitUnknown is an internal error that when returned means the result
|
||||
// is an unknown value. We use this for early exit.
|
||||
var errExitUnknown = errors.New("unknown value")
|
||||
|
||||
func Eval(root ast.Node, config *EvalConfig) (EvaluationResult, error) {
|
||||
output, outputType, err := internalEval(root, config)
|
||||
if err != nil {
|
||||
return InvalidResult, err
|
||||
}
|
||||
|
||||
// If the result contains any nested unknowns then the result as a whole
|
||||
// is unknown, so that callers only have to deal with "entirely known"
|
||||
// or "entirely unknown" as outcomes.
|
||||
if ast.IsUnknown(ast.Variable{Type: outputType, Value: output}) {
|
||||
outputType = ast.TypeUnknown
|
||||
output = UnknownValue
|
||||
}
|
||||
|
||||
switch outputType {
|
||||
case ast.TypeList:
|
||||
val, err := VariableToInterface(ast.Variable{
|
||||
|
@ -77,7 +78,7 @@ func Eval(root ast.Node, config *EvalConfig) (EvaluationResult, error) {
|
|||
Value: output,
|
||||
})
|
||||
return EvaluationResult{
|
||||
Type: TypeMap,
|
||||
Type: TypeMap,
|
||||
Value: val,
|
||||
}, err
|
||||
case ast.TypeString:
|
||||
|
@ -85,6 +86,16 @@ func Eval(root ast.Node, config *EvalConfig) (EvaluationResult, error) {
|
|||
Type: TypeString,
|
||||
Value: output,
|
||||
}, nil
|
||||
case ast.TypeBool:
|
||||
return EvaluationResult{
|
||||
Type: TypeBool,
|
||||
Value: output,
|
||||
}, nil
|
||||
case ast.TypeUnknown:
|
||||
return EvaluationResult{
|
||||
Type: TypeUnknown,
|
||||
Value: UnknownValue,
|
||||
}, nil
|
||||
default:
|
||||
return InvalidResult, fmt.Errorf("unknown type %s as interpolation output", outputType)
|
||||
}
|
||||
|
@ -110,6 +121,10 @@ func internalEval(root ast.Node, config *EvalConfig) (interface{}, ast.Type, err
|
|||
ast.TypeString: {
|
||||
ast.TypeInt: "__builtin_StringToInt",
|
||||
ast.TypeFloat: "__builtin_StringToFloat",
|
||||
ast.TypeBool: "__builtin_StringToBool",
|
||||
},
|
||||
ast.TypeBool: {
|
||||
ast.TypeString: "__builtin_BoolToString",
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -167,6 +182,12 @@ func (v *evalVisitor) Visit(root ast.Node) (interface{}, ast.Type, error) {
|
|||
result = new(ast.LiteralNode)
|
||||
}
|
||||
resultErr := v.err
|
||||
if resultErr == errExitUnknown {
|
||||
// This means the return value is unknown and we used the error
|
||||
// as an early exit mechanism. Reset since the value on the stack
|
||||
// should be the unknown value.
|
||||
resultErr = nil
|
||||
}
|
||||
|
||||
// Clear everything else so we aren't just dangling
|
||||
v.Stack.Reset()
|
||||
|
@ -201,6 +222,13 @@ func (v *evalVisitor) visit(raw ast.Node) ast.Node {
|
|||
Value: out,
|
||||
Typex: outType,
|
||||
})
|
||||
|
||||
if outType == ast.TypeUnknown {
|
||||
// Halt immediately
|
||||
v.err = errExitUnknown
|
||||
return raw
|
||||
}
|
||||
|
||||
return raw
|
||||
}
|
||||
|
||||
|
@ -212,6 +240,8 @@ func evalNode(raw ast.Node) (EvalNode, error) {
|
|||
return &evalIndex{n}, nil
|
||||
case *ast.Call:
|
||||
return &evalCall{n}, nil
|
||||
case *ast.Conditional:
|
||||
return &evalConditional{n}, nil
|
||||
case *ast.Output:
|
||||
return &evalOutput{n}, nil
|
||||
case *ast.LiteralNode:
|
||||
|
@ -242,6 +272,10 @@ func (v *evalCall) Eval(s ast.Scope, stack *ast.Stack) (interface{}, ast.Type, e
|
|||
args := make([]interface{}, len(v.Args))
|
||||
for i, _ := range v.Args {
|
||||
node := stack.Pop().(*ast.LiteralNode)
|
||||
if node.IsUnknown() {
|
||||
// If any arguments are unknown then the result is automatically unknown
|
||||
return UnknownValue, ast.TypeUnknown, nil
|
||||
}
|
||||
args[len(v.Args)-1-i] = node.Value
|
||||
}
|
||||
|
||||
|
@ -254,42 +288,56 @@ func (v *evalCall) Eval(s ast.Scope, stack *ast.Stack) (interface{}, ast.Type, e
|
|||
return result, function.ReturnType, nil
|
||||
}
|
||||
|
||||
type evalConditional struct{ *ast.Conditional }
|
||||
|
||||
func (v *evalConditional) Eval(s ast.Scope, stack *ast.Stack) (interface{}, ast.Type, error) {
|
||||
// On the stack we have literal nodes representing the resulting values
|
||||
// of the condition, true and false expressions, but they are in reverse
|
||||
// order.
|
||||
falseLit := stack.Pop().(*ast.LiteralNode)
|
||||
trueLit := stack.Pop().(*ast.LiteralNode)
|
||||
condLit := stack.Pop().(*ast.LiteralNode)
|
||||
|
||||
if condLit.IsUnknown() {
|
||||
// If our conditional is unknown then our result is also unknown
|
||||
return UnknownValue, ast.TypeUnknown, nil
|
||||
}
|
||||
|
||||
if condLit.Value.(bool) {
|
||||
return trueLit.Value, trueLit.Typex, nil
|
||||
} else {
|
||||
return falseLit.Value, trueLit.Typex, nil
|
||||
}
|
||||
}
|
||||
|
||||
type evalIndex struct{ *ast.Index }
|
||||
|
||||
func (v *evalIndex) Eval(scope ast.Scope, stack *ast.Stack) (interface{}, ast.Type, error) {
|
||||
evalVarAccess, err := evalNode(v.Target)
|
||||
if err != nil {
|
||||
return nil, ast.TypeInvalid, err
|
||||
}
|
||||
target, targetType, err := evalVarAccess.Eval(scope, stack)
|
||||
|
||||
evalKey, err := evalNode(v.Key)
|
||||
if err != nil {
|
||||
return nil, ast.TypeInvalid, err
|
||||
}
|
||||
|
||||
key, keyType, err := evalKey.Eval(scope, stack)
|
||||
if err != nil {
|
||||
return nil, ast.TypeInvalid, err
|
||||
}
|
||||
key := stack.Pop().(*ast.LiteralNode)
|
||||
target := stack.Pop().(*ast.LiteralNode)
|
||||
|
||||
variableName := v.Index.Target.(*ast.VariableAccess).Name
|
||||
|
||||
switch targetType {
|
||||
if key.IsUnknown() {
|
||||
// If our key is unknown then our result is also unknown
|
||||
return UnknownValue, ast.TypeUnknown, nil
|
||||
}
|
||||
|
||||
// For target, we'll accept collections containing unknown values but
|
||||
// we still need to catch when the collection itself is unknown, shallowly.
|
||||
if target.Typex == ast.TypeUnknown {
|
||||
return UnknownValue, ast.TypeUnknown, nil
|
||||
}
|
||||
|
||||
switch target.Typex {
|
||||
case ast.TypeList:
|
||||
if keyType != ast.TypeInt {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("key for indexing list %q must be an int, is %s", variableName, keyType)
|
||||
}
|
||||
|
||||
return v.evalListIndex(variableName, target, key)
|
||||
return v.evalListIndex(variableName, target.Value, key.Value)
|
||||
case ast.TypeMap:
|
||||
if keyType != ast.TypeString {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("key for indexing map %q must be a string, is %s", variableName, keyType)
|
||||
}
|
||||
|
||||
return v.evalMapIndex(variableName, target, key)
|
||||
return v.evalMapIndex(variableName, target.Value, key.Value)
|
||||
default:
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("target %q for indexing must be ast.TypeList or ast.TypeMap, is %s", variableName, targetType)
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"target %q for indexing must be ast.TypeList or ast.TypeMap, is %s",
|
||||
variableName, target.Typex)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -298,12 +346,14 @@ func (v *evalIndex) evalListIndex(variableName string, target interface{}, key i
|
|||
// is a list and key is an int
|
||||
list, ok := target.([]ast.Variable)
|
||||
if !ok {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("cannot cast target to []Variable")
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"cannot cast target to []Variable, is: %T", target)
|
||||
}
|
||||
|
||||
keyInt, ok := key.(int)
|
||||
if !ok {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("cannot cast key to int")
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"cannot cast key to int, is: %T", key)
|
||||
}
|
||||
|
||||
if len(list) == 0 {
|
||||
|
@ -311,12 +361,13 @@ func (v *evalIndex) evalListIndex(variableName string, target interface{}, key i
|
|||
}
|
||||
|
||||
if keyInt < 0 || len(list) < keyInt+1 {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("index %d out of range for list %s (max %d)", keyInt, variableName, len(list))
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"index %d out of range for list %s (max %d)",
|
||||
keyInt, variableName, len(list))
|
||||
}
|
||||
|
||||
returnVal := list[keyInt].Value
|
||||
returnType := list[keyInt].Type
|
||||
|
||||
return returnVal, returnType, nil
|
||||
}
|
||||
|
||||
|
@ -325,12 +376,14 @@ func (v *evalIndex) evalMapIndex(variableName string, target interface{}, key in
|
|||
// is a map and key is a string
|
||||
vmap, ok := target.(map[string]ast.Variable)
|
||||
if !ok {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("cannot cast target to map[string]Variable")
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"cannot cast target to map[string]Variable, is: %T", target)
|
||||
}
|
||||
|
||||
keyString, ok := key.(string)
|
||||
if !ok {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("cannot cast key to string")
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"cannot cast key to string, is: %T", key)
|
||||
}
|
||||
|
||||
if len(vmap) == 0 {
|
||||
|
@ -339,7 +392,8 @@ func (v *evalIndex) evalMapIndex(variableName string, target interface{}, key in
|
|||
|
||||
value, ok := vmap[keyString]
|
||||
if !ok {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf("key %q does not exist in map %s", keyString, variableName)
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"key %q does not exist in map %s", keyString, variableName)
|
||||
}
|
||||
|
||||
return value.Value, value.Type, nil
|
||||
|
@ -351,21 +405,47 @@ func (v *evalOutput) Eval(s ast.Scope, stack *ast.Stack) (interface{}, ast.Type,
|
|||
// The expressions should all be on the stack in reverse
|
||||
// order. So pop them off, reverse their order, and concatenate.
|
||||
nodes := make([]*ast.LiteralNode, 0, len(v.Exprs))
|
||||
haveUnknown := false
|
||||
for range v.Exprs {
|
||||
nodes = append(nodes, stack.Pop().(*ast.LiteralNode))
|
||||
n := stack.Pop().(*ast.LiteralNode)
|
||||
nodes = append(nodes, n)
|
||||
|
||||
// If we have any unknowns then the whole result is unknown
|
||||
// (we must deal with this first, because the type checker can
|
||||
// skip type conversions in the presence of unknowns, and thus
|
||||
// any of our other nodes may be incorrectly typed.)
|
||||
if n.IsUnknown() {
|
||||
haveUnknown = true
|
||||
}
|
||||
}
|
||||
|
||||
if haveUnknown {
|
||||
return UnknownValue, ast.TypeUnknown, nil
|
||||
}
|
||||
|
||||
// Special case the single list and map
|
||||
if len(nodes) == 1 && nodes[0].Typex == ast.TypeList {
|
||||
return nodes[0].Value, ast.TypeList, nil
|
||||
}
|
||||
if len(nodes) == 1 && nodes[0].Typex == ast.TypeMap {
|
||||
return nodes[0].Value, ast.TypeMap, nil
|
||||
if len(nodes) == 1 {
|
||||
switch t := nodes[0].Typex; t {
|
||||
case ast.TypeList:
|
||||
fallthrough
|
||||
case ast.TypeMap:
|
||||
fallthrough
|
||||
case ast.TypeUnknown:
|
||||
return nodes[0].Value, t, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise concatenate the strings
|
||||
var buf bytes.Buffer
|
||||
for i := len(nodes) - 1; i >= 0; i-- {
|
||||
if nodes[i].Typex != ast.TypeString {
|
||||
return nil, ast.TypeInvalid, fmt.Errorf(
|
||||
"invalid output with %s value at index %d: %#v",
|
||||
nodes[i].Typex,
|
||||
i,
|
||||
nodes[i].Value,
|
||||
)
|
||||
}
|
||||
buf.WriteString(nodes[i].Value.(string))
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,16 @@
|
|||
package hil
|
||||
|
||||
//go:generate stringer -type=EvalType eval_type.go
|
||||
|
||||
// EvalType represents the type of the output returned from a HIL
|
||||
// evaluation.
|
||||
type EvalType uint32
|
||||
|
||||
const (
|
||||
TypeInvalid EvalType = 0
|
||||
TypeString EvalType = 1 << iota
|
||||
TypeBool
|
||||
TypeList
|
||||
TypeMap
|
||||
TypeUnknown
|
||||
)
|
|
@ -1,4 +1,4 @@
|
|||
// Code generated by "stringer -type=EvalType"; DO NOT EDIT
|
||||
// Code generated by "stringer -type=EvalType eval_type.go"; DO NOT EDIT
|
||||
|
||||
package hil
|
||||
|
||||
|
@ -7,15 +7,19 @@ import "fmt"
|
|||
const (
|
||||
_EvalType_name_0 = "TypeInvalid"
|
||||
_EvalType_name_1 = "TypeString"
|
||||
_EvalType_name_2 = "TypeList"
|
||||
_EvalType_name_3 = "TypeMap"
|
||||
_EvalType_name_2 = "TypeBool"
|
||||
_EvalType_name_3 = "TypeList"
|
||||
_EvalType_name_4 = "TypeMap"
|
||||
_EvalType_name_5 = "TypeUnknown"
|
||||
)
|
||||
|
||||
var (
|
||||
_EvalType_index_0 = [...]uint8{0, 11}
|
||||
_EvalType_index_1 = [...]uint8{0, 10}
|
||||
_EvalType_index_2 = [...]uint8{0, 8}
|
||||
_EvalType_index_3 = [...]uint8{0, 7}
|
||||
_EvalType_index_3 = [...]uint8{0, 8}
|
||||
_EvalType_index_4 = [...]uint8{0, 7}
|
||||
_EvalType_index_5 = [...]uint8{0, 11}
|
||||
)
|
||||
|
||||
func (i EvalType) String() string {
|
||||
|
@ -28,6 +32,10 @@ func (i EvalType) String() string {
|
|||
return _EvalType_name_2
|
||||
case i == 8:
|
||||
return _EvalType_name_3
|
||||
case i == 16:
|
||||
return _EvalType_name_4
|
||||
case i == 32:
|
||||
return _EvalType_name_5
|
||||
default:
|
||||
return fmt.Sprintf("EvalType(%d)", i)
|
||||
}
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
module github.com/hashicorp/hil
|
||||
|
||||
require (
|
||||
github.com/mitchellh/mapstructure v1.1.2
|
||||
github.com/mitchellh/reflectwalk v1.0.0
|
||||
)
|
|
@ -0,0 +1,4 @@
|
|||
github.com/mitchellh/mapstructure v1.1.2 h1:fmNYVwqnSfB9mZU6OS2O6GsXM+wcskZDuKQzvN1EDeE=
|
||||
github.com/mitchellh/mapstructure v1.1.2/go.mod h1:FVVH3fgwuzCH5S8UJGiWEs2h04kUh9fWfEaFds41c1Y=
|
||||
github.com/mitchellh/reflectwalk v1.0.0 h1:9D+8oIskB4VJBN5SFlmc27fSlIBZaov1Wpk/IfikLNY=
|
||||
github.com/mitchellh/reflectwalk v1.0.0/go.mod h1:mSTlrgnPZtwu0c4WaC2kGObEpuNDbx0jmZXqmk4esnw=
|
|
@ -1,196 +0,0 @@
|
|||
// This is the yacc input for creating the parser for interpolation
|
||||
// expressions in Go. To build it, just run `go generate` on this
|
||||
// package, as the lexer has the go generate pragma within it.
|
||||
|
||||
%{
|
||||
package hil
|
||||
|
||||
import (
|
||||
"github.com/hashicorp/hil/ast"
|
||||
)
|
||||
|
||||
%}
|
||||
|
||||
%union {
|
||||
node ast.Node
|
||||
nodeList []ast.Node
|
||||
str string
|
||||
token *parserToken
|
||||
}
|
||||
|
||||
%token <str> PROGRAM_BRACKET_LEFT PROGRAM_BRACKET_RIGHT
|
||||
%token <str> PROGRAM_STRING_START PROGRAM_STRING_END
|
||||
%token <str> PAREN_LEFT PAREN_RIGHT COMMA
|
||||
%token <str> SQUARE_BRACKET_LEFT SQUARE_BRACKET_RIGHT
|
||||
|
||||
%token <token> ARITH_OP IDENTIFIER INTEGER FLOAT STRING
|
||||
|
||||
%type <node> expr interpolation literal literalModeTop literalModeValue
|
||||
%type <nodeList> args
|
||||
|
||||
%left ARITH_OP
|
||||
|
||||
%%
|
||||
|
||||
top:
|
||||
{
|
||||
parserResult = &ast.LiteralNode{
|
||||
Value: "",
|
||||
Typex: ast.TypeString,
|
||||
Posx: ast.Pos{Column: 1, Line: 1},
|
||||
}
|
||||
}
|
||||
| literalModeTop
|
||||
{
|
||||
parserResult = $1
|
||||
|
||||
// We want to make sure that the top value is always an Output
|
||||
// so that the return value is always a string, list of map from an
|
||||
// interpolation.
|
||||
//
|
||||
// The logic for checking for a LiteralNode is a little annoying
|
||||
// because functionally the AST is the same, but we do that because
|
||||
// it makes for an easy literal check later (to check if a string
|
||||
// has any interpolations).
|
||||
if _, ok := $1.(*ast.Output); !ok {
|
||||
if n, ok := $1.(*ast.LiteralNode); !ok || n.Typex != ast.TypeString {
|
||||
parserResult = &ast.Output{
|
||||
Exprs: []ast.Node{$1},
|
||||
Posx: $1.Pos(),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
literalModeTop:
|
||||
literalModeValue
|
||||
{
|
||||
$$ = $1
|
||||
}
|
||||
| literalModeTop literalModeValue
|
||||
{
|
||||
var result []ast.Node
|
||||
if c, ok := $1.(*ast.Output); ok {
|
||||
result = append(c.Exprs, $2)
|
||||
} else {
|
||||
result = []ast.Node{$1, $2}
|
||||
}
|
||||
|
||||
$$ = &ast.Output{
|
||||
Exprs: result,
|
||||
Posx: result[0].Pos(),
|
||||
}
|
||||
}
|
||||
|
||||
literalModeValue:
|
||||
literal
|
||||
{
|
||||
$$ = $1
|
||||
}
|
||||
| interpolation
|
||||
{
|
||||
$$ = $1
|
||||
}
|
||||
|
||||
interpolation:
|
||||
PROGRAM_BRACKET_LEFT expr PROGRAM_BRACKET_RIGHT
|
||||
{
|
||||
$$ = $2
|
||||
}
|
||||
|
||||
expr:
|
||||
PAREN_LEFT expr PAREN_RIGHT
|
||||
{
|
||||
$$ = $2
|
||||
}
|
||||
| literalModeTop
|
||||
{
|
||||
$$ = $1
|
||||
}
|
||||
| INTEGER
|
||||
{
|
||||
$$ = &ast.LiteralNode{
|
||||
Value: $1.Value.(int),
|
||||
Typex: ast.TypeInt,
|
||||
Posx: $1.Pos,
|
||||
}
|
||||
}
|
||||
| FLOAT
|
||||
{
|
||||
$$ = &ast.LiteralNode{
|
||||
Value: $1.Value.(float64),
|
||||
Typex: ast.TypeFloat,
|
||||
Posx: $1.Pos,
|
||||
}
|
||||
}
|
||||
| ARITH_OP expr
|
||||
{
|
||||
// This is REALLY jank. We assume that a singular ARITH_OP
|
||||
// means 0 ARITH_OP expr, which... is weird. We don't want to
|
||||
// support *, /, etc., only -. We should fix this later with a pure
|
||||
// Go scanner/parser.
|
||||
if $1.Value.(ast.ArithmeticOp) != ast.ArithmeticOpSub {
|
||||
panic("Unary - is only allowed")
|
||||
}
|
||||
|
||||
$$ = &ast.Arithmetic{
|
||||
Op: $1.Value.(ast.ArithmeticOp),
|
||||
Exprs: []ast.Node{
|
||||
&ast.LiteralNode{Value: 0, Typex: ast.TypeInt},
|
||||
$2,
|
||||
},
|
||||
Posx: $2.Pos(),
|
||||
}
|
||||
}
|
||||
| expr ARITH_OP expr
|
||||
{
|
||||
$$ = &ast.Arithmetic{
|
||||
Op: $2.Value.(ast.ArithmeticOp),
|
||||
Exprs: []ast.Node{$1, $3},
|
||||
Posx: $1.Pos(),
|
||||
}
|
||||
}
|
||||
| IDENTIFIER
|
||||
{
|
||||
$$ = &ast.VariableAccess{Name: $1.Value.(string), Posx: $1.Pos}
|
||||
}
|
||||
| IDENTIFIER PAREN_LEFT args PAREN_RIGHT
|
||||
{
|
||||
$$ = &ast.Call{Func: $1.Value.(string), Args: $3, Posx: $1.Pos}
|
||||
}
|
||||
| IDENTIFIER SQUARE_BRACKET_LEFT expr SQUARE_BRACKET_RIGHT
|
||||
{
|
||||
$$ = &ast.Index{
|
||||
Target: &ast.VariableAccess{
|
||||
Name: $1.Value.(string),
|
||||
Posx: $1.Pos,
|
||||
},
|
||||
Key: $3,
|
||||
Posx: $1.Pos,
|
||||
}
|
||||
}
|
||||
|
||||
args:
|
||||
{
|
||||
$$ = nil
|
||||
}
|
||||
| args COMMA expr
|
||||
{
|
||||
$$ = append($1, $3)
|
||||
}
|
||||
| expr
|
||||
{
|
||||
$$ = append($$, $1)
|
||||
}
|
||||
|
||||
literal:
|
||||
STRING
|
||||
{
|
||||
$$ = &ast.LiteralNode{
|
||||
Value: $1.Value.(string),
|
||||
Typex: ast.TypeString,
|
||||
Posx: $1.Pos,
|
||||
}
|
||||
}
|
||||
|
||||
%%
|
|
@ -1,407 +0,0 @@
|
|||
package hil
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"strconv"
|
||||
"unicode"
|
||||
"unicode/utf8"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
)
|
||||
|
||||
//go:generate go tool yacc -p parser lang.y
|
||||
|
||||
// The parser expects the lexer to return 0 on EOF.
|
||||
const lexEOF = 0
|
||||
|
||||
// The parser uses the type <prefix>Lex as a lexer. It must provide
|
||||
// the methods Lex(*<prefix>SymType) int and Error(string).
|
||||
type parserLex struct {
|
||||
Err error
|
||||
Input string
|
||||
|
||||
mode parserMode
|
||||
interpolationDepth int
|
||||
pos int
|
||||
width int
|
||||
col, line int
|
||||
lastLine int
|
||||
astPos *ast.Pos
|
||||
}
|
||||
|
||||
// parserToken is the token yielded to the parser. The value can be
|
||||
// determined within the parser type based on the enum value returned
|
||||
// from Lex.
|
||||
type parserToken struct {
|
||||
Value interface{}
|
||||
Pos ast.Pos
|
||||
}
|
||||
|
||||
// parserMode keeps track of what mode we're in for the parser. We have
|
||||
// two modes: literal and interpolation. Literal mode is when strings
|
||||
// don't have to be quoted, and interpolations are defined as ${foo}.
|
||||
// Interpolation mode means that strings have to be quoted and unquoted
|
||||
// things are identifiers, such as foo("bar").
|
||||
type parserMode uint8
|
||||
|
||||
const (
|
||||
parserModeInvalid parserMode = 0
|
||||
parserModeLiteral = 1 << iota
|
||||
parserModeInterpolation
|
||||
)
|
||||
|
||||
// The parser calls this method to get each new token.
|
||||
func (x *parserLex) Lex(yylval *parserSymType) int {
|
||||
// We always start in literal mode, since programs don't start
|
||||
// in an interpolation. ex. "foo ${bar}" vs "bar" (and assuming interp.)
|
||||
if x.mode == parserModeInvalid {
|
||||
x.mode = parserModeLiteral
|
||||
}
|
||||
|
||||
// Defer an update to set the proper column/line we read the next token.
|
||||
defer func() {
|
||||
if yylval.token != nil && yylval.token.Pos.Column == 0 {
|
||||
yylval.token.Pos = *x.astPos
|
||||
}
|
||||
}()
|
||||
|
||||
x.astPos = nil
|
||||
return x.lex(yylval)
|
||||
}
|
||||
|
||||
func (x *parserLex) lex(yylval *parserSymType) int {
|
||||
switch x.mode {
|
||||
case parserModeLiteral:
|
||||
return x.lexModeLiteral(yylval)
|
||||
case parserModeInterpolation:
|
||||
return x.lexModeInterpolation(yylval)
|
||||
default:
|
||||
x.Error(fmt.Sprintf("Unknown parse mode: %d", x.mode))
|
||||
return lexEOF
|
||||
}
|
||||
}
|
||||
|
||||
func (x *parserLex) lexModeLiteral(yylval *parserSymType) int {
|
||||
for {
|
||||
c := x.next()
|
||||
if c == lexEOF {
|
||||
return lexEOF
|
||||
}
|
||||
|
||||
// Are we starting an interpolation?
|
||||
if c == '$' && x.peek() == '{' {
|
||||
x.next()
|
||||
x.interpolationDepth++
|
||||
x.mode = parserModeInterpolation
|
||||
return PROGRAM_BRACKET_LEFT
|
||||
}
|
||||
|
||||
// We're just a normal string that isn't part of any interpolation yet.
|
||||
x.backup()
|
||||
result, terminated := x.lexString(yylval, x.interpolationDepth > 0)
|
||||
|
||||
// If the string terminated and we're within an interpolation already
|
||||
// then that means that we finished a nested string, so pop
|
||||
// back out to interpolation mode.
|
||||
if terminated && x.interpolationDepth > 0 {
|
||||
x.mode = parserModeInterpolation
|
||||
|
||||
// If the string is empty, just skip it. We're still in
|
||||
// an interpolation so we do this to avoid empty nodes.
|
||||
if yylval.token.Value.(string) == "" {
|
||||
return x.lex(yylval)
|
||||
}
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
}
|
||||
|
||||
func (x *parserLex) lexModeInterpolation(yylval *parserSymType) int {
|
||||
for {
|
||||
c := x.next()
|
||||
if c == lexEOF {
|
||||
return lexEOF
|
||||
}
|
||||
|
||||
// Ignore all whitespace
|
||||
if unicode.IsSpace(c) {
|
||||
continue
|
||||
}
|
||||
|
||||
// If we see a double quote then we're lexing a string since
|
||||
// we're in interpolation mode.
|
||||
if c == '"' {
|
||||
result, terminated := x.lexString(yylval, true)
|
||||
if !terminated {
|
||||
// The string didn't end, which means that we're in the
|
||||
// middle of starting another interpolation.
|
||||
x.mode = parserModeLiteral
|
||||
|
||||
// If the string is empty and we're starting an interpolation,
|
||||
// then just skip it to avoid empty string AST nodes
|
||||
if yylval.token.Value.(string) == "" {
|
||||
return x.lex(yylval)
|
||||
}
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
// If we are seeing a number, it is the start of a number. Lex it.
|
||||
if c >= '0' && c <= '9' {
|
||||
x.backup()
|
||||
return x.lexNumber(yylval)
|
||||
}
|
||||
|
||||
switch c {
|
||||
case '}':
|
||||
// '}' means we ended the interpolation. Pop back into
|
||||
// literal mode and reduce our interpolation depth.
|
||||
x.interpolationDepth--
|
||||
x.mode = parserModeLiteral
|
||||
return PROGRAM_BRACKET_RIGHT
|
||||
case '(':
|
||||
return PAREN_LEFT
|
||||
case ')':
|
||||
return PAREN_RIGHT
|
||||
case '[':
|
||||
return SQUARE_BRACKET_LEFT
|
||||
case ']':
|
||||
return SQUARE_BRACKET_RIGHT
|
||||
case ',':
|
||||
return COMMA
|
||||
case '+':
|
||||
yylval.token = &parserToken{Value: ast.ArithmeticOpAdd}
|
||||
return ARITH_OP
|
||||
case '-':
|
||||
yylval.token = &parserToken{Value: ast.ArithmeticOpSub}
|
||||
return ARITH_OP
|
||||
case '*':
|
||||
yylval.token = &parserToken{Value: ast.ArithmeticOpMul}
|
||||
return ARITH_OP
|
||||
case '/':
|
||||
yylval.token = &parserToken{Value: ast.ArithmeticOpDiv}
|
||||
return ARITH_OP
|
||||
case '%':
|
||||
yylval.token = &parserToken{Value: ast.ArithmeticOpMod}
|
||||
return ARITH_OP
|
||||
default:
|
||||
x.backup()
|
||||
return x.lexId(yylval)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (x *parserLex) lexId(yylval *parserSymType) int {
|
||||
var b bytes.Buffer
|
||||
var last rune
|
||||
for {
|
||||
c := x.next()
|
||||
if c == lexEOF {
|
||||
break
|
||||
}
|
||||
|
||||
// We only allow * after a '.' for resource splast: type.name.*.id
|
||||
// Otherwise, its probably multiplication.
|
||||
if c == '*' && last != '.' {
|
||||
x.backup()
|
||||
break
|
||||
}
|
||||
|
||||
// If this isn't a character we want in an ID, return out.
|
||||
// One day we should make this a regexp.
|
||||
if c != '_' &&
|
||||
c != '-' &&
|
||||
c != '.' &&
|
||||
c != '*' &&
|
||||
!unicode.IsLetter(c) &&
|
||||
!unicode.IsNumber(c) {
|
||||
x.backup()
|
||||
break
|
||||
}
|
||||
|
||||
if _, err := b.WriteRune(c); err != nil {
|
||||
x.Error(err.Error())
|
||||
return lexEOF
|
||||
}
|
||||
|
||||
last = c
|
||||
}
|
||||
|
||||
yylval.token = &parserToken{Value: b.String()}
|
||||
return IDENTIFIER
|
||||
}
|
||||
|
||||
// lexNumber lexes out a number: an integer or a float.
|
||||
func (x *parserLex) lexNumber(yylval *parserSymType) int {
|
||||
var b bytes.Buffer
|
||||
gotPeriod := false
|
||||
for {
|
||||
c := x.next()
|
||||
if c == lexEOF {
|
||||
break
|
||||
}
|
||||
|
||||
// If we see a period, we might be getting a float..
|
||||
if c == '.' {
|
||||
// If we've already seen a period, then ignore it, and
|
||||
// exit. This will probably result in a syntax error later.
|
||||
if gotPeriod {
|
||||
x.backup()
|
||||
break
|
||||
}
|
||||
|
||||
gotPeriod = true
|
||||
} else if c < '0' || c > '9' {
|
||||
// If we're not seeing a number, then also exit.
|
||||
x.backup()
|
||||
break
|
||||
}
|
||||
|
||||
if _, err := b.WriteRune(c); err != nil {
|
||||
x.Error(fmt.Sprintf("internal error: %s", err))
|
||||
return lexEOF
|
||||
}
|
||||
}
|
||||
|
||||
// If we didn't see a period, it is an int
|
||||
if !gotPeriod {
|
||||
v, err := strconv.ParseInt(b.String(), 0, 0)
|
||||
if err != nil {
|
||||
x.Error(fmt.Sprintf("expected number: %s", err))
|
||||
return lexEOF
|
||||
}
|
||||
|
||||
yylval.token = &parserToken{Value: int(v)}
|
||||
return INTEGER
|
||||
}
|
||||
|
||||
// If we did see a period, it is a float
|
||||
f, err := strconv.ParseFloat(b.String(), 64)
|
||||
if err != nil {
|
||||
x.Error(fmt.Sprintf("expected float: %s", err))
|
||||
return lexEOF
|
||||
}
|
||||
|
||||
yylval.token = &parserToken{Value: f}
|
||||
return FLOAT
|
||||
}
|
||||
|
||||
func (x *parserLex) lexString(yylval *parserSymType, quoted bool) (int, bool) {
|
||||
var b bytes.Buffer
|
||||
terminated := false
|
||||
for {
|
||||
c := x.next()
|
||||
if c == lexEOF {
|
||||
if quoted {
|
||||
x.Error("unterminated string")
|
||||
}
|
||||
|
||||
break
|
||||
}
|
||||
|
||||
// Behavior is a bit different if we're lexing within a quoted string.
|
||||
if quoted {
|
||||
// If its a double quote, we've reached the end of the string
|
||||
if c == '"' {
|
||||
terminated = true
|
||||
break
|
||||
}
|
||||
|
||||
// Let's check to see if we're escaping anything.
|
||||
if c == '\\' {
|
||||
switch n := x.next(); n {
|
||||
case '\\', '"':
|
||||
c = n
|
||||
case 'n':
|
||||
c = '\n'
|
||||
default:
|
||||
x.backup()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we hit a dollar sign, then check if we're starting
|
||||
// another interpolation. If so, then we're done.
|
||||
if c == '$' {
|
||||
n := x.peek()
|
||||
|
||||
// If it is '{', then we're starting another interpolation
|
||||
if n == '{' {
|
||||
x.backup()
|
||||
break
|
||||
}
|
||||
|
||||
// If it is '$', then we're escaping a dollar sign
|
||||
if n == '$' {
|
||||
x.next()
|
||||
}
|
||||
}
|
||||
|
||||
if _, err := b.WriteRune(c); err != nil {
|
||||
x.Error(err.Error())
|
||||
return lexEOF, false
|
||||
}
|
||||
}
|
||||
|
||||
yylval.token = &parserToken{Value: b.String()}
|
||||
return STRING, terminated
|
||||
}
|
||||
|
||||
// Return the next rune for the lexer.
|
||||
func (x *parserLex) next() rune {
|
||||
if int(x.pos) >= len(x.Input) {
|
||||
x.width = 0
|
||||
return lexEOF
|
||||
}
|
||||
|
||||
r, w := utf8.DecodeRuneInString(x.Input[x.pos:])
|
||||
x.width = w
|
||||
x.pos += x.width
|
||||
|
||||
if x.line == 0 {
|
||||
x.line = 1
|
||||
x.col = 1
|
||||
} else {
|
||||
x.col += 1
|
||||
}
|
||||
|
||||
if r == '\n' {
|
||||
x.lastLine = x.col
|
||||
x.line += 1
|
||||
x.col = 1
|
||||
}
|
||||
|
||||
if x.astPos == nil {
|
||||
x.astPos = &ast.Pos{Column: x.col, Line: x.line}
|
||||
}
|
||||
|
||||
return r
|
||||
}
|
||||
|
||||
// peek returns but does not consume the next rune in the input
|
||||
func (x *parserLex) peek() rune {
|
||||
r := x.next()
|
||||
x.backup()
|
||||
return r
|
||||
}
|
||||
|
||||
// backup steps back one rune. Can only be called once per next.
|
||||
func (x *parserLex) backup() {
|
||||
x.pos -= x.width
|
||||
x.col -= 1
|
||||
|
||||
// If we are at column 0, we're backing up across a line boundary
|
||||
// so we need to be careful to get the proper value.
|
||||
if x.col == 0 {
|
||||
x.col = x.lastLine
|
||||
x.line -= 1
|
||||
}
|
||||
}
|
||||
|
||||
// The parser calls this method on a parse error.
|
||||
func (x *parserLex) Error(s string) {
|
||||
x.Err = fmt.Errorf("parse error: %s", s)
|
||||
}
|
|
@ -1,30 +1,29 @@
|
|||
package hil
|
||||
|
||||
import (
|
||||
"sync"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
"github.com/hashicorp/hil/parser"
|
||||
"github.com/hashicorp/hil/scanner"
|
||||
)
|
||||
|
||||
var parserLock sync.Mutex
|
||||
var parserResult ast.Node
|
||||
|
||||
// Parse parses the given program and returns an executable AST tree.
|
||||
//
|
||||
// Syntax errors are returned with error having the dynamic type
|
||||
// *parser.ParseError, which gives the caller access to the source position
|
||||
// where the error was found, which allows (for example) combining it with
|
||||
// a known source filename to add context to the error message.
|
||||
func Parse(v string) (ast.Node, error) {
|
||||
// Unfortunately due to the way that goyacc generated parsers are
|
||||
// formatted, we can only do a single parse at a time without a lot
|
||||
// of extra work. In the future we can remove this limitation.
|
||||
parserLock.Lock()
|
||||
defer parserLock.Unlock()
|
||||
|
||||
// Reset our globals
|
||||
parserResult = nil
|
||||
|
||||
// Create the lexer
|
||||
lex := &parserLex{Input: v}
|
||||
|
||||
// Parse!
|
||||
parserParse(lex)
|
||||
|
||||
return parserResult, lex.Err
|
||||
return ParseWithPosition(v, ast.Pos{Line: 1, Column: 1})
|
||||
}
|
||||
|
||||
// ParseWithPosition is like Parse except that it overrides the source
|
||||
// row and column position of the first character in the string, which should
|
||||
// be 1-based.
|
||||
//
|
||||
// This can be used when HIL is embedded in another language and the outer
|
||||
// parser knows the row and column where the HIL expression started within
|
||||
// the overall source file.
|
||||
func ParseWithPosition(v string, pos ast.Pos) (ast.Node, error) {
|
||||
ch := scanner.Scan(v, pos)
|
||||
return parser.Parse(ch)
|
||||
}
|
||||
|
|
|
@ -0,0 +1,45 @@
|
|||
package parser
|
||||
|
||||
import (
|
||||
"github.com/hashicorp/hil/ast"
|
||||
"github.com/hashicorp/hil/scanner"
|
||||
)
|
||||
|
||||
var binaryOps []map[scanner.TokenType]ast.ArithmeticOp
|
||||
|
||||
func init() {
|
||||
// This operation table maps from the operator's scanner token type
|
||||
// to the AST arithmetic operation. All expressions produced from
|
||||
// binary operators are *ast.Arithmetic nodes.
|
||||
//
|
||||
// Binary operator groups are listed in order of precedence, with
|
||||
// the *lowest* precedence first. Operators within the same group
|
||||
// have left-to-right associativity.
|
||||
binaryOps = []map[scanner.TokenType]ast.ArithmeticOp{
|
||||
{
|
||||
scanner.OR: ast.ArithmeticOpLogicalOr,
|
||||
},
|
||||
{
|
||||
scanner.AND: ast.ArithmeticOpLogicalAnd,
|
||||
},
|
||||
{
|
||||
scanner.EQUAL: ast.ArithmeticOpEqual,
|
||||
scanner.NOTEQUAL: ast.ArithmeticOpNotEqual,
|
||||
},
|
||||
{
|
||||
scanner.GT: ast.ArithmeticOpGreaterThan,
|
||||
scanner.GTE: ast.ArithmeticOpGreaterThanOrEqual,
|
||||
scanner.LT: ast.ArithmeticOpLessThan,
|
||||
scanner.LTE: ast.ArithmeticOpLessThanOrEqual,
|
||||
},
|
||||
{
|
||||
scanner.PLUS: ast.ArithmeticOpAdd,
|
||||
scanner.MINUS: ast.ArithmeticOpSub,
|
||||
},
|
||||
{
|
||||
scanner.STAR: ast.ArithmeticOpMul,
|
||||
scanner.SLASH: ast.ArithmeticOpDiv,
|
||||
scanner.PERCENT: ast.ArithmeticOpMod,
|
||||
},
|
||||
}
|
||||
}
|
|
@ -0,0 +1,38 @@
|
|||
package parser
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
"github.com/hashicorp/hil/scanner"
|
||||
)
|
||||
|
||||
type ParseError struct {
|
||||
Message string
|
||||
Pos ast.Pos
|
||||
}
|
||||
|
||||
func Errorf(pos ast.Pos, format string, args ...interface{}) error {
|
||||
return &ParseError{
|
||||
Message: fmt.Sprintf(format, args...),
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
|
||||
// TokenErrorf is a convenient wrapper around Errorf that uses the
|
||||
// position of the given token.
|
||||
func TokenErrorf(token *scanner.Token, format string, args ...interface{}) error {
|
||||
return Errorf(token.Pos, format, args...)
|
||||
}
|
||||
|
||||
func ExpectationError(wanted string, got *scanner.Token) error {
|
||||
return TokenErrorf(got, "expected %s but found %s", wanted, got)
|
||||
}
|
||||
|
||||
func (e *ParseError) Error() string {
|
||||
return fmt.Sprintf("parse error at %s: %s", e.Pos, e.Message)
|
||||
}
|
||||
|
||||
func (e *ParseError) String() string {
|
||||
return e.Error()
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
// +build gofuzz
|
||||
|
||||
package parser
|
||||
|
||||
import (
|
||||
"github.com/hashicorp/hil/ast"
|
||||
"github.com/hashicorp/hil/scanner"
|
||||
)
|
||||
|
||||
// This is a fuzz testing function designed to be used with go-fuzz:
|
||||
// https://github.com/dvyukov/go-fuzz
|
||||
//
|
||||
// It's not included in a normal build due to the gofuzz build tag above.
|
||||
//
|
||||
// There are some input files that you can use as a seed corpus for go-fuzz
|
||||
// in the directory ./fuzz-corpus .
|
||||
|
||||
func Fuzz(data []byte) int {
|
||||
str := string(data)
|
||||
|
||||
ch := scanner.Scan(str, ast.Pos{Line: 1, Column: 1})
|
||||
_, err := Parse(ch)
|
||||
if err != nil {
|
||||
return 0
|
||||
}
|
||||
|
||||
return 1
|
||||
}
|
|
@ -0,0 +1,522 @@
|
|||
package parser
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
"unicode/utf8"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
"github.com/hashicorp/hil/scanner"
|
||||
)
|
||||
|
||||
func Parse(ch <-chan *scanner.Token) (ast.Node, error) {
|
||||
peeker := scanner.NewPeeker(ch)
|
||||
parser := &parser{peeker}
|
||||
output, err := parser.ParseTopLevel()
|
||||
peeker.Close()
|
||||
return output, err
|
||||
}
|
||||
|
||||
type parser struct {
|
||||
peeker *scanner.Peeker
|
||||
}
|
||||
|
||||
func (p *parser) ParseTopLevel() (ast.Node, error) {
|
||||
return p.parseInterpolationSeq(false)
|
||||
}
|
||||
|
||||
func (p *parser) ParseQuoted() (ast.Node, error) {
|
||||
return p.parseInterpolationSeq(true)
|
||||
}
|
||||
|
||||
// parseInterpolationSeq parses either the top-level sequence of literals
|
||||
// and interpolation expressions or a similar sequence within a quoted
|
||||
// string inside an interpolation expression. The latter case is requested
|
||||
// by setting 'quoted' to true.
|
||||
func (p *parser) parseInterpolationSeq(quoted bool) (ast.Node, error) {
|
||||
literalType := scanner.LITERAL
|
||||
endType := scanner.EOF
|
||||
if quoted {
|
||||
// exceptions for quoted sequences
|
||||
literalType = scanner.STRING
|
||||
endType = scanner.CQUOTE
|
||||
}
|
||||
|
||||
startPos := p.peeker.Peek().Pos
|
||||
|
||||
if quoted {
|
||||
tok := p.peeker.Read()
|
||||
if tok.Type != scanner.OQUOTE {
|
||||
return nil, ExpectationError("open quote", tok)
|
||||
}
|
||||
}
|
||||
|
||||
var exprs []ast.Node
|
||||
for {
|
||||
tok := p.peeker.Read()
|
||||
|
||||
if tok.Type == endType {
|
||||
break
|
||||
}
|
||||
|
||||
switch tok.Type {
|
||||
case literalType:
|
||||
val, err := p.parseStringToken(tok)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
exprs = append(exprs, &ast.LiteralNode{
|
||||
Value: val,
|
||||
Typex: ast.TypeString,
|
||||
Posx: tok.Pos,
|
||||
})
|
||||
case scanner.BEGIN:
|
||||
expr, err := p.ParseInterpolation()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
exprs = append(exprs, expr)
|
||||
default:
|
||||
return nil, ExpectationError(`"${"`, tok)
|
||||
}
|
||||
}
|
||||
|
||||
if len(exprs) == 0 {
|
||||
// If we have no parts at all then the input must've
|
||||
// been an empty string.
|
||||
exprs = append(exprs, &ast.LiteralNode{
|
||||
Value: "",
|
||||
Typex: ast.TypeString,
|
||||
Posx: startPos,
|
||||
})
|
||||
}
|
||||
|
||||
// As a special case, if our "Output" contains only one expression
|
||||
// and it's a literal string then we'll hoist it up to be our
|
||||
// direct return value, so callers can easily recognize a string
|
||||
// that has no interpolations at all.
|
||||
if len(exprs) == 1 {
|
||||
if lit, ok := exprs[0].(*ast.LiteralNode); ok {
|
||||
if lit.Typex == ast.TypeString {
|
||||
return lit, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return &ast.Output{
|
||||
Exprs: exprs,
|
||||
Posx: startPos,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// parseStringToken takes a token of either LITERAL or STRING type and
|
||||
// returns the interpreted string, after processing any relevant
|
||||
// escape sequences.
|
||||
func (p *parser) parseStringToken(tok *scanner.Token) (string, error) {
|
||||
var backslashes bool
|
||||
switch tok.Type {
|
||||
case scanner.LITERAL:
|
||||
backslashes = false
|
||||
case scanner.STRING:
|
||||
backslashes = true
|
||||
default:
|
||||
panic("unsupported string token type")
|
||||
}
|
||||
|
||||
raw := []byte(tok.Content)
|
||||
buf := make([]byte, 0, len(raw))
|
||||
|
||||
for i := 0; i < len(raw); i++ {
|
||||
b := raw[i]
|
||||
more := len(raw) > (i + 1)
|
||||
|
||||
if b == '$' {
|
||||
if more && raw[i+1] == '$' {
|
||||
// skip over the second dollar sign
|
||||
i++
|
||||
}
|
||||
} else if backslashes && b == '\\' {
|
||||
if !more {
|
||||
return "", Errorf(
|
||||
ast.Pos{
|
||||
Column: tok.Pos.Column + utf8.RuneCount(raw[:i]),
|
||||
Line: tok.Pos.Line,
|
||||
},
|
||||
`unfinished backslash escape sequence`,
|
||||
)
|
||||
}
|
||||
escapeType := raw[i+1]
|
||||
switch escapeType {
|
||||
case '\\':
|
||||
// skip over the second slash
|
||||
i++
|
||||
case 'n':
|
||||
b = '\n'
|
||||
i++
|
||||
case '"':
|
||||
b = '"'
|
||||
i++
|
||||
default:
|
||||
return "", Errorf(
|
||||
ast.Pos{
|
||||
Column: tok.Pos.Column + utf8.RuneCount(raw[:i]),
|
||||
Line: tok.Pos.Line,
|
||||
},
|
||||
`invalid backslash escape sequence`,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
buf = append(buf, b)
|
||||
}
|
||||
|
||||
return string(buf), nil
|
||||
}
|
||||
|
||||
func (p *parser) ParseInterpolation() (ast.Node, error) {
|
||||
// By the time we're called, we're already "inside" the ${ sequence
|
||||
// because the caller consumed the ${ token.
|
||||
|
||||
expr, err := p.ParseExpression()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
err = p.requireTokenType(scanner.END, `"}"`)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return expr, nil
|
||||
}
|
||||
|
||||
func (p *parser) ParseExpression() (ast.Node, error) {
|
||||
return p.parseTernaryCond()
|
||||
}
|
||||
|
||||
func (p *parser) parseTernaryCond() (ast.Node, error) {
|
||||
// The ternary condition operator (.. ? .. : ..) behaves somewhat
|
||||
// like a binary operator except that the "operator" is itself
|
||||
// an expression enclosed in two punctuation characters.
|
||||
// The middle expression is parsed as if the ? and : symbols
|
||||
// were parentheses. The "rhs" (the "false expression") is then
|
||||
// treated right-associatively so it behaves similarly to the
|
||||
// middle in terms of precedence.
|
||||
|
||||
startPos := p.peeker.Peek().Pos
|
||||
|
||||
var cond, trueExpr, falseExpr ast.Node
|
||||
var err error
|
||||
|
||||
cond, err = p.parseBinaryOps(binaryOps)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
next := p.peeker.Peek()
|
||||
if next.Type != scanner.QUESTION {
|
||||
return cond, nil
|
||||
}
|
||||
|
||||
p.peeker.Read() // eat question mark
|
||||
|
||||
trueExpr, err = p.ParseExpression()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
colon := p.peeker.Read()
|
||||
if colon.Type != scanner.COLON {
|
||||
return nil, ExpectationError(":", colon)
|
||||
}
|
||||
|
||||
falseExpr, err = p.ParseExpression()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &ast.Conditional{
|
||||
CondExpr: cond,
|
||||
TrueExpr: trueExpr,
|
||||
FalseExpr: falseExpr,
|
||||
Posx: startPos,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// parseBinaryOps calls itself recursively to work through all of the
|
||||
// operator precedence groups, and then eventually calls ParseExpressionTerm
|
||||
// for each operand.
|
||||
func (p *parser) parseBinaryOps(ops []map[scanner.TokenType]ast.ArithmeticOp) (ast.Node, error) {
|
||||
if len(ops) == 0 {
|
||||
// We've run out of operators, so now we'll just try to parse a term.
|
||||
return p.ParseExpressionTerm()
|
||||
}
|
||||
|
||||
thisLevel := ops[0]
|
||||
remaining := ops[1:]
|
||||
|
||||
startPos := p.peeker.Peek().Pos
|
||||
|
||||
var lhs, rhs ast.Node
|
||||
operator := ast.ArithmeticOpInvalid
|
||||
var err error
|
||||
|
||||
// parse a term that might be the first operand of a binary
|
||||
// expression or it might just be a standalone term, but
|
||||
// we won't know until we've parsed it and can look ahead
|
||||
// to see if there's an operator token.
|
||||
lhs, err = p.parseBinaryOps(remaining)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// We'll keep eating up arithmetic operators until we run
|
||||
// out, so that operators with the same precedence will combine in a
|
||||
// left-associative manner:
|
||||
// a+b+c => (a+b)+c, not a+(b+c)
|
||||
//
|
||||
// Should we later want to have right-associative operators, a way
|
||||
// to achieve that would be to call back up to ParseExpression here
|
||||
// instead of iteratively parsing only the remaining operators.
|
||||
for {
|
||||
next := p.peeker.Peek()
|
||||
var newOperator ast.ArithmeticOp
|
||||
var ok bool
|
||||
if newOperator, ok = thisLevel[next.Type]; !ok {
|
||||
break
|
||||
}
|
||||
|
||||
// Are we extending an expression started on
|
||||
// the previous iteration?
|
||||
if operator != ast.ArithmeticOpInvalid {
|
||||
lhs = &ast.Arithmetic{
|
||||
Op: operator,
|
||||
Exprs: []ast.Node{lhs, rhs},
|
||||
Posx: startPos,
|
||||
}
|
||||
}
|
||||
|
||||
operator = newOperator
|
||||
p.peeker.Read() // eat operator token
|
||||
rhs, err = p.parseBinaryOps(remaining)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
if operator != ast.ArithmeticOpInvalid {
|
||||
return &ast.Arithmetic{
|
||||
Op: operator,
|
||||
Exprs: []ast.Node{lhs, rhs},
|
||||
Posx: startPos,
|
||||
}, nil
|
||||
} else {
|
||||
return lhs, nil
|
||||
}
|
||||
}
|
||||
|
||||
func (p *parser) ParseExpressionTerm() (ast.Node, error) {
|
||||
|
||||
next := p.peeker.Peek()
|
||||
|
||||
switch next.Type {
|
||||
|
||||
case scanner.OPAREN:
|
||||
p.peeker.Read()
|
||||
expr, err := p.ParseExpression()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
err = p.requireTokenType(scanner.CPAREN, `")"`)
|
||||
return expr, err
|
||||
|
||||
case scanner.OQUOTE:
|
||||
return p.ParseQuoted()
|
||||
|
||||
case scanner.INTEGER:
|
||||
tok := p.peeker.Read()
|
||||
val, err := strconv.Atoi(tok.Content)
|
||||
if err != nil {
|
||||
return nil, TokenErrorf(tok, "invalid integer: %s", err)
|
||||
}
|
||||
return &ast.LiteralNode{
|
||||
Value: val,
|
||||
Typex: ast.TypeInt,
|
||||
Posx: tok.Pos,
|
||||
}, nil
|
||||
|
||||
case scanner.FLOAT:
|
||||
tok := p.peeker.Read()
|
||||
val, err := strconv.ParseFloat(tok.Content, 64)
|
||||
if err != nil {
|
||||
return nil, TokenErrorf(tok, "invalid float: %s", err)
|
||||
}
|
||||
return &ast.LiteralNode{
|
||||
Value: val,
|
||||
Typex: ast.TypeFloat,
|
||||
Posx: tok.Pos,
|
||||
}, nil
|
||||
|
||||
case scanner.BOOL:
|
||||
tok := p.peeker.Read()
|
||||
// the scanner guarantees that tok.Content is either "true" or "false"
|
||||
var val bool
|
||||
if tok.Content[0] == 't' {
|
||||
val = true
|
||||
} else {
|
||||
val = false
|
||||
}
|
||||
return &ast.LiteralNode{
|
||||
Value: val,
|
||||
Typex: ast.TypeBool,
|
||||
Posx: tok.Pos,
|
||||
}, nil
|
||||
|
||||
case scanner.MINUS:
|
||||
opTok := p.peeker.Read()
|
||||
// important to use ParseExpressionTerm rather than ParseExpression
|
||||
// here, otherwise we can capture a following binary expression into
|
||||
// our negation.
|
||||
// e.g. -46+5 should parse as (0-46)+5, not 0-(46+5)
|
||||
operand, err := p.ParseExpressionTerm()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// The AST currently represents negative numbers as
|
||||
// a binary subtraction of the number from zero.
|
||||
return &ast.Arithmetic{
|
||||
Op: ast.ArithmeticOpSub,
|
||||
Exprs: []ast.Node{
|
||||
&ast.LiteralNode{
|
||||
Value: 0,
|
||||
Typex: ast.TypeInt,
|
||||
Posx: opTok.Pos,
|
||||
},
|
||||
operand,
|
||||
},
|
||||
Posx: opTok.Pos,
|
||||
}, nil
|
||||
|
||||
case scanner.BANG:
|
||||
opTok := p.peeker.Read()
|
||||
// important to use ParseExpressionTerm rather than ParseExpression
|
||||
// here, otherwise we can capture a following binary expression into
|
||||
// our negation.
|
||||
operand, err := p.ParseExpressionTerm()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// The AST currently represents binary negation as an equality
|
||||
// test with "false".
|
||||
return &ast.Arithmetic{
|
||||
Op: ast.ArithmeticOpEqual,
|
||||
Exprs: []ast.Node{
|
||||
&ast.LiteralNode{
|
||||
Value: false,
|
||||
Typex: ast.TypeBool,
|
||||
Posx: opTok.Pos,
|
||||
},
|
||||
operand,
|
||||
},
|
||||
Posx: opTok.Pos,
|
||||
}, nil
|
||||
|
||||
case scanner.IDENTIFIER:
|
||||
return p.ParseScopeInteraction()
|
||||
|
||||
default:
|
||||
return nil, ExpectationError("expression", next)
|
||||
}
|
||||
}
|
||||
|
||||
// ParseScopeInteraction parses the expression types that interact
|
||||
// with the evaluation scope: variable access, function calls, and
|
||||
// indexing.
|
||||
//
|
||||
// Indexing should actually be a distinct operator in its own right,
|
||||
// so that e.g. it can be applied to the result of a function call,
|
||||
// but for now we're preserving the behavior of the older yacc-based
|
||||
// parser.
|
||||
func (p *parser) ParseScopeInteraction() (ast.Node, error) {
|
||||
first := p.peeker.Read()
|
||||
startPos := first.Pos
|
||||
if first.Type != scanner.IDENTIFIER {
|
||||
return nil, ExpectationError("identifier", first)
|
||||
}
|
||||
|
||||
next := p.peeker.Peek()
|
||||
if next.Type == scanner.OPAREN {
|
||||
// function call
|
||||
funcName := first.Content
|
||||
p.peeker.Read() // eat paren
|
||||
var args []ast.Node
|
||||
|
||||
for {
|
||||
if p.peeker.Peek().Type == scanner.CPAREN {
|
||||
break
|
||||
}
|
||||
|
||||
arg, err := p.ParseExpression()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
args = append(args, arg)
|
||||
|
||||
if p.peeker.Peek().Type == scanner.COMMA {
|
||||
p.peeker.Read() // eat comma
|
||||
continue
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
err := p.requireTokenType(scanner.CPAREN, `")"`)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &ast.Call{
|
||||
Func: funcName,
|
||||
Args: args,
|
||||
Posx: startPos,
|
||||
}, nil
|
||||
}
|
||||
|
||||
varNode := &ast.VariableAccess{
|
||||
Name: first.Content,
|
||||
Posx: startPos,
|
||||
}
|
||||
|
||||
if p.peeker.Peek().Type == scanner.OBRACKET {
|
||||
// index operator
|
||||
startPos := p.peeker.Read().Pos // eat bracket
|
||||
indexExpr, err := p.ParseExpression()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
err = p.requireTokenType(scanner.CBRACKET, `"]"`)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &ast.Index{
|
||||
Target: varNode,
|
||||
Key: indexExpr,
|
||||
Posx: startPos,
|
||||
}, nil
|
||||
}
|
||||
|
||||
return varNode, nil
|
||||
}
|
||||
|
||||
// requireTokenType consumes the next token an returns an error if its
|
||||
// type does not match the given type. nil is returned if the type matches.
|
||||
//
|
||||
// This is a helper around peeker.Read() for situations where the parser just
|
||||
// wants to assert that a particular token type must be present.
|
||||
func (p *parser) requireTokenType(wantType scanner.TokenType, wantName string) error {
|
||||
token := p.peeker.Read()
|
||||
if token.Type != wantType {
|
||||
return ExpectationError(wantName, token)
|
||||
}
|
||||
return nil
|
||||
}
|
|
@ -0,0 +1,55 @@
|
|||
package scanner
|
||||
|
||||
// Peeker is a utility that wraps a token channel returned by Scan and
|
||||
// provides an interface that allows a caller (e.g. the parser) to
|
||||
// work with the token stream in a mode that allows one token of lookahead,
|
||||
// and provides utilities for more convenient processing of the stream.
|
||||
type Peeker struct {
|
||||
ch <-chan *Token
|
||||
peeked *Token
|
||||
}
|
||||
|
||||
func NewPeeker(ch <-chan *Token) *Peeker {
|
||||
return &Peeker{
|
||||
ch: ch,
|
||||
}
|
||||
}
|
||||
|
||||
// Peek returns the next token in the stream without consuming it. A
|
||||
// subsequent call to Read will return the same token.
|
||||
func (p *Peeker) Peek() *Token {
|
||||
if p.peeked == nil {
|
||||
p.peeked = <-p.ch
|
||||
}
|
||||
return p.peeked
|
||||
}
|
||||
|
||||
// Read consumes the next token in the stream and returns it.
|
||||
func (p *Peeker) Read() *Token {
|
||||
token := p.Peek()
|
||||
|
||||
// As a special case, we will produce the EOF token forever once
|
||||
// it is reached.
|
||||
if token.Type != EOF {
|
||||
p.peeked = nil
|
||||
}
|
||||
|
||||
return token
|
||||
}
|
||||
|
||||
// Close ensures that the token stream has been exhausted, to prevent
|
||||
// the goroutine in the underlying scanner from leaking.
|
||||
//
|
||||
// It's not necessary to call this if the caller reads the token stream
|
||||
// to EOF, since that implicitly closes the scanner.
|
||||
func (p *Peeker) Close() {
|
||||
for _ = range p.ch {
|
||||
// discard
|
||||
}
|
||||
// Install a synthetic EOF token in 'peeked' in case someone
|
||||
// erroneously calls Peek() or Read() after we've closed.
|
||||
p.peeked = &Token{
|
||||
Type: EOF,
|
||||
Content: "",
|
||||
}
|
||||
}
|
|
@ -0,0 +1,556 @@
|
|||
package scanner
|
||||
|
||||
import (
|
||||
"unicode"
|
||||
"unicode/utf8"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
)
|
||||
|
||||
// Scan returns a channel that recieves Tokens from the given input string.
|
||||
//
|
||||
// The scanner's job is just to partition the string into meaningful parts.
|
||||
// It doesn't do any transformation of the raw input string, so the caller
|
||||
// must deal with any further interpretation required, such as parsing INTEGER
|
||||
// tokens into real ints, or dealing with escape sequences in LITERAL or
|
||||
// STRING tokens.
|
||||
//
|
||||
// Strings in the returned tokens are slices from the original string.
|
||||
//
|
||||
// startPos should be set to ast.InitPos unless the caller knows that
|
||||
// this interpolation string is part of a larger file and knows the position
|
||||
// of the first character in that larger file.
|
||||
func Scan(s string, startPos ast.Pos) <-chan *Token {
|
||||
ch := make(chan *Token)
|
||||
go scan(s, ch, startPos)
|
||||
return ch
|
||||
}
|
||||
|
||||
func scan(s string, ch chan<- *Token, pos ast.Pos) {
|
||||
// 'remain' starts off as the whole string but we gradually
|
||||
// slice of the front of it as we work our way through.
|
||||
remain := s
|
||||
|
||||
// nesting keeps track of how many ${ .. } sequences we are
|
||||
// inside, so we can recognize the minor differences in syntax
|
||||
// between outer string literals (LITERAL tokens) and quoted
|
||||
// string literals (STRING tokens).
|
||||
nesting := 0
|
||||
|
||||
// We're going to flip back and forth between parsing literals/strings
|
||||
// and parsing interpolation sequences ${ .. } until we reach EOF or
|
||||
// some INVALID token.
|
||||
All:
|
||||
for {
|
||||
startPos := pos
|
||||
// Literal string processing first, since the beginning of
|
||||
// a string is always outside of an interpolation sequence.
|
||||
literalVal, terminator := scanLiteral(remain, pos, nesting > 0)
|
||||
|
||||
if len(literalVal) > 0 {
|
||||
litType := LITERAL
|
||||
if nesting > 0 {
|
||||
litType = STRING
|
||||
}
|
||||
ch <- &Token{
|
||||
Type: litType,
|
||||
Content: literalVal,
|
||||
Pos: startPos,
|
||||
}
|
||||
remain = remain[len(literalVal):]
|
||||
}
|
||||
|
||||
ch <- terminator
|
||||
remain = remain[len(terminator.Content):]
|
||||
pos = terminator.Pos
|
||||
// Safe to use len() here because none of the terminator tokens
|
||||
// can contain UTF-8 sequences.
|
||||
pos.Column = pos.Column + len(terminator.Content)
|
||||
|
||||
switch terminator.Type {
|
||||
case INVALID:
|
||||
// Synthetic EOF after invalid token, since further scanning
|
||||
// is likely to just produce more garbage.
|
||||
ch <- &Token{
|
||||
Type: EOF,
|
||||
Content: "",
|
||||
Pos: pos,
|
||||
}
|
||||
break All
|
||||
case EOF:
|
||||
// All done!
|
||||
break All
|
||||
case BEGIN:
|
||||
nesting++
|
||||
case CQUOTE:
|
||||
// nothing special to do
|
||||
default:
|
||||
// Should never happen
|
||||
panic("invalid string/literal terminator")
|
||||
}
|
||||
|
||||
// Now we do the processing of the insides of ${ .. } sequences.
|
||||
// This loop terminates when we encounter either a closing } or
|
||||
// an opening ", which will cause us to return to literal processing.
|
||||
Interpolation:
|
||||
for {
|
||||
|
||||
token, size, newPos := scanInterpolationToken(remain, pos)
|
||||
ch <- token
|
||||
remain = remain[size:]
|
||||
pos = newPos
|
||||
|
||||
switch token.Type {
|
||||
case INVALID:
|
||||
// Synthetic EOF after invalid token, since further scanning
|
||||
// is likely to just produce more garbage.
|
||||
ch <- &Token{
|
||||
Type: EOF,
|
||||
Content: "",
|
||||
Pos: pos,
|
||||
}
|
||||
break All
|
||||
case EOF:
|
||||
// All done
|
||||
// (though a syntax error that we'll catch in the parser)
|
||||
break All
|
||||
case END:
|
||||
nesting--
|
||||
if nesting < 0 {
|
||||
// Can happen if there are unbalanced ${ and } sequences
|
||||
// in the input, which we'll catch in the parser.
|
||||
nesting = 0
|
||||
}
|
||||
break Interpolation
|
||||
case OQUOTE:
|
||||
// Beginning of nested quoted string
|
||||
break Interpolation
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
close(ch)
|
||||
}
|
||||
|
||||
// Returns the token found at the start of the given string, followed by
|
||||
// the number of bytes that were consumed from the string and the adjusted
|
||||
// source position.
|
||||
//
|
||||
// Note that the number of bytes consumed can be more than the length of
|
||||
// the returned token contents if the string begins with whitespace, since
|
||||
// it will be silently consumed before reading the token.
|
||||
func scanInterpolationToken(s string, startPos ast.Pos) (*Token, int, ast.Pos) {
|
||||
pos := startPos
|
||||
size := 0
|
||||
|
||||
// Consume whitespace, if any
|
||||
for len(s) > 0 && byteIsSpace(s[0]) {
|
||||
if s[0] == '\n' {
|
||||
pos.Column = 1
|
||||
pos.Line++
|
||||
} else {
|
||||
pos.Column++
|
||||
}
|
||||
size++
|
||||
s = s[1:]
|
||||
}
|
||||
|
||||
// Unexpected EOF during sequence
|
||||
if len(s) == 0 {
|
||||
return &Token{
|
||||
Type: EOF,
|
||||
Content: "",
|
||||
Pos: pos,
|
||||
}, size, pos
|
||||
}
|
||||
|
||||
next := s[0]
|
||||
var token *Token
|
||||
|
||||
switch next {
|
||||
case '(', ')', '[', ']', ',', '.', '+', '-', '*', '/', '%', '?', ':':
|
||||
// Easy punctuation symbols that don't have any special meaning
|
||||
// during scanning, and that stand for themselves in the
|
||||
// TokenType enumeration.
|
||||
token = &Token{
|
||||
Type: TokenType(next),
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
case '}':
|
||||
token = &Token{
|
||||
Type: END,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
case '"':
|
||||
token = &Token{
|
||||
Type: OQUOTE,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
case '!':
|
||||
if len(s) >= 2 && s[:2] == "!=" {
|
||||
token = &Token{
|
||||
Type: NOTEQUAL,
|
||||
Content: s[:2],
|
||||
Pos: pos,
|
||||
}
|
||||
} else {
|
||||
token = &Token{
|
||||
Type: BANG,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
case '<':
|
||||
if len(s) >= 2 && s[:2] == "<=" {
|
||||
token = &Token{
|
||||
Type: LTE,
|
||||
Content: s[:2],
|
||||
Pos: pos,
|
||||
}
|
||||
} else {
|
||||
token = &Token{
|
||||
Type: LT,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
case '>':
|
||||
if len(s) >= 2 && s[:2] == ">=" {
|
||||
token = &Token{
|
||||
Type: GTE,
|
||||
Content: s[:2],
|
||||
Pos: pos,
|
||||
}
|
||||
} else {
|
||||
token = &Token{
|
||||
Type: GT,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
case '=':
|
||||
if len(s) >= 2 && s[:2] == "==" {
|
||||
token = &Token{
|
||||
Type: EQUAL,
|
||||
Content: s[:2],
|
||||
Pos: pos,
|
||||
}
|
||||
} else {
|
||||
// A single equals is not a valid operator
|
||||
token = &Token{
|
||||
Type: INVALID,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
case '&':
|
||||
if len(s) >= 2 && s[:2] == "&&" {
|
||||
token = &Token{
|
||||
Type: AND,
|
||||
Content: s[:2],
|
||||
Pos: pos,
|
||||
}
|
||||
} else {
|
||||
token = &Token{
|
||||
Type: INVALID,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
case '|':
|
||||
if len(s) >= 2 && s[:2] == "||" {
|
||||
token = &Token{
|
||||
Type: OR,
|
||||
Content: s[:2],
|
||||
Pos: pos,
|
||||
}
|
||||
} else {
|
||||
token = &Token{
|
||||
Type: INVALID,
|
||||
Content: s[:1],
|
||||
Pos: pos,
|
||||
}
|
||||
}
|
||||
default:
|
||||
if next >= '0' && next <= '9' {
|
||||
num, numType := scanNumber(s)
|
||||
token = &Token{
|
||||
Type: numType,
|
||||
Content: num,
|
||||
Pos: pos,
|
||||
}
|
||||
} else if stringStartsWithIdentifier(s) {
|
||||
ident, runeLen := scanIdentifier(s)
|
||||
tokenType := IDENTIFIER
|
||||
if ident == "true" || ident == "false" {
|
||||
tokenType = BOOL
|
||||
}
|
||||
token = &Token{
|
||||
Type: tokenType,
|
||||
Content: ident,
|
||||
Pos: pos,
|
||||
}
|
||||
// Skip usual token handling because it doesn't
|
||||
// know how to deal with UTF-8 sequences.
|
||||
pos.Column = pos.Column + runeLen
|
||||
return token, size + len(ident), pos
|
||||
} else {
|
||||
_, byteLen := utf8.DecodeRuneInString(s)
|
||||
token = &Token{
|
||||
Type: INVALID,
|
||||
Content: s[:byteLen],
|
||||
Pos: pos,
|
||||
}
|
||||
// Skip usual token handling because it doesn't
|
||||
// know how to deal with UTF-8 sequences.
|
||||
pos.Column = pos.Column + 1
|
||||
return token, size + byteLen, pos
|
||||
}
|
||||
}
|
||||
|
||||
// Here we assume that the token content contains no UTF-8 sequences,
|
||||
// because we dealt with UTF-8 characters as a special case where
|
||||
// necessary above.
|
||||
size = size + len(token.Content)
|
||||
pos.Column = pos.Column + len(token.Content)
|
||||
|
||||
return token, size, pos
|
||||
}
|
||||
|
||||
// Returns the (possibly-empty) prefix of the given string that represents
|
||||
// a literal, followed by the token that marks the end of the literal.
|
||||
func scanLiteral(s string, startPos ast.Pos, nested bool) (string, *Token) {
|
||||
litLen := 0
|
||||
pos := startPos
|
||||
var terminator *Token
|
||||
for {
|
||||
|
||||
if litLen >= len(s) {
|
||||
if nested {
|
||||
// We've ended in the middle of a quoted string,
|
||||
// which means this token is actually invalid.
|
||||
return "", &Token{
|
||||
Type: INVALID,
|
||||
Content: s,
|
||||
Pos: startPos,
|
||||
}
|
||||
}
|
||||
terminator = &Token{
|
||||
Type: EOF,
|
||||
Content: "",
|
||||
Pos: pos,
|
||||
}
|
||||
break
|
||||
}
|
||||
|
||||
next := s[litLen]
|
||||
|
||||
if next == '$' && len(s) > litLen+1 {
|
||||
follow := s[litLen+1]
|
||||
|
||||
if follow == '{' {
|
||||
terminator = &Token{
|
||||
Type: BEGIN,
|
||||
Content: s[litLen : litLen+2],
|
||||
Pos: pos,
|
||||
}
|
||||
pos.Column = pos.Column + 2
|
||||
break
|
||||
} else if follow == '$' {
|
||||
// Double-$ escapes the special processing of $,
|
||||
// so we will consume both characters here.
|
||||
pos.Column = pos.Column + 2
|
||||
litLen = litLen + 2
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
// special handling that applies only to quoted strings
|
||||
if nested {
|
||||
if next == '"' {
|
||||
terminator = &Token{
|
||||
Type: CQUOTE,
|
||||
Content: s[litLen : litLen+1],
|
||||
Pos: pos,
|
||||
}
|
||||
pos.Column = pos.Column + 1
|
||||
break
|
||||
}
|
||||
|
||||
// Escaped quote marks do not terminate the string.
|
||||
//
|
||||
// All we do here in the scanner is avoid terminating a string
|
||||
// due to an escaped quote. The parser is responsible for the
|
||||
// full handling of escape sequences, since it's able to produce
|
||||
// better error messages than we can produce in here.
|
||||
if next == '\\' && len(s) > litLen+1 {
|
||||
follow := s[litLen+1]
|
||||
|
||||
if follow == '"' {
|
||||
// \" escapes the special processing of ",
|
||||
// so we will consume both characters here.
|
||||
pos.Column = pos.Column + 2
|
||||
litLen = litLen + 2
|
||||
continue
|
||||
} else if follow == '\\' {
|
||||
// \\ escapes \
|
||||
// so we will consume both characters here.
|
||||
pos.Column = pos.Column + 2
|
||||
litLen = litLen + 2
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if next == '\n' {
|
||||
pos.Column = 1
|
||||
pos.Line++
|
||||
litLen++
|
||||
} else {
|
||||
pos.Column++
|
||||
|
||||
// "Column" measures runes, so we need to actually consume
|
||||
// a valid UTF-8 character here.
|
||||
_, size := utf8.DecodeRuneInString(s[litLen:])
|
||||
litLen = litLen + size
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return s[:litLen], terminator
|
||||
}
|
||||
|
||||
// scanNumber returns the extent of the prefix of the string that represents
|
||||
// a valid number, along with what type of number it represents: INT or FLOAT.
|
||||
//
|
||||
// scanNumber does only basic character analysis: numbers consist of digits
|
||||
// and periods, with at least one period signalling a FLOAT. It's the parser's
|
||||
// responsibility to validate the form and range of the number, such as ensuring
|
||||
// that a FLOAT actually contains only one period, etc.
|
||||
func scanNumber(s string) (string, TokenType) {
|
||||
period := -1
|
||||
byteLen := 0
|
||||
numType := INTEGER
|
||||
for {
|
||||
if byteLen >= len(s) {
|
||||
break
|
||||
}
|
||||
|
||||
next := s[byteLen]
|
||||
if next != '.' && (next < '0' || next > '9') {
|
||||
// If our last value was a period, then we're not a float,
|
||||
// we're just an integer that ends in a period.
|
||||
if period == byteLen-1 {
|
||||
byteLen--
|
||||
numType = INTEGER
|
||||
}
|
||||
|
||||
break
|
||||
}
|
||||
|
||||
if next == '.' {
|
||||
// If we've already seen a period, break out
|
||||
if period >= 0 {
|
||||
break
|
||||
}
|
||||
|
||||
period = byteLen
|
||||
numType = FLOAT
|
||||
}
|
||||
|
||||
byteLen++
|
||||
}
|
||||
|
||||
return s[:byteLen], numType
|
||||
}
|
||||
|
||||
// scanIdentifier returns the extent of the prefix of the string that
|
||||
// represents a valid identifier, along with the length of that prefix
|
||||
// in runes.
|
||||
//
|
||||
// Identifiers may contain utf8-encoded non-Latin letters, which will
|
||||
// cause the returned "rune length" to be shorter than the byte length
|
||||
// of the returned string.
|
||||
func scanIdentifier(s string) (string, int) {
|
||||
byteLen := 0
|
||||
runeLen := 0
|
||||
for {
|
||||
if byteLen >= len(s) {
|
||||
break
|
||||
}
|
||||
|
||||
nextRune, size := utf8.DecodeRuneInString(s[byteLen:])
|
||||
if !(nextRune == '_' ||
|
||||
nextRune == '-' ||
|
||||
nextRune == '.' ||
|
||||
nextRune == '*' ||
|
||||
unicode.IsNumber(nextRune) ||
|
||||
unicode.IsLetter(nextRune) ||
|
||||
unicode.IsMark(nextRune)) {
|
||||
break
|
||||
}
|
||||
|
||||
// If we reach a star, it must be between periods to be part
|
||||
// of the same identifier.
|
||||
if nextRune == '*' && s[byteLen-1] != '.' {
|
||||
break
|
||||
}
|
||||
|
||||
// If our previous character was a star, then the current must
|
||||
// be period. Otherwise, undo that and exit.
|
||||
if byteLen > 0 && s[byteLen-1] == '*' && nextRune != '.' {
|
||||
byteLen--
|
||||
if s[byteLen-1] == '.' {
|
||||
byteLen--
|
||||
}
|
||||
|
||||
break
|
||||
}
|
||||
|
||||
byteLen = byteLen + size
|
||||
runeLen = runeLen + 1
|
||||
}
|
||||
|
||||
return s[:byteLen], runeLen
|
||||
}
|
||||
|
||||
// byteIsSpace implements a restrictive interpretation of spaces that includes
|
||||
// only what's valid inside interpolation sequences: spaces, tabs, newlines.
|
||||
func byteIsSpace(b byte) bool {
|
||||
switch b {
|
||||
case ' ', '\t', '\r', '\n':
|
||||
return true
|
||||
default:
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// stringStartsWithIdentifier returns true if the given string begins with
|
||||
// a character that is a legal start of an identifier: an underscore or
|
||||
// any character that Unicode considers to be a letter.
|
||||
func stringStartsWithIdentifier(s string) bool {
|
||||
if len(s) == 0 {
|
||||
return false
|
||||
}
|
||||
|
||||
first := s[0]
|
||||
|
||||
// Easy ASCII cases first
|
||||
if (first >= 'a' && first <= 'z') || (first >= 'A' && first <= 'Z') || first == '_' {
|
||||
return true
|
||||
}
|
||||
|
||||
// If our first byte begins a UTF-8 sequence then the sequence might
|
||||
// be a unicode letter.
|
||||
if utf8.RuneStart(first) {
|
||||
firstRune, _ := utf8.DecodeRuneInString(s)
|
||||
if unicode.IsLetter(firstRune) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
|
@ -0,0 +1,105 @@
|
|||
package scanner
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/hashicorp/hil/ast"
|
||||
)
|
||||
|
||||
type Token struct {
|
||||
Type TokenType
|
||||
Content string
|
||||
Pos ast.Pos
|
||||
}
|
||||
|
||||
//go:generate stringer -type=TokenType
|
||||
type TokenType rune
|
||||
|
||||
const (
|
||||
// Raw string data outside of ${ .. } sequences
|
||||
LITERAL TokenType = 'o'
|
||||
|
||||
// STRING is like a LITERAL but it's inside a quoted string
|
||||
// within a ${ ... } sequence, and so it can contain backslash
|
||||
// escaping.
|
||||
STRING TokenType = 'S'
|
||||
|
||||
// Other Literals
|
||||
INTEGER TokenType = 'I'
|
||||
FLOAT TokenType = 'F'
|
||||
BOOL TokenType = 'B'
|
||||
|
||||
BEGIN TokenType = '$' // actually "${"
|
||||
END TokenType = '}'
|
||||
OQUOTE TokenType = '“' // Opening quote of a nested quoted sequence
|
||||
CQUOTE TokenType = '”' // Closing quote of a nested quoted sequence
|
||||
OPAREN TokenType = '('
|
||||
CPAREN TokenType = ')'
|
||||
OBRACKET TokenType = '['
|
||||
CBRACKET TokenType = ']'
|
||||
COMMA TokenType = ','
|
||||
|
||||
IDENTIFIER TokenType = 'i'
|
||||
|
||||
PERIOD TokenType = '.'
|
||||
PLUS TokenType = '+'
|
||||
MINUS TokenType = '-'
|
||||
STAR TokenType = '*'
|
||||
SLASH TokenType = '/'
|
||||
PERCENT TokenType = '%'
|
||||
|
||||
AND TokenType = '∧'
|
||||
OR TokenType = '∨'
|
||||
BANG TokenType = '!'
|
||||
|
||||
EQUAL TokenType = '='
|
||||
NOTEQUAL TokenType = '≠'
|
||||
GT TokenType = '>'
|
||||
LT TokenType = '<'
|
||||
GTE TokenType = '≥'
|
||||
LTE TokenType = '≤'
|
||||
|
||||
QUESTION TokenType = '?'
|
||||
COLON TokenType = ':'
|
||||
|
||||
EOF TokenType = '␄'
|
||||
|
||||
// Produced for sequences that cannot be understood as valid tokens
|
||||
// e.g. due to use of unrecognized punctuation.
|
||||
INVALID TokenType = '<27>'
|
||||
)
|
||||
|
||||
func (t *Token) String() string {
|
||||
switch t.Type {
|
||||
case EOF:
|
||||
return "end of string"
|
||||
case INVALID:
|
||||
return fmt.Sprintf("invalid sequence %q", t.Content)
|
||||
case INTEGER:
|
||||
return fmt.Sprintf("integer %s", t.Content)
|
||||
case FLOAT:
|
||||
return fmt.Sprintf("float %s", t.Content)
|
||||
case STRING:
|
||||
return fmt.Sprintf("string %q", t.Content)
|
||||
case LITERAL:
|
||||
return fmt.Sprintf("literal %q", t.Content)
|
||||
case OQUOTE:
|
||||
return fmt.Sprintf("opening quote")
|
||||
case CQUOTE:
|
||||
return fmt.Sprintf("closing quote")
|
||||
case AND:
|
||||
return "&&"
|
||||
case OR:
|
||||
return "||"
|
||||
case NOTEQUAL:
|
||||
return "!="
|
||||
case GTE:
|
||||
return ">="
|
||||
case LTE:
|
||||
return "<="
|
||||
default:
|
||||
// The remaining token types have content that
|
||||
// speaks for itself.
|
||||
return fmt.Sprintf("%q", t.Content)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,51 @@
|
|||
// Code generated by "stringer -type=TokenType"; DO NOT EDIT
|
||||
|
||||
package scanner
|
||||
|
||||
import "fmt"
|
||||
|
||||
const _TokenType_name = "BANGBEGINPERCENTOPARENCPARENSTARPLUSCOMMAMINUSPERIODSLASHCOLONLTEQUALGTQUESTIONBOOLFLOATINTEGERSTRINGOBRACKETCBRACKETIDENTIFIERLITERALENDOQUOTECQUOTEANDORNOTEQUALLTEGTEEOFINVALID"
|
||||
|
||||
var _TokenType_map = map[TokenType]string{
|
||||
33: _TokenType_name[0:4],
|
||||
36: _TokenType_name[4:9],
|
||||
37: _TokenType_name[9:16],
|
||||
40: _TokenType_name[16:22],
|
||||
41: _TokenType_name[22:28],
|
||||
42: _TokenType_name[28:32],
|
||||
43: _TokenType_name[32:36],
|
||||
44: _TokenType_name[36:41],
|
||||
45: _TokenType_name[41:46],
|
||||
46: _TokenType_name[46:52],
|
||||
47: _TokenType_name[52:57],
|
||||
58: _TokenType_name[57:62],
|
||||
60: _TokenType_name[62:64],
|
||||
61: _TokenType_name[64:69],
|
||||
62: _TokenType_name[69:71],
|
||||
63: _TokenType_name[71:79],
|
||||
66: _TokenType_name[79:83],
|
||||
70: _TokenType_name[83:88],
|
||||
73: _TokenType_name[88:95],
|
||||
83: _TokenType_name[95:101],
|
||||
91: _TokenType_name[101:109],
|
||||
93: _TokenType_name[109:117],
|
||||
105: _TokenType_name[117:127],
|
||||
111: _TokenType_name[127:134],
|
||||
125: _TokenType_name[134:137],
|
||||
8220: _TokenType_name[137:143],
|
||||
8221: _TokenType_name[143:149],
|
||||
8743: _TokenType_name[149:152],
|
||||
8744: _TokenType_name[152:154],
|
||||
8800: _TokenType_name[154:162],
|
||||
8804: _TokenType_name[162:165],
|
||||
8805: _TokenType_name[165:168],
|
||||
9220: _TokenType_name[168:171],
|
||||
65533: _TokenType_name[171:178],
|
||||
}
|
||||
|
||||
func (i TokenType) String() string {
|
||||
if str, ok := _TokenType_map[i]; ok {
|
||||
return str
|
||||
}
|
||||
return fmt.Sprintf("TokenType(%d)", i)
|
||||
}
|
|
@ -1,662 +0,0 @@
|
|||
//line lang.y:6
|
||||
package hil
|
||||
|
||||
import __yyfmt__ "fmt"
|
||||
|
||||
//line lang.y:6
|
||||
import (
|
||||
"github.com/hashicorp/hil/ast"
|
||||
)
|
||||
|
||||
//line lang.y:14
|
||||
type parserSymType struct {
|
||||
yys int
|
||||
node ast.Node
|
||||
nodeList []ast.Node
|
||||
str string
|
||||
token *parserToken
|
||||
}
|
||||
|
||||
const PROGRAM_BRACKET_LEFT = 57346
|
||||
const PROGRAM_BRACKET_RIGHT = 57347
|
||||
const PROGRAM_STRING_START = 57348
|
||||
const PROGRAM_STRING_END = 57349
|
||||
const PAREN_LEFT = 57350
|
||||
const PAREN_RIGHT = 57351
|
||||
const COMMA = 57352
|
||||
const SQUARE_BRACKET_LEFT = 57353
|
||||
const SQUARE_BRACKET_RIGHT = 57354
|
||||
const ARITH_OP = 57355
|
||||
const IDENTIFIER = 57356
|
||||
const INTEGER = 57357
|
||||
const FLOAT = 57358
|
||||
const STRING = 57359
|
||||
|
||||
var parserToknames = [...]string{
|
||||
"$end",
|
||||
"error",
|
||||
"$unk",
|
||||
"PROGRAM_BRACKET_LEFT",
|
||||
"PROGRAM_BRACKET_RIGHT",
|
||||
"PROGRAM_STRING_START",
|
||||
"PROGRAM_STRING_END",
|
||||
"PAREN_LEFT",
|
||||
"PAREN_RIGHT",
|
||||
"COMMA",
|
||||
"SQUARE_BRACKET_LEFT",
|
||||
"SQUARE_BRACKET_RIGHT",
|
||||
"ARITH_OP",
|
||||
"IDENTIFIER",
|
||||
"INTEGER",
|
||||
"FLOAT",
|
||||
"STRING",
|
||||
}
|
||||
var parserStatenames = [...]string{}
|
||||
|
||||
const parserEofCode = 1
|
||||
const parserErrCode = 2
|
||||
const parserInitialStackSize = 16
|
||||
|
||||
//line lang.y:196
|
||||
|
||||
//line yacctab:1
|
||||
var parserExca = [...]int{
|
||||
-1, 1,
|
||||
1, -1,
|
||||
-2, 0,
|
||||
}
|
||||
|
||||
const parserNprod = 21
|
||||
const parserPrivate = 57344
|
||||
|
||||
var parserTokenNames []string
|
||||
var parserStates []string
|
||||
|
||||
const parserLast = 37
|
||||
|
||||
var parserAct = [...]int{
|
||||
|
||||
9, 7, 29, 17, 23, 16, 17, 3, 17, 20,
|
||||
8, 18, 21, 17, 6, 19, 27, 28, 22, 8,
|
||||
1, 25, 26, 7, 11, 2, 24, 10, 4, 30,
|
||||
5, 0, 14, 15, 12, 13, 6,
|
||||
}
|
||||
var parserPact = [...]int{
|
||||
|
||||
-3, -1000, -3, -1000, -1000, -1000, -1000, 19, -1000, 0,
|
||||
19, -3, -1000, -1000, 19, 1, -1000, 19, -5, -1000,
|
||||
19, 19, -1000, -1000, 7, -7, -10, -1000, 19, -1000,
|
||||
-7,
|
||||
}
|
||||
var parserPgo = [...]int{
|
||||
|
||||
0, 0, 30, 28, 24, 7, 26, 20,
|
||||
}
|
||||
var parserR1 = [...]int{
|
||||
|
||||
0, 7, 7, 4, 4, 5, 5, 2, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 6, 6, 6,
|
||||
3,
|
||||
}
|
||||
var parserR2 = [...]int{
|
||||
|
||||
0, 0, 1, 1, 2, 1, 1, 3, 3, 1,
|
||||
1, 1, 2, 3, 1, 4, 4, 0, 3, 1,
|
||||
1,
|
||||
}
|
||||
var parserChk = [...]int{
|
||||
|
||||
-1000, -7, -4, -5, -3, -2, 17, 4, -5, -1,
|
||||
8, -4, 15, 16, 13, 14, 5, 13, -1, -1,
|
||||
8, 11, -1, 9, -6, -1, -1, 9, 10, 12,
|
||||
-1,
|
||||
}
|
||||
var parserDef = [...]int{
|
||||
|
||||
1, -2, 2, 3, 5, 6, 20, 0, 4, 0,
|
||||
0, 9, 10, 11, 0, 14, 7, 0, 0, 12,
|
||||
17, 0, 13, 8, 0, 19, 0, 15, 0, 16,
|
||||
18,
|
||||
}
|
||||
var parserTok1 = [...]int{
|
||||
|
||||
1,
|
||||
}
|
||||
var parserTok2 = [...]int{
|
||||
|
||||
2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
|
||||
12, 13, 14, 15, 16, 17,
|
||||
}
|
||||
var parserTok3 = [...]int{
|
||||
0,
|
||||
}
|
||||
|
||||
var parserErrorMessages = [...]struct {
|
||||
state int
|
||||
token int
|
||||
msg string
|
||||
}{}
|
||||
|
||||
//line yaccpar:1
|
||||
|
||||
/* parser for yacc output */
|
||||
|
||||
var (
|
||||
parserDebug = 0
|
||||
parserErrorVerbose = false
|
||||
)
|
||||
|
||||
type parserLexer interface {
|
||||
Lex(lval *parserSymType) int
|
||||
Error(s string)
|
||||
}
|
||||
|
||||
type parserParser interface {
|
||||
Parse(parserLexer) int
|
||||
Lookahead() int
|
||||
}
|
||||
|
||||
type parserParserImpl struct {
|
||||
lval parserSymType
|
||||
stack [parserInitialStackSize]parserSymType
|
||||
char int
|
||||
}
|
||||
|
||||
func (p *parserParserImpl) Lookahead() int {
|
||||
return p.char
|
||||
}
|
||||
|
||||
func parserNewParser() parserParser {
|
||||
return &parserParserImpl{}
|
||||
}
|
||||
|
||||
const parserFlag = -1000
|
||||
|
||||
func parserTokname(c int) string {
|
||||
if c >= 1 && c-1 < len(parserToknames) {
|
||||
if parserToknames[c-1] != "" {
|
||||
return parserToknames[c-1]
|
||||
}
|
||||
}
|
||||
return __yyfmt__.Sprintf("tok-%v", c)
|
||||
}
|
||||
|
||||
func parserStatname(s int) string {
|
||||
if s >= 0 && s < len(parserStatenames) {
|
||||
if parserStatenames[s] != "" {
|
||||
return parserStatenames[s]
|
||||
}
|
||||
}
|
||||
return __yyfmt__.Sprintf("state-%v", s)
|
||||
}
|
||||
|
||||
func parserErrorMessage(state, lookAhead int) string {
|
||||
const TOKSTART = 4
|
||||
|
||||
if !parserErrorVerbose {
|
||||
return "syntax error"
|
||||
}
|
||||
|
||||
for _, e := range parserErrorMessages {
|
||||
if e.state == state && e.token == lookAhead {
|
||||
return "syntax error: " + e.msg
|
||||
}
|
||||
}
|
||||
|
||||
res := "syntax error: unexpected " + parserTokname(lookAhead)
|
||||
|
||||
// To match Bison, suggest at most four expected tokens.
|
||||
expected := make([]int, 0, 4)
|
||||
|
||||
// Look for shiftable tokens.
|
||||
base := parserPact[state]
|
||||
for tok := TOKSTART; tok-1 < len(parserToknames); tok++ {
|
||||
if n := base + tok; n >= 0 && n < parserLast && parserChk[parserAct[n]] == tok {
|
||||
if len(expected) == cap(expected) {
|
||||
return res
|
||||
}
|
||||
expected = append(expected, tok)
|
||||
}
|
||||
}
|
||||
|
||||
if parserDef[state] == -2 {
|
||||
i := 0
|
||||
for parserExca[i] != -1 || parserExca[i+1] != state {
|
||||
i += 2
|
||||
}
|
||||
|
||||
// Look for tokens that we accept or reduce.
|
||||
for i += 2; parserExca[i] >= 0; i += 2 {
|
||||
tok := parserExca[i]
|
||||
if tok < TOKSTART || parserExca[i+1] == 0 {
|
||||
continue
|
||||
}
|
||||
if len(expected) == cap(expected) {
|
||||
return res
|
||||
}
|
||||
expected = append(expected, tok)
|
||||
}
|
||||
|
||||
// If the default action is to accept or reduce, give up.
|
||||
if parserExca[i+1] != 0 {
|
||||
return res
|
||||
}
|
||||
}
|
||||
|
||||
for i, tok := range expected {
|
||||
if i == 0 {
|
||||
res += ", expecting "
|
||||
} else {
|
||||
res += " or "
|
||||
}
|
||||
res += parserTokname(tok)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func parserlex1(lex parserLexer, lval *parserSymType) (char, token int) {
|
||||
token = 0
|
||||
char = lex.Lex(lval)
|
||||
if char <= 0 {
|
||||
token = parserTok1[0]
|
||||
goto out
|
||||
}
|
||||
if char < len(parserTok1) {
|
||||
token = parserTok1[char]
|
||||
goto out
|
||||
}
|
||||
if char >= parserPrivate {
|
||||
if char < parserPrivate+len(parserTok2) {
|
||||
token = parserTok2[char-parserPrivate]
|
||||
goto out
|
||||
}
|
||||
}
|
||||
for i := 0; i < len(parserTok3); i += 2 {
|
||||
token = parserTok3[i+0]
|
||||
if token == char {
|
||||
token = parserTok3[i+1]
|
||||
goto out
|
||||
}
|
||||
}
|
||||
|
||||
out:
|
||||
if token == 0 {
|
||||
token = parserTok2[1] /* unknown char */
|
||||
}
|
||||
if parserDebug >= 3 {
|
||||
__yyfmt__.Printf("lex %s(%d)\n", parserTokname(token), uint(char))
|
||||
}
|
||||
return char, token
|
||||
}
|
||||
|
||||
func parserParse(parserlex parserLexer) int {
|
||||
return parserNewParser().Parse(parserlex)
|
||||
}
|
||||
|
||||
func (parserrcvr *parserParserImpl) Parse(parserlex parserLexer) int {
|
||||
var parsern int
|
||||
var parserVAL parserSymType
|
||||
var parserDollar []parserSymType
|
||||
_ = parserDollar // silence set and not used
|
||||
parserS := parserrcvr.stack[:]
|
||||
|
||||
Nerrs := 0 /* number of errors */
|
||||
Errflag := 0 /* error recovery flag */
|
||||
parserstate := 0
|
||||
parserrcvr.char = -1
|
||||
parsertoken := -1 // parserrcvr.char translated into internal numbering
|
||||
defer func() {
|
||||
// Make sure we report no lookahead when not parsing.
|
||||
parserstate = -1
|
||||
parserrcvr.char = -1
|
||||
parsertoken = -1
|
||||
}()
|
||||
parserp := -1
|
||||
goto parserstack
|
||||
|
||||
ret0:
|
||||
return 0
|
||||
|
||||
ret1:
|
||||
return 1
|
||||
|
||||
parserstack:
|
||||
/* put a state and value onto the stack */
|
||||
if parserDebug >= 4 {
|
||||
__yyfmt__.Printf("char %v in %v\n", parserTokname(parsertoken), parserStatname(parserstate))
|
||||
}
|
||||
|
||||
parserp++
|
||||
if parserp >= len(parserS) {
|
||||
nyys := make([]parserSymType, len(parserS)*2)
|
||||
copy(nyys, parserS)
|
||||
parserS = nyys
|
||||
}
|
||||
parserS[parserp] = parserVAL
|
||||
parserS[parserp].yys = parserstate
|
||||
|
||||
parsernewstate:
|
||||
parsern = parserPact[parserstate]
|
||||
if parsern <= parserFlag {
|
||||
goto parserdefault /* simple state */
|
||||
}
|
||||
if parserrcvr.char < 0 {
|
||||
parserrcvr.char, parsertoken = parserlex1(parserlex, &parserrcvr.lval)
|
||||
}
|
||||
parsern += parsertoken
|
||||
if parsern < 0 || parsern >= parserLast {
|
||||
goto parserdefault
|
||||
}
|
||||
parsern = parserAct[parsern]
|
||||
if parserChk[parsern] == parsertoken { /* valid shift */
|
||||
parserrcvr.char = -1
|
||||
parsertoken = -1
|
||||
parserVAL = parserrcvr.lval
|
||||
parserstate = parsern
|
||||
if Errflag > 0 {
|
||||
Errflag--
|
||||
}
|
||||
goto parserstack
|
||||
}
|
||||
|
||||
parserdefault:
|
||||
/* default state action */
|
||||
parsern = parserDef[parserstate]
|
||||
if parsern == -2 {
|
||||
if parserrcvr.char < 0 {
|
||||
parserrcvr.char, parsertoken = parserlex1(parserlex, &parserrcvr.lval)
|
||||
}
|
||||
|
||||
/* look through exception table */
|
||||
xi := 0
|
||||
for {
|
||||
if parserExca[xi+0] == -1 && parserExca[xi+1] == parserstate {
|
||||
break
|
||||
}
|
||||
xi += 2
|
||||
}
|
||||
for xi += 2; ; xi += 2 {
|
||||
parsern = parserExca[xi+0]
|
||||
if parsern < 0 || parsern == parsertoken {
|
||||
break
|
||||
}
|
||||
}
|
||||
parsern = parserExca[xi+1]
|
||||
if parsern < 0 {
|
||||
goto ret0
|
||||
}
|
||||
}
|
||||
if parsern == 0 {
|
||||
/* error ... attempt to resume parsing */
|
||||
switch Errflag {
|
||||
case 0: /* brand new error */
|
||||
parserlex.Error(parserErrorMessage(parserstate, parsertoken))
|
||||
Nerrs++
|
||||
if parserDebug >= 1 {
|
||||
__yyfmt__.Printf("%s", parserStatname(parserstate))
|
||||
__yyfmt__.Printf(" saw %s\n", parserTokname(parsertoken))
|
||||
}
|
||||
fallthrough
|
||||
|
||||
case 1, 2: /* incompletely recovered error ... try again */
|
||||
Errflag = 3
|
||||
|
||||
/* find a state where "error" is a legal shift action */
|
||||
for parserp >= 0 {
|
||||
parsern = parserPact[parserS[parserp].yys] + parserErrCode
|
||||
if parsern >= 0 && parsern < parserLast {
|
||||
parserstate = parserAct[parsern] /* simulate a shift of "error" */
|
||||
if parserChk[parserstate] == parserErrCode {
|
||||
goto parserstack
|
||||
}
|
||||
}
|
||||
|
||||
/* the current p has no shift on "error", pop stack */
|
||||
if parserDebug >= 2 {
|
||||
__yyfmt__.Printf("error recovery pops state %d\n", parserS[parserp].yys)
|
||||
}
|
||||
parserp--
|
||||
}
|
||||
/* there is no state on the stack with an error shift ... abort */
|
||||
goto ret1
|
||||
|
||||
case 3: /* no shift yet; clobber input char */
|
||||
if parserDebug >= 2 {
|
||||
__yyfmt__.Printf("error recovery discards %s\n", parserTokname(parsertoken))
|
||||
}
|
||||
if parsertoken == parserEofCode {
|
||||
goto ret1
|
||||
}
|
||||
parserrcvr.char = -1
|
||||
parsertoken = -1
|
||||
goto parsernewstate /* try again in the same state */
|
||||
}
|
||||
}
|
||||
|
||||
/* reduction by production parsern */
|
||||
if parserDebug >= 2 {
|
||||
__yyfmt__.Printf("reduce %v in:\n\t%v\n", parsern, parserStatname(parserstate))
|
||||
}
|
||||
|
||||
parsernt := parsern
|
||||
parserpt := parserp
|
||||
_ = parserpt // guard against "declared and not used"
|
||||
|
||||
parserp -= parserR2[parsern]
|
||||
// parserp is now the index of $0. Perform the default action. Iff the
|
||||
// reduced production is ε, $1 is possibly out of range.
|
||||
if parserp+1 >= len(parserS) {
|
||||
nyys := make([]parserSymType, len(parserS)*2)
|
||||
copy(nyys, parserS)
|
||||
parserS = nyys
|
||||
}
|
||||
parserVAL = parserS[parserp+1]
|
||||
|
||||
/* consult goto table to find next state */
|
||||
parsern = parserR1[parsern]
|
||||
parserg := parserPgo[parsern]
|
||||
parserj := parserg + parserS[parserp].yys + 1
|
||||
|
||||
if parserj >= parserLast {
|
||||
parserstate = parserAct[parserg]
|
||||
} else {
|
||||
parserstate = parserAct[parserj]
|
||||
if parserChk[parserstate] != -parsern {
|
||||
parserstate = parserAct[parserg]
|
||||
}
|
||||
}
|
||||
// dummy call; replaced with literal code
|
||||
switch parsernt {
|
||||
|
||||
case 1:
|
||||
parserDollar = parserS[parserpt-0 : parserpt+1]
|
||||
//line lang.y:36
|
||||
{
|
||||
parserResult = &ast.LiteralNode{
|
||||
Value: "",
|
||||
Typex: ast.TypeString,
|
||||
Posx: ast.Pos{Column: 1, Line: 1},
|
||||
}
|
||||
}
|
||||
case 2:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:44
|
||||
{
|
||||
parserResult = parserDollar[1].node
|
||||
|
||||
// We want to make sure that the top value is always an Output
|
||||
// so that the return value is always a string, list of map from an
|
||||
// interpolation.
|
||||
//
|
||||
// The logic for checking for a LiteralNode is a little annoying
|
||||
// because functionally the AST is the same, but we do that because
|
||||
// it makes for an easy literal check later (to check if a string
|
||||
// has any interpolations).
|
||||
if _, ok := parserDollar[1].node.(*ast.Output); !ok {
|
||||
if n, ok := parserDollar[1].node.(*ast.LiteralNode); !ok || n.Typex != ast.TypeString {
|
||||
parserResult = &ast.Output{
|
||||
Exprs: []ast.Node{parserDollar[1].node},
|
||||
Posx: parserDollar[1].node.Pos(),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
case 3:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:67
|
||||
{
|
||||
parserVAL.node = parserDollar[1].node
|
||||
}
|
||||
case 4:
|
||||
parserDollar = parserS[parserpt-2 : parserpt+1]
|
||||
//line lang.y:71
|
||||
{
|
||||
var result []ast.Node
|
||||
if c, ok := parserDollar[1].node.(*ast.Output); ok {
|
||||
result = append(c.Exprs, parserDollar[2].node)
|
||||
} else {
|
||||
result = []ast.Node{parserDollar[1].node, parserDollar[2].node}
|
||||
}
|
||||
|
||||
parserVAL.node = &ast.Output{
|
||||
Exprs: result,
|
||||
Posx: result[0].Pos(),
|
||||
}
|
||||
}
|
||||
case 5:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:87
|
||||
{
|
||||
parserVAL.node = parserDollar[1].node
|
||||
}
|
||||
case 6:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:91
|
||||
{
|
||||
parserVAL.node = parserDollar[1].node
|
||||
}
|
||||
case 7:
|
||||
parserDollar = parserS[parserpt-3 : parserpt+1]
|
||||
//line lang.y:97
|
||||
{
|
||||
parserVAL.node = parserDollar[2].node
|
||||
}
|
||||
case 8:
|
||||
parserDollar = parserS[parserpt-3 : parserpt+1]
|
||||
//line lang.y:103
|
||||
{
|
||||
parserVAL.node = parserDollar[2].node
|
||||
}
|
||||
case 9:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:107
|
||||
{
|
||||
parserVAL.node = parserDollar[1].node
|
||||
}
|
||||
case 10:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:111
|
||||
{
|
||||
parserVAL.node = &ast.LiteralNode{
|
||||
Value: parserDollar[1].token.Value.(int),
|
||||
Typex: ast.TypeInt,
|
||||
Posx: parserDollar[1].token.Pos,
|
||||
}
|
||||
}
|
||||
case 11:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:119
|
||||
{
|
||||
parserVAL.node = &ast.LiteralNode{
|
||||
Value: parserDollar[1].token.Value.(float64),
|
||||
Typex: ast.TypeFloat,
|
||||
Posx: parserDollar[1].token.Pos,
|
||||
}
|
||||
}
|
||||
case 12:
|
||||
parserDollar = parserS[parserpt-2 : parserpt+1]
|
||||
//line lang.y:127
|
||||
{
|
||||
// This is REALLY jank. We assume that a singular ARITH_OP
|
||||
// means 0 ARITH_OP expr, which... is weird. We don't want to
|
||||
// support *, /, etc., only -. We should fix this later with a pure
|
||||
// Go scanner/parser.
|
||||
if parserDollar[1].token.Value.(ast.ArithmeticOp) != ast.ArithmeticOpSub {
|
||||
panic("Unary - is only allowed")
|
||||
}
|
||||
|
||||
parserVAL.node = &ast.Arithmetic{
|
||||
Op: parserDollar[1].token.Value.(ast.ArithmeticOp),
|
||||
Exprs: []ast.Node{
|
||||
&ast.LiteralNode{Value: 0, Typex: ast.TypeInt},
|
||||
parserDollar[2].node,
|
||||
},
|
||||
Posx: parserDollar[2].node.Pos(),
|
||||
}
|
||||
}
|
||||
case 13:
|
||||
parserDollar = parserS[parserpt-3 : parserpt+1]
|
||||
//line lang.y:146
|
||||
{
|
||||
parserVAL.node = &ast.Arithmetic{
|
||||
Op: parserDollar[2].token.Value.(ast.ArithmeticOp),
|
||||
Exprs: []ast.Node{parserDollar[1].node, parserDollar[3].node},
|
||||
Posx: parserDollar[1].node.Pos(),
|
||||
}
|
||||
}
|
||||
case 14:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:154
|
||||
{
|
||||
parserVAL.node = &ast.VariableAccess{Name: parserDollar[1].token.Value.(string), Posx: parserDollar[1].token.Pos}
|
||||
}
|
||||
case 15:
|
||||
parserDollar = parserS[parserpt-4 : parserpt+1]
|
||||
//line lang.y:158
|
||||
{
|
||||
parserVAL.node = &ast.Call{Func: parserDollar[1].token.Value.(string), Args: parserDollar[3].nodeList, Posx: parserDollar[1].token.Pos}
|
||||
}
|
||||
case 16:
|
||||
parserDollar = parserS[parserpt-4 : parserpt+1]
|
||||
//line lang.y:162
|
||||
{
|
||||
parserVAL.node = &ast.Index{
|
||||
Target: &ast.VariableAccess{
|
||||
Name: parserDollar[1].token.Value.(string),
|
||||
Posx: parserDollar[1].token.Pos,
|
||||
},
|
||||
Key: parserDollar[3].node,
|
||||
Posx: parserDollar[1].token.Pos,
|
||||
}
|
||||
}
|
||||
case 17:
|
||||
parserDollar = parserS[parserpt-0 : parserpt+1]
|
||||
//line lang.y:174
|
||||
{
|
||||
parserVAL.nodeList = nil
|
||||
}
|
||||
case 18:
|
||||
parserDollar = parserS[parserpt-3 : parserpt+1]
|
||||
//line lang.y:178
|
||||
{
|
||||
parserVAL.nodeList = append(parserDollar[1].nodeList, parserDollar[3].node)
|
||||
}
|
||||
case 19:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:182
|
||||
{
|
||||
parserVAL.nodeList = append(parserVAL.nodeList, parserDollar[1].node)
|
||||
}
|
||||
case 20:
|
||||
parserDollar = parserS[parserpt-1 : parserpt+1]
|
||||
//line lang.y:188
|
||||
{
|
||||
parserVAL.node = &ast.LiteralNode{
|
||||
Value: parserDollar[1].token.Value.(string),
|
||||
Typex: ast.TypeString,
|
||||
Posx: parserDollar[1].token.Pos,
|
||||
}
|
||||
}
|
||||
}
|
||||
goto parserstack /* stack new state and value */
|
||||
}
|
|
@ -1,328 +0,0 @@
|
|||
|
||||
state 0
|
||||
$accept: .top $end
|
||||
top: . (1)
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
STRING shift 6
|
||||
. reduce 1 (src line 35)
|
||||
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 2
|
||||
literalModeValue goto 3
|
||||
top goto 1
|
||||
|
||||
state 1
|
||||
$accept: top.$end
|
||||
|
||||
$end accept
|
||||
. error
|
||||
|
||||
|
||||
state 2
|
||||
top: literalModeTop. (2)
|
||||
literalModeTop: literalModeTop.literalModeValue
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
STRING shift 6
|
||||
. reduce 2 (src line 43)
|
||||
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeValue goto 8
|
||||
|
||||
state 3
|
||||
literalModeTop: literalModeValue. (3)
|
||||
|
||||
. reduce 3 (src line 65)
|
||||
|
||||
|
||||
state 4
|
||||
literalModeValue: literal. (5)
|
||||
|
||||
. reduce 5 (src line 85)
|
||||
|
||||
|
||||
state 5
|
||||
literalModeValue: interpolation. (6)
|
||||
|
||||
. reduce 6 (src line 90)
|
||||
|
||||
|
||||
state 6
|
||||
literal: STRING. (20)
|
||||
|
||||
. reduce 20 (src line 186)
|
||||
|
||||
|
||||
state 7
|
||||
interpolation: PROGRAM_BRACKET_LEFT.expr PROGRAM_BRACKET_RIGHT
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. error
|
||||
|
||||
expr goto 9
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
|
||||
state 8
|
||||
literalModeTop: literalModeTop literalModeValue. (4)
|
||||
|
||||
. reduce 4 (src line 70)
|
||||
|
||||
|
||||
state 9
|
||||
interpolation: PROGRAM_BRACKET_LEFT expr.PROGRAM_BRACKET_RIGHT
|
||||
expr: expr.ARITH_OP expr
|
||||
|
||||
PROGRAM_BRACKET_RIGHT shift 16
|
||||
ARITH_OP shift 17
|
||||
. error
|
||||
|
||||
|
||||
state 10
|
||||
expr: PAREN_LEFT.expr PAREN_RIGHT
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. error
|
||||
|
||||
expr goto 18
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
|
||||
state 11
|
||||
literalModeTop: literalModeTop.literalModeValue
|
||||
expr: literalModeTop. (9)
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
STRING shift 6
|
||||
. reduce 9 (src line 106)
|
||||
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeValue goto 8
|
||||
|
||||
state 12
|
||||
expr: INTEGER. (10)
|
||||
|
||||
. reduce 10 (src line 110)
|
||||
|
||||
|
||||
state 13
|
||||
expr: FLOAT. (11)
|
||||
|
||||
. reduce 11 (src line 118)
|
||||
|
||||
|
||||
state 14
|
||||
expr: ARITH_OP.expr
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. error
|
||||
|
||||
expr goto 19
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
|
||||
state 15
|
||||
expr: IDENTIFIER. (14)
|
||||
expr: IDENTIFIER.PAREN_LEFT args PAREN_RIGHT
|
||||
expr: IDENTIFIER.SQUARE_BRACKET_LEFT expr SQUARE_BRACKET_RIGHT
|
||||
|
||||
PAREN_LEFT shift 20
|
||||
SQUARE_BRACKET_LEFT shift 21
|
||||
. reduce 14 (src line 153)
|
||||
|
||||
|
||||
state 16
|
||||
interpolation: PROGRAM_BRACKET_LEFT expr PROGRAM_BRACKET_RIGHT. (7)
|
||||
|
||||
. reduce 7 (src line 95)
|
||||
|
||||
|
||||
state 17
|
||||
expr: expr ARITH_OP.expr
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. error
|
||||
|
||||
expr goto 22
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
|
||||
state 18
|
||||
expr: PAREN_LEFT expr.PAREN_RIGHT
|
||||
expr: expr.ARITH_OP expr
|
||||
|
||||
PAREN_RIGHT shift 23
|
||||
ARITH_OP shift 17
|
||||
. error
|
||||
|
||||
|
||||
state 19
|
||||
expr: ARITH_OP expr. (12)
|
||||
expr: expr.ARITH_OP expr
|
||||
|
||||
. reduce 12 (src line 126)
|
||||
|
||||
|
||||
state 20
|
||||
expr: IDENTIFIER PAREN_LEFT.args PAREN_RIGHT
|
||||
args: . (17)
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. reduce 17 (src line 173)
|
||||
|
||||
expr goto 25
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
args goto 24
|
||||
|
||||
state 21
|
||||
expr: IDENTIFIER SQUARE_BRACKET_LEFT.expr SQUARE_BRACKET_RIGHT
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. error
|
||||
|
||||
expr goto 26
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
|
||||
state 22
|
||||
expr: expr.ARITH_OP expr
|
||||
expr: expr ARITH_OP expr. (13)
|
||||
|
||||
. reduce 13 (src line 145)
|
||||
|
||||
|
||||
state 23
|
||||
expr: PAREN_LEFT expr PAREN_RIGHT. (8)
|
||||
|
||||
. reduce 8 (src line 101)
|
||||
|
||||
|
||||
state 24
|
||||
expr: IDENTIFIER PAREN_LEFT args.PAREN_RIGHT
|
||||
args: args.COMMA expr
|
||||
|
||||
PAREN_RIGHT shift 27
|
||||
COMMA shift 28
|
||||
. error
|
||||
|
||||
|
||||
state 25
|
||||
expr: expr.ARITH_OP expr
|
||||
args: expr. (19)
|
||||
|
||||
ARITH_OP shift 17
|
||||
. reduce 19 (src line 181)
|
||||
|
||||
|
||||
state 26
|
||||
expr: expr.ARITH_OP expr
|
||||
expr: IDENTIFIER SQUARE_BRACKET_LEFT expr.SQUARE_BRACKET_RIGHT
|
||||
|
||||
SQUARE_BRACKET_RIGHT shift 29
|
||||
ARITH_OP shift 17
|
||||
. error
|
||||
|
||||
|
||||
state 27
|
||||
expr: IDENTIFIER PAREN_LEFT args PAREN_RIGHT. (15)
|
||||
|
||||
. reduce 15 (src line 157)
|
||||
|
||||
|
||||
state 28
|
||||
args: args COMMA.expr
|
||||
|
||||
PROGRAM_BRACKET_LEFT shift 7
|
||||
PAREN_LEFT shift 10
|
||||
ARITH_OP shift 14
|
||||
IDENTIFIER shift 15
|
||||
INTEGER shift 12
|
||||
FLOAT shift 13
|
||||
STRING shift 6
|
||||
. error
|
||||
|
||||
expr goto 30
|
||||
interpolation goto 5
|
||||
literal goto 4
|
||||
literalModeTop goto 11
|
||||
literalModeValue goto 3
|
||||
|
||||
state 29
|
||||
expr: IDENTIFIER SQUARE_BRACKET_LEFT expr SQUARE_BRACKET_RIGHT. (16)
|
||||
|
||||
. reduce 16 (src line 161)
|
||||
|
||||
|
||||
state 30
|
||||
expr: expr.ARITH_OP expr
|
||||
args: args COMMA expr. (18)
|
||||
|
||||
ARITH_OP shift 17
|
||||
. reduce 18 (src line 177)
|
||||
|
||||
|
||||
17 terminals, 8 nonterminals
|
||||
21 grammar rules, 31/2000 states
|
||||
0 shift/reduce, 0 reduce/reduce conflicts reported
|
||||
57 working sets used
|
||||
memory: parser 45/30000
|
||||
26 extra closures
|
||||
67 shift entries, 1 exceptions
|
||||
16 goto entries
|
||||
31 entries saved by goto default
|
||||
Optimizer space used: output 37/30000
|
||||
37 table entries, 1 zero
|
||||
maximum spread: 17, maximum offset: 28
|
|
@ -267,9 +267,11 @@ github.com/hashicorp/hcl/hcl/token
|
|||
github.com/hashicorp/hcl/json/parser
|
||||
github.com/hashicorp/hcl/json/scanner
|
||||
github.com/hashicorp/hcl/json/token
|
||||
# github.com/hashicorp/hil v0.0.0-20160711231837-1e86c6b523c5
|
||||
# github.com/hashicorp/hil v0.0.0-20200423225030-a18a1cd20038
|
||||
github.com/hashicorp/hil
|
||||
github.com/hashicorp/hil/ast
|
||||
github.com/hashicorp/hil/parser
|
||||
github.com/hashicorp/hil/scanner
|
||||
# github.com/hashicorp/mdns v1.0.1
|
||||
github.com/hashicorp/mdns
|
||||
# github.com/hashicorp/memberlist v0.2.2
|
||||
|
|
Loading…
Reference in New Issue