open-consul/agent/consul/internal_endpoint_test.go

2814 lines
76 KiB
Go
Raw Normal View History

2014-04-27 20:01:37 +00:00
package consul
import (
"encoding/base64"
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
"fmt"
2014-04-27 20:01:37 +00:00
"os"
"strings"
2014-04-27 20:01:37 +00:00
"testing"
2022-03-22 23:58:41 +00:00
"time"
"github.com/hashicorp/consul-net-rpc/net/rpc"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
msgpackrpc "github.com/hashicorp/consul-net-rpc/net-rpc-msgpackrpc"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/api"
2020-05-27 16:47:32 +00:00
"github.com/hashicorp/consul/lib/stringslice"
"github.com/hashicorp/consul/proto/pbpeering"
"github.com/hashicorp/consul/sdk/testutil"
"github.com/hashicorp/consul/sdk/testutil/retry"
"github.com/hashicorp/consul/testrpc"
"github.com/hashicorp/consul/types"
2014-04-27 20:01:37 +00:00
)
2014-04-28 21:44:36 +00:00
func TestInternal_NodeInfo(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServer(t)
codec := rpcClient(t, s1)
2014-04-27 20:01:37 +00:00
testrpc.WaitForLeader(t, s1.RPC, "dc1")
2014-04-27 20:01:37 +00:00
args := []*structs.RegisterRequest{
{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "db",
Service: "db",
Tags: []string{"primary"},
},
Check: &structs.HealthCheck{
Name: "db connect",
Status: api.HealthPassing,
ServiceID: "db",
},
2014-04-27 20:01:37 +00:00
},
{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.3",
PeerName: "peer1",
2014-04-27 20:01:37 +00:00
},
}
for _, reg := range args {
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", reg, nil)
require.NoError(t, err)
2014-04-27 20:01:37 +00:00
}
t.Run("get local node", func(t *testing.T) {
var out structs.IndexedNodeDump
req := structs.NodeSpecificRequest{
Datacenter: "dc1",
Node: "foo",
}
if err := msgpackrpc.CallWithCodec(codec, "Internal.NodeInfo", &req, &out); err != nil {
t.Fatalf("err: %v", err)
}
nodes := out.Dump
if len(nodes) != 1 {
t.Fatalf("Bad: %v", nodes)
}
if nodes[0].Node != "foo" {
t.Fatalf("Bad: %v", nodes[0])
}
if !stringslice.Contains(nodes[0].Services[0].Tags, "primary") {
t.Fatalf("Bad: %v", nodes[0])
}
if nodes[0].Checks[0].Status != api.HealthPassing {
t.Fatalf("Bad: %v", nodes[0])
}
})
t.Run("get peered node", func(t *testing.T) {
var out structs.IndexedNodeDump
req := structs.NodeSpecificRequest{
Datacenter: "dc1",
Node: "foo",
PeerName: "peer1",
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.NodeInfo", &req, &out))
nodes := out.Dump
require.Equal(t, 1, len(nodes))
require.Equal(t, "foo", nodes[0].Node)
require.Equal(t, "peer1", nodes[0].PeerName)
})
2014-04-27 20:01:37 +00:00
}
2014-04-28 21:44:36 +00:00
func TestInternal_NodeDump(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServer(t)
codec := rpcClient(t, s1)
2014-04-27 20:01:37 +00:00
testrpc.WaitForLeader(t, s1.RPC, "dc1")
2014-04-27 20:01:37 +00:00
args := []*structs.RegisterRequest{
{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "db",
Service: "db",
Tags: []string{"primary"},
},
Check: &structs.HealthCheck{
Name: "db connect",
Status: api.HealthPassing,
ServiceID: "db",
},
2014-04-27 20:01:37 +00:00
},
{
Datacenter: "dc1",
Node: "bar",
Address: "127.0.0.2",
Service: &structs.NodeService{
ID: "db",
Service: "db",
Tags: []string{"replica"},
},
Check: &structs.HealthCheck{
Name: "db connect",
Status: api.HealthWarning,
ServiceID: "db",
},
2014-04-27 20:01:37 +00:00
},
{
Datacenter: "dc1",
Node: "foo-peer",
Address: "127.0.0.3",
PeerName: "peer1",
2014-04-27 20:01:37 +00:00
},
}
for _, reg := range args {
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", reg, nil)
require.NoError(t, err)
2014-04-27 20:01:37 +00:00
}
err := s1.fsm.State().PeeringWrite(1, &pbpeering.Peering{
ID: "9e650110-ac74-4c5a-a6a8-9348b2bed4e9",
Name: "peer1",
})
require.NoError(t, err)
2014-04-27 20:01:37 +00:00
var out2 structs.IndexedNodeDump
req := structs.DCSpecificRequest{
Datacenter: "dc1",
}
if err := msgpackrpc.CallWithCodec(codec, "Internal.NodeDump", &req, &out2); err != nil {
2014-04-27 20:01:37 +00:00
t.Fatalf("err: %v", err)
}
nodes := out2.Dump
if len(nodes) != 3 {
t.Fatalf("Bad: %v", nodes)
}
var foundFoo, foundBar bool
for _, node := range nodes {
switch node.Node {
case "foo":
foundFoo = true
if !stringslice.Contains(node.Services[0].Tags, "primary") {
2014-04-27 20:01:37 +00:00
t.Fatalf("Bad: %v", nodes[0])
}
if node.Checks[0].Status != api.HealthPassing {
2014-04-27 20:01:37 +00:00
t.Fatalf("Bad: %v", nodes[0])
}
case "bar":
foundBar = true
if !stringslice.Contains(node.Services[0].Tags, "replica") {
2014-04-27 20:01:37 +00:00
t.Fatalf("Bad: %v", nodes[1])
}
if node.Checks[0].Status != api.HealthWarning {
2014-04-27 20:01:37 +00:00
t.Fatalf("Bad: %v", nodes[1])
}
default:
continue
}
}
if !foundFoo || !foundBar {
t.Fatalf("missing foo or bar")
}
require.Len(t, out2.ImportedDump, 1)
require.Equal(t, "peer1", out2.ImportedDump[0].PeerName)
require.Equal(t, "foo-peer", out2.ImportedDump[0].Node)
2014-04-27 20:01:37 +00:00
}
func TestInternal_NodeDump_Filter(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServer(t)
codec := rpcClient(t, s1)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
args := []*structs.RegisterRequest{
{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "db",
Service: "db",
Tags: []string{"primary"},
},
Check: &structs.HealthCheck{
Name: "db connect",
Status: api.HealthPassing,
ServiceID: "db",
},
},
{
Datacenter: "dc1",
Node: "bar",
Address: "127.0.0.2",
Service: &structs.NodeService{
ID: "db",
Service: "db",
Tags: []string{"replica"},
},
Check: &structs.HealthCheck{
Name: "db connect",
Status: api.HealthWarning,
ServiceID: "db",
},
},
{
Datacenter: "dc1",
Node: "foo-peer",
Address: "127.0.0.3",
PeerName: "peer1",
},
}
for _, reg := range args {
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", reg, nil)
require.NoError(t, err)
}
err := s1.fsm.State().PeeringWrite(1, &pbpeering.Peering{
ID: "9e650110-ac74-4c5a-a6a8-9348b2bed4e9",
Name: "peer1",
})
require.NoError(t, err)
t.Run("filter on the local node", func(t *testing.T) {
var out2 structs.IndexedNodeDump
req := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Filter: "primary in Services.Tags"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.NodeDump", &req, &out2))
nodes := out2.Dump
require.Len(t, nodes, 1)
require.Equal(t, "foo", nodes[0].Node)
})
t.Run("filter on imported dump", func(t *testing.T) {
var out3 structs.IndexedNodeDump
req2 := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Filter: "friend in PeerName"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.NodeDump", &req2, &out3))
require.Len(t, out3.Dump, 0)
require.Len(t, out3.ImportedDump, 0)
})
t.Run("filter look for peer nodes (non local nodes)", func(t *testing.T) {
var out3 structs.IndexedNodeDump
req2 := structs.DCSpecificRequest{
QueryOptions: structs.QueryOptions{Filter: "PeerName != \"\""},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.NodeDump", &req2, &out3))
require.Len(t, out3.Dump, 0)
require.Len(t, out3.ImportedDump, 1)
})
t.Run("filter look for a specific peer", func(t *testing.T) {
var out3 structs.IndexedNodeDump
req2 := structs.DCSpecificRequest{
QueryOptions: structs.QueryOptions{Filter: "PeerName == peer1"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.NodeDump", &req2, &out3))
require.Len(t, out3.Dump, 0)
require.Len(t, out3.ImportedDump, 1)
})
}
func TestInternal_KeyringOperation(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
key1 := "H1dfkSZOVnP/JUnaBfTzXg=="
keyBytes1, err := base64.StdEncoding.DecodeString(key1)
if err != nil {
t.Fatalf("err: %s", err)
}
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.SerfLANConfig.MemberlistConfig.SecretKey = keyBytes1
c.SerfWANConfig.MemberlistConfig.SecretKey = keyBytes1
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
var out structs.KeyringResponses
req := structs.KeyringRequest{
Operation: structs.KeyringList,
Datacenter: "dc1",
}
if err := msgpackrpc.CallWithCodec(codec, "Internal.KeyringOperation", &req, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Two responses (local lan/wan pools) from single-node cluster
if len(out.Responses) != 2 {
t.Fatalf("bad: %#v", out)
}
if _, ok := out.Responses[0].Keys[key1]; !ok {
t.Fatalf("bad: %#v", out)
}
wanResp, lanResp := 0, 0
for _, resp := range out.Responses {
if resp.WAN {
wanResp++
} else {
lanResp++
}
}
if lanResp != 1 || wanResp != 1 {
t.Fatalf("should have one lan and one wan response")
}
// Start a second agent to test cross-dc queries
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.SerfLANConfig.MemberlistConfig.SecretKey = keyBytes1
c.SerfWANConfig.MemberlistConfig.SecretKey = keyBytes1
c.Datacenter = "dc2"
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
// Try to join
2017-05-05 10:29:49 +00:00
joinWAN(t, s2, s1)
var out2 structs.KeyringResponses
req2 := structs.KeyringRequest{
Operation: structs.KeyringList,
}
if err := msgpackrpc.CallWithCodec(codec, "Internal.KeyringOperation", &req2, &out2); err != nil {
t.Fatalf("err: %v", err)
}
// 3 responses (one from each DC LAN, one from WAN) in two-node cluster
if len(out2.Responses) != 3 {
t.Fatalf("bad: %#v", out2)
}
wanResp, lanResp = 0, 0
for _, resp := range out2.Responses {
if resp.WAN {
wanResp++
} else {
lanResp++
}
}
if lanResp != 2 || wanResp != 1 {
t.Fatalf("should have two lan and one wan response")
}
}
func TestInternal_KeyringOperationList_LocalOnly(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
key1 := "H1dfkSZOVnP/JUnaBfTzXg=="
keyBytes1, err := base64.StdEncoding.DecodeString(key1)
if err != nil {
t.Fatalf("err: %s", err)
}
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.SerfLANConfig.MemberlistConfig.SecretKey = keyBytes1
c.SerfWANConfig.MemberlistConfig.SecretKey = keyBytes1
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Start a second agent to test cross-dc queries
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.SerfLANConfig.MemberlistConfig.SecretKey = keyBytes1
c.SerfWANConfig.MemberlistConfig.SecretKey = keyBytes1
c.Datacenter = "dc2"
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
// Try to join
joinWAN(t, s2, s1)
// --
// Try request with `LocalOnly` set to true
var out structs.KeyringResponses
req := structs.KeyringRequest{
Operation: structs.KeyringList,
LocalOnly: true,
}
if err := msgpackrpc.CallWithCodec(codec, "Internal.KeyringOperation", &req, &out); err != nil {
t.Fatalf("err: %v", err)
}
// 1 response (from this DC LAN)
if len(out.Responses) != 1 {
t.Fatalf("expected num responses to be 1, got %d; out is: %#v", len(out.Responses), out)
}
wanResp, lanResp := 0, 0
for _, resp := range out.Responses {
if resp.WAN {
wanResp++
} else {
lanResp++
}
}
if lanResp != 1 || wanResp != 0 {
t.Fatalf("should have 1 lan and 0 wan response, got (lan=%d) (wan=%d)", lanResp, wanResp)
}
// --
// Try same request again but with `LocalOnly` set to false
req.LocalOnly = false
if err := msgpackrpc.CallWithCodec(codec, "Internal.KeyringOperation", &req, &out); err != nil {
t.Fatalf("err: %v", err)
}
// 3 responses (one from each DC LAN, one from WAN)
if len(out.Responses) != 3 {
t.Fatalf("expected num responses to be 3, got %d; out is: %#v", len(out.Responses), out)
}
wanResp, lanResp = 0, 0
for _, resp := range out.Responses {
if resp.WAN {
wanResp++
} else {
lanResp++
}
}
if lanResp != 2 || wanResp != 1 {
t.Fatalf("should have 2 lan and 1 wan response, got (lan=%d) (wan=%d)", lanResp, wanResp)
}
}
func TestInternal_KeyringOperationWrite_LocalOnly(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
key1 := "H1dfkSZOVnP/JUnaBfTzXg=="
keyBytes1, err := base64.StdEncoding.DecodeString(key1)
if err != nil {
t.Fatalf("err: %s", err)
}
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.SerfLANConfig.MemberlistConfig.SecretKey = keyBytes1
c.SerfWANConfig.MemberlistConfig.SecretKey = keyBytes1
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Try request with `LocalOnly` set to true
var out structs.KeyringResponses
req := structs.KeyringRequest{
Operation: structs.KeyringRemove,
LocalOnly: true,
}
err = msgpackrpc.CallWithCodec(codec, "Internal.KeyringOperation", &req, &out)
if err == nil {
t.Fatalf("expected an error")
}
if !strings.Contains(err.Error(), "LocalOnly") {
t.Fatalf("expected error to contain string 'LocalOnly'. Got: %v", err)
}
}
2015-06-11 20:23:49 +00:00
func TestInternal_NodeInfo_FilterACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir, token, srv, codec := testACLFilterServer(t)
defer os.RemoveAll(dir)
defer srv.Shutdown()
defer codec.Close()
2015-06-11 20:23:49 +00:00
opt := structs.NodeSpecificRequest{
Datacenter: "dc1",
Node: srv.config.NodeName,
QueryOptions: structs.QueryOptions{Token: token},
}
2015-06-11 20:23:49 +00:00
reply := structs.IndexedNodeDump{}
if err := msgpackrpc.CallWithCodec(codec, "Internal.NodeInfo", &opt, &reply); err != nil {
t.Fatalf("err: %s", err)
}
2015-06-11 20:23:49 +00:00
for _, info := range reply.Dump {
found := false
for _, chk := range info.Checks {
if chk.ServiceName == "foo" {
found = true
}
2015-06-11 20:23:49 +00:00
if chk.ServiceName == "bar" {
t.Fatalf("bad: %#v", info.Checks)
}
2015-06-11 20:23:49 +00:00
}
if !found {
t.Fatalf("bad: %#v", info.Checks)
}
2015-06-11 20:23:49 +00:00
found = false
for _, svc := range info.Services {
if svc.Service == "foo" {
found = true
}
2015-06-11 20:23:49 +00:00
if svc.Service == "bar" {
t.Fatalf("bad: %#v", info.Services)
}
}
2015-06-11 20:23:49 +00:00
if !found {
t.Fatalf("bad: %#v", info.Services)
}
}
if !reply.QueryMeta.ResultsFilteredByACLs {
t.Fatal("ResultsFilteredByACLs should be true")
}
// We've already proven that we call the ACL filtering function so we
// test node filtering down in acl.go for node cases. This also proves
// that we respect the version 8 ACL flag, since the test server sets
// that to false (the regression value of *not* changing this is better
// for now until we change the sense of the version 8 ACL flag).
2015-06-11 20:23:49 +00:00
}
2015-06-11 20:23:49 +00:00
func TestInternal_NodeDump_FilterACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir, token, srv, codec := testACLFilterServer(t)
2015-06-11 20:23:49 +00:00
defer os.RemoveAll(dir)
defer srv.Shutdown()
defer codec.Close()
2015-06-11 20:23:49 +00:00
opt := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Token: token},
}
reply := structs.IndexedNodeDump{}
if err := msgpackrpc.CallWithCodec(codec, "Internal.NodeDump", &opt, &reply); err != nil {
2015-06-11 20:23:49 +00:00
t.Fatalf("err: %s", err)
}
for _, info := range reply.Dump {
found := false
for _, chk := range info.Checks {
if chk.ServiceName == "foo" {
found = true
}
2015-06-11 20:23:49 +00:00
if chk.ServiceName == "bar" {
t.Fatalf("bad: %#v", info.Checks)
}
2015-06-11 20:23:49 +00:00
}
if !found {
t.Fatalf("bad: %#v", info.Checks)
}
2015-06-11 20:23:49 +00:00
found = false
for _, svc := range info.Services {
if svc.Service == "foo" {
found = true
}
2015-06-11 20:23:49 +00:00
if svc.Service == "bar" {
t.Fatalf("bad: %#v", info.Services)
}
}
2015-06-11 20:23:49 +00:00
if !found {
t.Fatalf("bad: %#v", info.Services)
}
}
if !reply.QueryMeta.ResultsFilteredByACLs {
t.Fatal("ResultsFilteredByACLs should be true")
}
// We've already proven that we call the ACL filtering function so we
// test node filtering down in acl.go for node cases. This also proves
// that we respect the version 8 ACL flag, since the test server sets
// that to false (the regression value of *not* changing this is better
// for now until we change the sense of the version 8 ACL flag).
}
2015-06-18 01:57:17 +00:00
func TestInternal_EventFire_Token(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
2015-06-18 01:57:17 +00:00
dir, srv := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
c.ACLsEnabled = true
c.ACLInitialManagementToken = "root"
c.ACLResolverSettings.ACLDownPolicy = "deny"
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
2015-06-18 01:57:17 +00:00
})
defer os.RemoveAll(dir)
defer srv.Shutdown()
codec := rpcClient(t, srv)
defer codec.Close()
2015-06-18 01:57:17 +00:00
testrpc.WaitForLeader(t, srv.RPC, "dc1")
2015-06-18 01:57:17 +00:00
// No token is rejected
event := structs.EventFireRequest{
Name: "foo",
Datacenter: "dc1",
Payload: []byte("nope"),
}
err := msgpackrpc.CallWithCodec(codec, "Internal.EventFire", &event, nil)
if !acl.IsErrPermissionDenied(err) {
2015-06-18 01:57:17 +00:00
t.Fatalf("bad: %s", err)
}
// Root token is allowed to fire
event.Token = "root"
err = msgpackrpc.CallWithCodec(codec, "Internal.EventFire", &event, nil)
2015-06-18 01:57:17 +00:00
if err != nil {
t.Fatalf("err: %s", err)
}
}
func TestInternal_ServiceDump(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// prep the cluster with some data we can use in our filters
registerTestCatalogEntries(t, codec)
2020-08-05 22:07:11 +00:00
// Register a gateway config entry to ensure gateway-services is dumped
{
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: &structs.TerminatingGatewayConfigEntry{
Name: "terminating-gateway",
Kind: structs.TerminatingGateway,
Services: []structs.LinkedService{
{
Name: "api",
},
{
Name: "cache",
},
},
},
}
var configOutput bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &configOutput))
require.True(t, configOutput)
}
doRequest := func(t *testing.T, filter string) structs.IndexedNodesWithGateways {
t.Helper()
args := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Filter: filter},
}
var out structs.IndexedNodesWithGateways
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out))
2020-08-05 22:07:11 +00:00
// The GatewayServices dump is currently cannot be bexpr filtered
// so the response should be the same in all subtests
expectedGW := structs.GatewayServices{
{
Service: structs.NewServiceName("api", nil),
Gateway: structs.NewServiceName("terminating-gateway", nil),
2020-08-05 22:07:11 +00:00
GatewayKind: structs.ServiceKindTerminatingGateway,
},
{
Service: structs.NewServiceName("cache", nil),
Gateway: structs.NewServiceName("terminating-gateway", nil),
2020-08-05 22:07:11 +00:00
GatewayKind: structs.ServiceKindTerminatingGateway,
},
}
assert.Len(t, out.Gateways, 2)
assert.Equal(t, expectedGW[0].Service, out.Gateways[0].Service)
assert.Equal(t, expectedGW[0].Gateway, out.Gateways[0].Gateway)
assert.Equal(t, expectedGW[0].GatewayKind, out.Gateways[0].GatewayKind)
assert.Equal(t, expectedGW[1].Service, out.Gateways[1].Service)
assert.Equal(t, expectedGW[1].Gateway, out.Gateways[1].Gateway)
assert.Equal(t, expectedGW[1].GatewayKind, out.Gateways[1].GatewayKind)
return out
}
// Run the tests against the test server
t.Run("No Filter", func(t *testing.T) {
nodes := doRequest(t, "")
// redis (3), web (3), critical (1), warning (1) and consul (1)
2020-08-05 22:07:11 +00:00
require.Len(t, nodes.Nodes, 9)
})
t.Run("Filter Node foo and service version 1", func(t *testing.T) {
2020-08-05 22:07:11 +00:00
resp := doRequest(t, "Node.Node == foo and Service.Meta.version == 1")
require.Len(t, resp.Nodes, 1)
require.Equal(t, "redis", resp.Nodes[0].Service.Service)
require.Equal(t, "redisV1", resp.Nodes[0].Service.ID)
})
t.Run("Filter service web", func(t *testing.T) {
2020-08-05 22:07:11 +00:00
resp := doRequest(t, "Service.Service == web")
require.Len(t, resp.Nodes, 3)
})
}
func TestInternal_ServiceDump_Kind(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// prep the cluster with some data we can use in our filters
registerTestCatalogEntries(t, codec)
registerTestCatalogProxyEntries(t, codec)
doRequest := func(t *testing.T, kind structs.ServiceKind) structs.CheckServiceNodes {
t.Helper()
args := structs.ServiceDumpRequest{
Datacenter: "dc1",
ServiceKind: kind,
UseServiceKind: true,
}
var out structs.IndexedNodesWithGateways
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out))
return out.Nodes
}
// Run the tests against the test server
t.Run("Typical", func(t *testing.T) {
nodes := doRequest(t, structs.ServiceKindTypical)
// redis (3), web (3), critical (1), warning (1) and consul (1)
require.Len(t, nodes, 9)
})
t.Run("Terminating Gateway", func(t *testing.T) {
nodes := doRequest(t, structs.ServiceKindTerminatingGateway)
require.Len(t, nodes, 1)
require.Equal(t, "tg-gw", nodes[0].Service.Service)
require.Equal(t, "tg-gw-01", nodes[0].Service.ID)
})
t.Run("Mesh Gateway", func(t *testing.T) {
nodes := doRequest(t, structs.ServiceKindMeshGateway)
require.Len(t, nodes, 1)
require.Equal(t, "mg-gw", nodes[0].Service.Service)
require.Equal(t, "mg-gw-01", nodes[0].Service.ID)
})
t.Run("Connect Proxy", func(t *testing.T) {
nodes := doRequest(t, structs.ServiceKindConnectProxy)
require.Len(t, nodes, 1)
require.Equal(t, "web-proxy", nodes[0].Service.Service)
require.Equal(t, "web-proxy", nodes[0].Service.ID)
})
}
func TestInternal_ServiceDump_ACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir, s := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLInitialManagementToken = "root"
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
})
defer os.RemoveAll(dir)
defer s.Shutdown()
codec := rpcClient(t, s)
defer codec.Close()
testrpc.WaitForLeader(t, s.RPC, "dc1")
registrations := []*structs.RegisterRequest{
// Service `redis` on `node1`
{
Datacenter: "dc1",
Node: "node1",
ID: types.NodeID("e0155642-135d-4739-9853-a1ee6c9f945b"),
Address: "192.18.1.1",
Service: &structs.NodeService{
Kind: structs.ServiceKindTypical,
ID: "redis",
Service: "redis",
Port: 5678,
},
Check: &structs.HealthCheck{
Name: "redis check",
Status: api.HealthPassing,
ServiceID: "redis",
},
},
// Ingress gateway `igw` on `node2`
{
Datacenter: "dc1",
Node: "node2",
ID: types.NodeID("3a9d7530-20d4-443a-98d3-c10fe78f09f4"),
Address: "192.18.1.2",
Service: &structs.NodeService{
Kind: structs.ServiceKindIngressGateway,
ID: "igw",
Service: "igw",
},
Check: &structs.HealthCheck{
Name: "igw check",
Status: api.HealthPassing,
ServiceID: "igw",
},
},
}
for _, reg := range registrations {
reg.Token = "root"
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", reg, nil)
require.NoError(t, err)
}
{
req := structs.ConfigEntryRequest{
Datacenter: "dc1",
Entry: &structs.IngressGatewayConfigEntry{
Kind: structs.IngressGateway,
Name: "igw",
Listeners: []structs.IngressListener{
{
Port: 8765,
Protocol: "tcp",
Services: []structs.IngressService{
{Name: "redis"},
},
},
},
},
}
req.Token = "root"
var out bool
err := msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &out)
require.NoError(t, err)
}
tokenWithRules := func(t *testing.T, rules string) string {
t.Helper()
tok, err := upsertTestTokenWithPolicyRules(codec, "root", "dc1", rules)
require.NoError(t, err)
return tok.SecretID
}
t.Run("can read all", func(t *testing.T) {
token := tokenWithRules(t, `
node_prefix "" {
policy = "read"
}
service_prefix "" {
policy = "read"
}
`)
args := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Token: token},
}
var out structs.IndexedNodesWithGateways
err := msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out)
require.NoError(t, err)
require.NotEmpty(t, out.Nodes)
require.NotEmpty(t, out.Gateways)
require.False(t, out.QueryMeta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be false")
})
t.Run("cannot read service node", func(t *testing.T) {
token := tokenWithRules(t, `
node "node1" {
policy = "deny"
}
service "redis" {
policy = "read"
}
`)
args := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Token: token},
}
var out structs.IndexedNodesWithGateways
err := msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out)
require.NoError(t, err)
require.Empty(t, out.Nodes)
require.True(t, out.QueryMeta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be true")
})
t.Run("cannot read service", func(t *testing.T) {
token := tokenWithRules(t, `
node "node1" {
policy = "read"
}
service "redis" {
policy = "deny"
}
`)
args := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Token: token},
}
var out structs.IndexedNodesWithGateways
err := msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out)
require.NoError(t, err)
require.Empty(t, out.Nodes)
require.True(t, out.QueryMeta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be true")
})
t.Run("cannot read gateway node", func(t *testing.T) {
token := tokenWithRules(t, `
node "node2" {
policy = "deny"
}
service "mgw" {
policy = "read"
}
`)
args := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Token: token},
}
var out structs.IndexedNodesWithGateways
err := msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out)
require.NoError(t, err)
require.Empty(t, out.Gateways)
require.True(t, out.QueryMeta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be true")
})
t.Run("cannot read gateway", func(t *testing.T) {
token := tokenWithRules(t, `
node "node2" {
policy = "read"
}
service "mgw" {
policy = "deny"
}
`)
args := structs.DCSpecificRequest{
Datacenter: "dc1",
QueryOptions: structs.QueryOptions{Token: token},
}
var out structs.IndexedNodesWithGateways
err := msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out)
require.NoError(t, err)
require.Empty(t, out.Gateways)
require.True(t, out.QueryMeta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be true")
})
}
func TestInternal_GatewayServiceDump_Terminating(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
// Register gateway and two service instances that will be associated with it
{
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "terminating-gateway",
Service: "terminating-gateway",
Kind: structs.ServiceKindTerminatingGateway,
Port: 443,
},
Check: &structs.HealthCheck{
Name: "terminating connect",
Status: api.HealthPassing,
ServiceID: "terminating-gateway",
},
}
var out struct{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "bar",
Address: "127.0.0.2",
Service: &structs.NodeService{
ID: "db",
Service: "db",
},
Check: &structs.HealthCheck{
Name: "db-warning",
Status: api.HealthWarning,
ServiceID: "db",
},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "baz",
Address: "127.0.0.3",
Service: &structs.NodeService{
ID: "db2",
Service: "db",
},
Check: &structs.HealthCheck{
Name: "db2-passing",
Status: api.HealthPassing,
ServiceID: "db2",
},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
}
// Register terminating-gateway config entry, linking it to db, api, and redis (dne)
{
args := &structs.TerminatingGatewayConfigEntry{
Name: "terminating-gateway",
Kind: structs.TerminatingGateway,
Services: []structs.LinkedService{
{
Name: "db",
},
{
Name: "redis",
CAFile: "/etc/certs/ca.pem",
CertFile: "/etc/certs/cert.pem",
KeyFile: "/etc/certs/key.pem",
},
},
}
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: args,
}
var configOutput bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &configOutput))
require.True(t, configOutput)
}
var out structs.IndexedServiceDump
req := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "terminating-gateway",
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.GatewayServiceDump", &req, &out))
dump := out.Dump
// Reset raft indices to facilitate assertion
for i := 0; i < len(dump); i++ {
svc := dump[i]
if svc.Node != nil {
svc.Node.RaftIndex = structs.RaftIndex{}
}
if svc.Service != nil {
svc.Service.RaftIndex = structs.RaftIndex{}
}
if len(svc.Checks) > 0 && svc.Checks[0] != nil {
svc.Checks[0].RaftIndex = structs.RaftIndex{}
}
if svc.GatewayService != nil {
svc.GatewayService.RaftIndex = structs.RaftIndex{}
}
}
expect := structs.ServiceDump{
{
Node: &structs.Node{
Node: "baz",
Partition: structs.NodeEnterpriseMetaInDefaultPartition().PartitionOrEmpty(),
Address: "127.0.0.3",
Datacenter: "dc1",
},
Service: &structs.NodeService{
ID: "db2",
Service: "db",
Weights: &structs.Weights{
Passing: 1,
Warning: 1,
},
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
Checks: structs.HealthChecks{
{
Node: "baz",
CheckID: types.CheckID("db2-passing"),
Name: "db2-passing",
Status: "passing",
ServiceID: "db2",
ServiceName: "db",
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
},
GatewayService: &structs.GatewayService{
Gateway: structs.NewServiceName("terminating-gateway", nil),
Service: structs.NewServiceName("db", nil),
GatewayKind: "terminating-gateway",
ServiceKind: structs.GatewayServiceKindService,
},
},
{
Node: &structs.Node{
Node: "bar",
Partition: structs.NodeEnterpriseMetaInDefaultPartition().PartitionOrEmpty(),
Address: "127.0.0.2",
Datacenter: "dc1",
},
Service: &structs.NodeService{
ID: "db",
Service: "db",
Weights: &structs.Weights{
Passing: 1,
Warning: 1,
},
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
Checks: structs.HealthChecks{
{
Node: "bar",
CheckID: types.CheckID("db-warning"),
Name: "db-warning",
Status: "warning",
ServiceID: "db",
ServiceName: "db",
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
},
GatewayService: &structs.GatewayService{
Gateway: structs.NewServiceName("terminating-gateway", nil),
Service: structs.NewServiceName("db", nil),
GatewayKind: "terminating-gateway",
ServiceKind: structs.GatewayServiceKindService,
},
},
{
// Only GatewayService should be returned when linked service isn't registered
GatewayService: &structs.GatewayService{
Gateway: structs.NewServiceName("terminating-gateway", nil),
Service: structs.NewServiceName("redis", nil),
GatewayKind: "terminating-gateway",
CAFile: "/etc/certs/ca.pem",
CertFile: "/etc/certs/cert.pem",
KeyFile: "/etc/certs/key.pem",
},
},
}
assert.ElementsMatch(t, expect, dump)
}
func TestInternal_GatewayServiceDump_Terminating_ACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLInitialManagementToken = "root"
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1", testrpc.WithToken("root"))
// Create the ACL.
token, err := upsertTestTokenWithPolicyRules(codec, "root", "dc1", `
service "db" { policy = "read" }
service "terminating-gateway" { policy = "read" }
node_prefix "" { policy = "read" }`)
require.NoError(t, err)
// Register gateway and two service instances that will be associated with it
{
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "terminating-gateway",
Service: "terminating-gateway",
Kind: structs.ServiceKindTerminatingGateway,
Port: 443,
},
Check: &structs.HealthCheck{
Name: "terminating connect",
Status: api.HealthPassing,
ServiceID: "terminating-gateway",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
var out struct{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "bar",
Address: "127.0.0.2",
Service: &structs.NodeService{
ID: "db",
Service: "db",
},
Check: &structs.HealthCheck{
Name: "db-warning",
Status: api.HealthWarning,
ServiceID: "db",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "baz",
Address: "127.0.0.3",
Service: &structs.NodeService{
ID: "api",
Service: "api",
},
Check: &structs.HealthCheck{
Name: "api-passing",
Status: api.HealthPassing,
ServiceID: "api",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
}
// Register terminating-gateway config entry, linking it to db and api
{
args := &structs.TerminatingGatewayConfigEntry{
Name: "terminating-gateway",
Kind: structs.TerminatingGateway,
Services: []structs.LinkedService{
{Name: "db"},
{Name: "api"},
},
}
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: args,
WriteRequest: structs.WriteRequest{Token: "root"},
}
var out bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &out))
require.True(t, out)
}
var out structs.IndexedServiceDump
// Not passing a token with service:read on Gateway leads to PermissionDenied
req := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "terminating-gateway",
}
err = msgpackrpc.CallWithCodec(codec, "Internal.GatewayServiceDump", &req, &out)
require.Error(t, err, acl.ErrPermissionDenied)
// Passing a token without service:read on api leads to it getting filtered out
req = structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "terminating-gateway",
QueryOptions: structs.QueryOptions{Token: token.SecretID},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.GatewayServiceDump", &req, &out))
nodes := out.Dump
require.Len(t, nodes, 1)
require.Equal(t, nodes[0].Node.Node, "bar")
require.Equal(t, nodes[0].Service.Service, "db")
require.Equal(t, nodes[0].Checks[0].Status, api.HealthWarning)
require.True(t, out.QueryMeta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be true")
}
func TestInternal_GatewayServiceDump_Ingress(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
// Register gateway and service instance that will be associated with it
{
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "ingress-gateway",
Service: "ingress-gateway",
Kind: structs.ServiceKindIngressGateway,
Port: 8443,
},
Check: &structs.HealthCheck{
Name: "ingress connect",
Status: api.HealthPassing,
ServiceID: "ingress-gateway",
},
}
var regOutput struct{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &regOutput))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "bar",
Address: "127.0.0.2",
Service: &structs.NodeService{
ID: "db",
Service: "db",
},
Check: &structs.HealthCheck{
Name: "db-warning",
Status: api.HealthWarning,
ServiceID: "db",
},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &regOutput))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "baz",
Address: "127.0.0.3",
Service: &structs.NodeService{
ID: "db2",
Service: "db",
},
Check: &structs.HealthCheck{
Name: "db2-passing",
Status: api.HealthPassing,
ServiceID: "db2",
},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &regOutput))
// Register ingress-gateway config entry, linking it to db and redis (dne)
args := &structs.IngressGatewayConfigEntry{
Name: "ingress-gateway",
Kind: structs.IngressGateway,
Listeners: []structs.IngressListener{
{
Port: 8888,
Protocol: "tcp",
Services: []structs.IngressService{
{
Name: "db",
},
},
},
{
Port: 8080,
Protocol: "tcp",
Services: []structs.IngressService{
{
Name: "web",
},
},
},
},
}
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: args,
}
var configOutput bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &configOutput))
require.True(t, configOutput)
}
var out structs.IndexedServiceDump
req := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "ingress-gateway",
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.GatewayServiceDump", &req, &out))
dump := out.Dump
// Reset raft indices to facilitate assertion
for i := 0; i < len(dump); i++ {
svc := dump[i]
if svc.Node != nil {
svc.Node.RaftIndex = structs.RaftIndex{}
}
if svc.Service != nil {
svc.Service.RaftIndex = structs.RaftIndex{}
}
if len(svc.Checks) > 0 && svc.Checks[0] != nil {
svc.Checks[0].RaftIndex = structs.RaftIndex{}
}
if svc.GatewayService != nil {
svc.GatewayService.RaftIndex = structs.RaftIndex{}
}
}
expect := structs.ServiceDump{
{
Node: &structs.Node{
Node: "bar",
Partition: structs.NodeEnterpriseMetaInDefaultPartition().PartitionOrEmpty(),
Address: "127.0.0.2",
Datacenter: "dc1",
},
Service: &structs.NodeService{
Kind: "",
ID: "db",
Service: "db",
Weights: &structs.Weights{
Passing: 1,
Warning: 1,
},
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
Checks: structs.HealthChecks{
{
Node: "bar",
CheckID: types.CheckID("db-warning"),
Name: "db-warning",
Status: "warning",
ServiceID: "db",
ServiceName: "db",
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
},
GatewayService: &structs.GatewayService{
Gateway: structs.NewServiceName("ingress-gateway", nil),
Service: structs.NewServiceName("db", nil),
GatewayKind: "ingress-gateway",
Port: 8888,
Protocol: "tcp",
},
},
{
Node: &structs.Node{
Node: "baz",
Partition: structs.NodeEnterpriseMetaInDefaultPartition().PartitionOrEmpty(),
Address: "127.0.0.3",
Datacenter: "dc1",
},
Service: &structs.NodeService{
ID: "db2",
Service: "db",
Weights: &structs.Weights{
Passing: 1,
Warning: 1,
},
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
Checks: structs.HealthChecks{
{
Node: "baz",
CheckID: types.CheckID("db2-passing"),
Name: "db2-passing",
Status: "passing",
ServiceID: "db2",
ServiceName: "db",
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
},
GatewayService: &structs.GatewayService{
Gateway: structs.NewServiceName("ingress-gateway", nil),
Service: structs.NewServiceName("db", nil),
GatewayKind: "ingress-gateway",
Port: 8888,
Protocol: "tcp",
},
},
{
// Only GatewayService should be returned when upstream isn't registered
GatewayService: &structs.GatewayService{
Gateway: structs.NewServiceName("ingress-gateway", nil),
Service: structs.NewServiceName("web", nil),
GatewayKind: "ingress-gateway",
Port: 8080,
Protocol: "tcp",
},
},
}
assert.ElementsMatch(t, expect, dump)
}
func TestInternal_GatewayServiceDump_Ingress_ACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLInitialManagementToken = "root"
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1", testrpc.WithToken("root"))
// Create the ACL.
token, err := upsertTestTokenWithPolicyRules(codec, "root", "dc1", `
service "db" { policy = "read" }
service "ingress-gateway" { policy = "read" }
node_prefix "" { policy = "read" }`)
require.NoError(t, err)
// Register gateway and two service instances that will be associated with it
{
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "ingress-gateway",
Service: "ingress-gateway",
Kind: structs.ServiceKindIngressGateway,
},
Check: &structs.HealthCheck{
Name: "ingress connect",
Status: api.HealthPassing,
ServiceID: "ingress-gateway",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
var out struct{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "bar",
Address: "127.0.0.2",
Service: &structs.NodeService{
ID: "db",
Service: "db",
},
Check: &structs.HealthCheck{
Name: "db-warning",
Status: api.HealthWarning,
ServiceID: "db",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
arg = structs.RegisterRequest{
Datacenter: "dc1",
Node: "baz",
Address: "127.0.0.3",
Service: &structs.NodeService{
ID: "api",
Service: "api",
},
Check: &structs.HealthCheck{
Name: "api-passing",
Status: api.HealthPassing,
ServiceID: "api",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out))
}
// Register ingress-gateway config entry, linking it to db and api
{
args := &structs.IngressGatewayConfigEntry{
Name: "ingress-gateway",
Kind: structs.IngressGateway,
Listeners: []structs.IngressListener{
{
Port: 8888,
Protocol: "tcp",
Services: []structs.IngressService{
{
Name: "db",
},
},
},
{
Port: 8080,
Protocol: "tcp",
Services: []structs.IngressService{
{
Name: "web",
},
},
},
},
}
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: args,
WriteRequest: structs.WriteRequest{Token: "root"},
}
var out bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &out))
require.True(t, out)
}
var out structs.IndexedServiceDump
// Not passing a token with service:read on Gateway leads to PermissionDenied
req := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "ingress-gateway",
}
err = msgpackrpc.CallWithCodec(codec, "Internal.GatewayServiceDump", &req, &out)
require.Error(t, err, acl.ErrPermissionDenied)
// Passing a token without service:read on api leads to it getting filtered out
req = structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "ingress-gateway",
QueryOptions: structs.QueryOptions{Token: token.SecretID},
}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.GatewayServiceDump", &req, &out))
nodes := out.Dump
require.Len(t, nodes, 1)
require.Equal(t, nodes[0].Node.Node, "bar")
require.Equal(t, nodes[0].Service.Service, "db")
require.Equal(t, nodes[0].Checks[0].Status, api.HealthWarning)
}
func TestInternal_ServiceDump_Peering(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServer(t)
codec := rpcClient(t, s1)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// prep the cluster with some data we can use in our filters
registerTestCatalogEntries(t, codec)
doRequest := func(t *testing.T, filter string) structs.IndexedNodesWithGateways {
t.Helper()
args := structs.DCSpecificRequest{
QueryOptions: structs.QueryOptions{Filter: filter},
}
var out structs.IndexedNodesWithGateways
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.ServiceDump", &args, &out))
return out
}
t.Run("No peerings", func(t *testing.T) {
nodes := doRequest(t, "")
// redis (3), web (3), critical (1), warning (1) and consul (1)
require.Len(t, nodes.Nodes, 9)
require.Len(t, nodes.ImportedNodes, 0)
})
addPeerService(t, codec)
err := s1.fsm.State().PeeringWrite(1, &pbpeering.Peering{
ID: "9e650110-ac74-4c5a-a6a8-9348b2bed4e9",
Name: "peer1",
})
require.NoError(t, err)
t.Run("peerings", func(t *testing.T) {
nodes := doRequest(t, "")
// redis (3), web (3), critical (1), warning (1) and consul (1)
require.Len(t, nodes.Nodes, 9)
// service (1)
require.Len(t, nodes.ImportedNodes, 1)
})
t.Run("peerings w filter", func(t *testing.T) {
nodes := doRequest(t, "Node.PeerName == foo")
require.Len(t, nodes.Nodes, 0)
require.Len(t, nodes.ImportedNodes, 0)
nodes2 := doRequest(t, "Node.PeerName == peer1")
require.Len(t, nodes2.Nodes, 0)
require.Len(t, nodes2.ImportedNodes, 1)
})
}
func addPeerService(t *testing.T, codec rpc.ClientCodec) {
// prep the cluster with some data we can use in our filters
registrations := map[string]*structs.RegisterRequest{
"Peer node foo with peer service": {
Datacenter: "dc1",
Node: "foo",
ID: types.NodeID("e0155642-135d-4739-9853-a1ee6c9f945b"),
Address: "127.0.0.2",
PeerName: "peer1",
Service: &structs.NodeService{
Kind: structs.ServiceKindTypical,
ID: "serviceID",
Service: "service",
Port: 1235,
Address: "198.18.1.2",
PeerName: "peer1",
},
},
}
registerTestCatalogEntriesMap(t, codec, registrations)
}
func TestInternal_GatewayIntentions(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
// Register terminating gateway and config entry linking it to postgres + redis
{
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "terminating-gateway",
Service: "terminating-gateway",
Kind: structs.ServiceKindTerminatingGateway,
Port: 443,
},
Check: &structs.HealthCheck{
Name: "terminating connect",
Status: api.HealthPassing,
ServiceID: "terminating-gateway",
},
}
var regOutput struct{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &regOutput))
args := &structs.TerminatingGatewayConfigEntry{
Name: "terminating-gateway",
Kind: structs.TerminatingGateway,
Services: []structs.LinkedService{
{
Name: "postgres",
},
{
Name: "redis",
CAFile: "/etc/certs/ca.pem",
CertFile: "/etc/certs/cert.pem",
KeyFile: "/etc/certs/key.pem",
},
},
}
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: args,
}
var configOutput bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &configOutput))
require.True(t, configOutput)
}
// create some symmetric intentions to ensure we are only matching on destination
{
for _, v := range []string{"*", "mysql", "redis", "postgres"} {
req := structs.IntentionRequest{
Datacenter: "dc1",
Op: structs.IntentionOpCreate,
Intention: structs.TestIntention(t),
}
req.Intention.SourceName = "api"
req.Intention.DestinationName = v
var reply string
assert.NoError(t, msgpackrpc.CallWithCodec(codec, "Intention.Apply", &req, &reply))
req = structs.IntentionRequest{
Datacenter: "dc1",
Op: structs.IntentionOpCreate,
Intention: structs.TestIntention(t),
}
req.Intention.SourceName = v
req.Intention.DestinationName = "api"
assert.NoError(t, msgpackrpc.CallWithCodec(codec, "Intention.Apply", &req, &reply))
}
}
// Request intentions matching the gateway named "terminating-gateway"
req := structs.IntentionQueryRequest{
Datacenter: "dc1",
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: structs.IntentionDefaultNamespace,
Partition: acl.DefaultPartitionName,
Name: "terminating-gateway",
},
},
},
}
var reply structs.IndexedIntentions
assert.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.GatewayIntentions", &req, &reply))
assert.Len(t, reply.Intentions, 3)
// Only intentions with linked services as a destination should be returned, and wildcard matches should be deduped
expected := []string{"postgres", "*", "redis"}
actual := []string{
reply.Intentions[0].DestinationName,
reply.Intentions[1].DestinationName,
reply.Intentions[2].DestinationName,
}
assert.ElementsMatch(t, expected, actual)
}
func TestInternal_GatewayIntentions_aclDeny(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
dir1, s1 := testServerWithConfig(t, testServerACLConfig)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1", testrpc.WithToken(TestDefaultInitialManagementToken))
// Register terminating gateway and config entry linking it to postgres + redis
{
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
Service: &structs.NodeService{
ID: "terminating-gateway",
Service: "terminating-gateway",
Kind: structs.ServiceKindTerminatingGateway,
Port: 443,
},
Check: &structs.HealthCheck{
Name: "terminating connect",
Status: api.HealthPassing,
ServiceID: "terminating-gateway",
},
WriteRequest: structs.WriteRequest{Token: TestDefaultInitialManagementToken},
}
var regOutput struct{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &regOutput))
args := &structs.TerminatingGatewayConfigEntry{
Name: "terminating-gateway",
Kind: structs.TerminatingGateway,
Services: []structs.LinkedService{
{
Name: "postgres",
},
{
Name: "redis",
CAFile: "/etc/certs/ca.pem",
CertFile: "/etc/certs/cert.pem",
KeyFile: "/etc/certs/key.pem",
},
},
}
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsert,
Datacenter: "dc1",
Entry: args,
WriteRequest: structs.WriteRequest{Token: TestDefaultInitialManagementToken},
}
var configOutput bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &req, &configOutput))
require.True(t, configOutput)
}
// create some symmetric intentions to ensure we are only matching on destination
{
for _, v := range []string{"*", "mysql", "redis", "postgres"} {
req := structs.IntentionRequest{
Datacenter: "dc1",
Op: structs.IntentionOpCreate,
Intention: structs.TestIntention(t),
WriteRequest: structs.WriteRequest{Token: TestDefaultInitialManagementToken},
}
req.Intention.SourceName = "api"
req.Intention.DestinationName = v
var reply string
assert.NoError(t, msgpackrpc.CallWithCodec(codec, "Intention.Apply", &req, &reply))
req = structs.IntentionRequest{
Datacenter: "dc1",
Op: structs.IntentionOpCreate,
Intention: structs.TestIntention(t),
WriteRequest: structs.WriteRequest{Token: TestDefaultInitialManagementToken},
}
req.Intention.SourceName = v
req.Intention.DestinationName = "api"
assert.NoError(t, msgpackrpc.CallWithCodec(codec, "Intention.Apply", &req, &reply))
}
}
userToken, err := upsertTestTokenWithPolicyRules(codec, TestDefaultInitialManagementToken, "dc1", `
service_prefix "redis" { policy = "read" }
service_prefix "terminating-gateway" { policy = "read" }
`)
require.NoError(t, err)
// Request intentions matching the gateway named "terminating-gateway"
req := structs.IntentionQueryRequest{
Datacenter: "dc1",
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: structs.IntentionDefaultNamespace,
Partition: acl.DefaultPartitionName,
Name: "terminating-gateway",
},
},
},
QueryOptions: structs.QueryOptions{Token: userToken.SecretID},
}
var reply structs.IndexedIntentions
assert.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.GatewayIntentions", &req, &reply))
assert.Len(t, reply.Intentions, 2)
// Only intentions for redis should be returned, due to ACLs
expected := []string{"*", "redis"}
actual := []string{
reply.Intentions[0].DestinationName,
reply.Intentions[1].DestinationName,
}
assert.ElementsMatch(t, expected, actual)
}
2020-09-29 01:42:03 +00:00
func TestInternal_ServiceTopology(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
2020-09-29 01:42:03 +00:00
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// wildcard deny intention
// ingress-gateway on node edge - upstream: api
// ingress -> api gateway config entry (but no intention)
// api and api-proxy on node foo - transparent proxy
// api -> web exact intention
2020-09-29 01:42:03 +00:00
// web and web-proxy on node bar - upstream: redis
// web and web-proxy on node baz - transparent proxy
// web -> redis exact intention
2020-09-29 01:42:03 +00:00
// redis and redis-proxy on node zip
2020-09-29 01:42:03 +00:00
registerTestTopologyEntries(t, codec, "")
var (
ingress = structs.NewServiceName("ingress", structs.DefaultEnterpriseMetaInDefaultPartition())
api = structs.NewServiceName("api", structs.DefaultEnterpriseMetaInDefaultPartition())
web = structs.NewServiceName("web", structs.DefaultEnterpriseMetaInDefaultPartition())
redis = structs.NewServiceName("redis", structs.DefaultEnterpriseMetaInDefaultPartition())
)
2020-09-29 01:42:03 +00:00
t.Run("ingress", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "ingress",
}
var out structs.IndexedServiceTopology
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.False(r, out.FilteredByACLs)
require.False(r, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(r, "http", out.ServiceTopology.MetricsProtocol)
// foo/api, foo/api-proxy
require.Len(r, out.ServiceTopology.Upstreams, 2)
require.Len(r, out.ServiceTopology.Downstreams, 0)
expectUp := map[string]structs.IntentionDecisionSummary{
api.String(): {
DefaultAllow: true,
Allowed: false,
HasPermissions: false,
ExternalSource: "nomad",
// From wildcard deny
HasExact: false,
},
}
require.Equal(r, expectUp, out.ServiceTopology.UpstreamDecisions)
expectUpstreamSources := map[string]string{
api.String(): structs.TopologySourceRegistration,
}
require.Equal(r, expectUpstreamSources, out.ServiceTopology.UpstreamSources)
require.Empty(r, out.ServiceTopology.DownstreamSources)
// The ingress gateway has an explicit upstream
require.False(r, out.ServiceTopology.TransparentProxy)
})
2020-09-29 01:42:03 +00:00
})
t.Run("api", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "api",
}
var out structs.IndexedServiceTopology
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.False(r, out.FilteredByACLs)
require.False(r, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(r, "http", out.ServiceTopology.MetricsProtocol)
// edge/ingress
require.Len(r, out.ServiceTopology.Downstreams, 1)
expectDown := map[string]structs.IntentionDecisionSummary{
ingress.String(): {
DefaultAllow: true,
Allowed: false,
HasPermissions: false,
ExternalSource: "nomad",
// From wildcard deny
HasExact: false,
},
}
require.Equal(r, expectDown, out.ServiceTopology.DownstreamDecisions)
2020-09-29 01:42:03 +00:00
expectDownstreamSources := map[string]string{
ingress.String(): structs.TopologySourceRegistration,
}
require.Equal(r, expectDownstreamSources, out.ServiceTopology.DownstreamSources)
// bar/web, bar/web-proxy, baz/web, baz/web-proxy
require.Len(r, out.ServiceTopology.Upstreams, 4)
expectUp := map[string]structs.IntentionDecisionSummary{
web.String(): {
DefaultAllow: true,
Allowed: true,
HasPermissions: false,
HasExact: true,
},
}
require.Equal(r, expectUp, out.ServiceTopology.UpstreamDecisions)
expectUpstreamSources := map[string]string{
web.String(): structs.TopologySourceSpecificIntention,
}
require.Equal(r, expectUpstreamSources, out.ServiceTopology.UpstreamSources)
// The only instance of api's proxy is in transparent mode
require.True(r, out.ServiceTopology.TransparentProxy)
})
})
t.Run("web", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
}
var out structs.IndexedServiceTopology
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.False(r, out.FilteredByACLs)
require.False(r, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(r, "http", out.ServiceTopology.MetricsProtocol)
// foo/api, foo/api-proxy
require.Len(r, out.ServiceTopology.Downstreams, 2)
expectDown := map[string]structs.IntentionDecisionSummary{
api.String(): {
DefaultAllow: true,
Allowed: true,
HasPermissions: false,
HasExact: true,
},
}
require.Equal(r, expectDown, out.ServiceTopology.DownstreamDecisions)
expectDownstreamSources := map[string]string{
api.String(): structs.TopologySourceSpecificIntention,
}
require.Equal(r, expectDownstreamSources, out.ServiceTopology.DownstreamSources)
// zip/redis, zip/redis-proxy
require.Len(r, out.ServiceTopology.Upstreams, 2)
2020-09-29 01:42:03 +00:00
expectUp := map[string]structs.IntentionDecisionSummary{
redis.String(): {
DefaultAllow: true,
Allowed: false,
HasPermissions: true,
HasExact: true,
},
}
require.Equal(r, expectUp, out.ServiceTopology.UpstreamDecisions)
expectUpstreamSources := map[string]string{
// We prefer from-registration over intention source when there is a mix
redis.String(): structs.TopologySourceRegistration,
}
require.Equal(r, expectUpstreamSources, out.ServiceTopology.UpstreamSources)
// Not all instances of web are in transparent mode
require.False(r, out.ServiceTopology.TransparentProxy)
})
2020-09-29 01:42:03 +00:00
})
t.Run("redis", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "redis",
}
var out structs.IndexedServiceTopology
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.False(r, out.FilteredByACLs)
require.False(r, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(r, "http", out.ServiceTopology.MetricsProtocol)
require.Len(r, out.ServiceTopology.Upstreams, 0)
2020-09-29 01:42:03 +00:00
// bar/web, bar/web-proxy, baz/web, baz/web-proxy
require.Len(r, out.ServiceTopology.Downstreams, 4)
2020-09-29 01:42:03 +00:00
expectDown := map[string]structs.IntentionDecisionSummary{
web.String(): {
DefaultAllow: true,
Allowed: false,
HasPermissions: true,
HasExact: true,
},
}
require.Equal(r, expectDown, out.ServiceTopology.DownstreamDecisions)
expectDownstreamSources := map[string]string{
web.String(): structs.TopologySourceRegistration,
}
require.Equal(r, expectDownstreamSources, out.ServiceTopology.DownstreamSources)
require.Empty(r, out.ServiceTopology.UpstreamSources)
// No proxies are in transparent mode
require.False(r, out.ServiceTopology.TransparentProxy)
})
2020-09-29 01:42:03 +00:00
})
}
func TestInternal_ServiceTopology_RoutingConfig(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// dashboard -> routing-config -> { counting, counting-v2 }
registerTestRoutingConfigTopologyEntries(t, codec)
t.Run("dashboard", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "dashboard",
}
var out structs.IndexedServiceTopology
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.False(r, out.FilteredByACLs)
require.False(r, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(r, "http", out.ServiceTopology.MetricsProtocol)
require.Empty(r, out.ServiceTopology.Downstreams)
require.Empty(r, out.ServiceTopology.DownstreamDecisions)
require.Empty(r, out.ServiceTopology.DownstreamSources)
// routing-config will not appear as an Upstream service
// but will be present in UpstreamSources as a k-v pair.
require.Empty(r, out.ServiceTopology.Upstreams)
2021-08-26 18:06:49 +00:00
sn := structs.NewServiceName("routing-config", structs.DefaultEnterpriseMetaInDefaultPartition()).String()
expectUp := map[string]structs.IntentionDecisionSummary{
2021-08-26 18:06:49 +00:00
sn: {DefaultAllow: true, Allowed: true},
}
require.Equal(r, expectUp, out.ServiceTopology.UpstreamDecisions)
expectUpstreamSources := map[string]string{
2021-08-26 18:06:49 +00:00
sn: structs.TopologySourceRoutingConfig,
}
require.Equal(r, expectUpstreamSources, out.ServiceTopology.UpstreamSources)
require.False(r, out.ServiceTopology.TransparentProxy)
})
})
}
2020-09-29 01:42:03 +00:00
func TestInternal_ServiceTopology_ACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
2020-09-29 01:42:03 +00:00
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
2020-09-29 01:42:03 +00:00
c.ACLsEnabled = true
c.ACLInitialManagementToken = TestDefaultInitialManagementToken
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
2020-09-29 01:42:03 +00:00
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// wildcard deny intention
// ingress-gateway on node edge - upstream: api
// ingress -> api gateway config entry (but no intention)
// api and api-proxy on node foo - transparent proxy
// api -> web exact intention
2020-09-29 01:42:03 +00:00
// web and web-proxy on node bar - upstream: redis
// web and web-proxy on node baz - transparent proxy
// web -> redis exact intention
2020-09-29 01:42:03 +00:00
// redis and redis-proxy on node zip
registerTestTopologyEntries(t, codec, TestDefaultInitialManagementToken)
2020-09-29 01:42:03 +00:00
// Token grants read to: foo/api, foo/api-proxy, bar/web, baz/web
userToken, err := upsertTestTokenWithPolicyRules(codec, TestDefaultInitialManagementToken, "dc1", `
2020-09-29 01:42:03 +00:00
node_prefix "" { policy = "read" }
service_prefix "api" { policy = "read" }
service "web" { policy = "read" }
`)
require.NoError(t, err)
t.Run("api can't read web", func(t *testing.T) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "api",
QueryOptions: structs.QueryOptions{Token: userToken.SecretID},
}
var out structs.IndexedServiceTopology
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.True(t, out.FilteredByACLs)
require.True(t, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(t, "http", out.ServiceTopology.MetricsProtocol)
2020-09-29 01:42:03 +00:00
// The web-proxy upstream gets filtered out from both bar and baz
require.Len(t, out.ServiceTopology.Upstreams, 2)
require.Equal(t, "web", out.ServiceTopology.Upstreams[0].Service.Service)
require.Equal(t, "web", out.ServiceTopology.Upstreams[1].Service.Service)
require.Len(t, out.ServiceTopology.Downstreams, 0)
})
t.Run("web can't read redis", func(t *testing.T) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
QueryOptions: structs.QueryOptions{Token: userToken.SecretID},
}
var out structs.IndexedServiceTopology
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out))
require.True(t, out.FilteredByACLs)
require.True(t, out.QueryMeta.ResultsFilteredByACLs)
require.Equal(t, "http", out.ServiceTopology.MetricsProtocol)
2020-09-29 01:42:03 +00:00
// The redis upstream gets filtered out but the api and proxy downstream are returned
require.Len(t, out.ServiceTopology.Upstreams, 0)
require.Len(t, out.ServiceTopology.Downstreams, 2)
})
t.Run("redis can't read self", func(t *testing.T) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "redis",
QueryOptions: structs.QueryOptions{Token: userToken.SecretID},
}
var out structs.IndexedServiceTopology
err := msgpackrpc.CallWithCodec(codec, "Internal.ServiceTopology", &args, &out)
// Can't read self, fails fast
require.True(t, acl.IsErrPermissionDenied(err))
})
}
func TestInternal_IntentionUpstreams(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// Services:
// api and api-proxy on node foo
// web and web-proxy on node foo
//
// Intentions
// * -> * (deny) intention
// web -> api (allow)
2021-03-15 23:50:47 +00:00
registerIntentionUpstreamEntries(t, codec, "")
t.Run("web", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
}
var out structs.IndexedServiceList
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.IntentionUpstreams", &args, &out))
// foo/api
require.Len(r, out.Services, 1)
expectUp := structs.ServiceList{
structs.NewServiceName("api", structs.DefaultEnterpriseMetaInDefaultPartition()),
}
require.Equal(r, expectUp, out.Services)
})
})
}
Egress gtw/intention rpc endpoint (#13354) * update gateway-services table with endpoints * fix failing test * remove unneeded config in test * rename "endpoint" to "destination" * more endpoint renaming to destination in tests * update isDestination based on service-defaults config entry creation * use a 3 state kind to be able to set the kind to unknown (when neither a service or a destination exist) * set unknown state to empty to avoid modifying alot of tests * fix logic to set the kind correctly on CRUD * fix failing tests * add missing tests and fix service delete * fix failing test * Apply suggestions from code review Co-authored-by: Dan Stough <dan.stough@hashicorp.com> * fix a bug with kind and add relevant test * fix compile error * fix failing tests * add kind to clone * fix failing tests * fix failing tests in catalog endpoint * fix service dump test * Apply suggestions from code review Co-authored-by: Dan Stough <dan.stough@hashicorp.com> * remove duplicate tests * first draft of destinations intention in connect proxy * remove ServiceDestinationList * fix failing tests * fix agent/consul failing tests * change to filter intentions in the state store instead of adding a field. * fix failing tests * fix comment * fix comments * store service kind destination and add relevant tests * changes based on review * filter on destinations when querying source match * change state store API to get an IntentionTarget parameter * add intentions tests * add destination upstream endpoint * fix failing test * fix failing test and a bug with wildcard intentions * fix failing test * Apply suggestions from code review Co-authored-by: alex <8968914+acpana@users.noreply.github.com> * add missing test and clarify doc * fix style * gofmt intention.go * fix merge introduced issue Co-authored-by: Dan Stough <dan.stough@hashicorp.com> Co-authored-by: alex <8968914+acpana@users.noreply.github.com> Co-authored-by: github-team-consul-core <github-team-consul-core@hashicorp.com>
2022-06-07 19:55:02 +00:00
func TestInternal_IntentionUpstreamsDestination(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// Services:
// api and api-proxy on node foo
// web and web-proxy on node foo
//
// Intentions
// * -> * (deny) intention
// web -> api (allow)
registerIntentionUpstreamEntries(t, codec, "")
t.Run("api.example.com", func(t *testing.T) {
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
}
var out structs.IndexedServiceList
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.IntentionUpstreamsDestination", &args, &out))
// foo/api
require.Len(r, out.Services, 1)
expectUp := structs.ServiceList{
structs.NewServiceName("api.example.com", structs.DefaultEnterpriseMetaInDefaultPartition()),
}
require.Equal(r, expectUp, out.Services)
})
})
}
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
func TestInternal_IntentionUpstreams_BlockOnNoChange(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServerWithConfig(t, func(c *Config) {
c.DevMode = true // keep it in ram to make it 10x faster on macos
})
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
codec := rpcClient(t, s1)
waitForLeaderEstablishment(t, s1)
{ // ensure it's default deny to start
var out bool
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConfigEntry.Apply", &structs.ConfigEntryRequest{
Entry: &structs.ServiceIntentionsConfigEntry{
Kind: structs.ServiceIntentions,
Name: "*",
Sources: []*structs.SourceIntention{
{
Name: "*",
Action: structs.IntentionActionDeny,
},
},
},
}, &out))
require.True(t, out)
}
run := func(t *testing.T, dataPrefix string, expectServices int) {
rpcBlockingQueryTestHarness(t,
func(minQueryIndex uint64) (*structs.QueryMeta, <-chan error) {
args := &structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
}
args.QueryOptions.MinQueryIndex = minQueryIndex
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
var out structs.IndexedServiceList
errCh := channelCallRPC(s1, "Internal.IntentionUpstreams", args, &out, func() error {
if len(out.Services) != expectServices {
return fmt.Errorf("expected %d services got %d", expectServices, len(out.Services))
}
return nil
})
return &out.QueryMeta, errCh
},
func(i int) <-chan error {
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
var out string
return channelCallRPC(s1, "Intention.Apply", &structs.IntentionRequest{
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
Datacenter: "dc1",
Op: structs.IntentionOpCreate,
Intention: &structs.Intention{
SourceName: fmt.Sprintf(dataPrefix+"-src-%d", i),
DestinationName: fmt.Sprintf(dataPrefix+"-dst-%d", i),
Action: structs.IntentionActionAllow,
},
}, &out, nil)
},
)
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
}
testutil.RunStep(t, "test the errNotFound path", func(t *testing.T) {
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
run(t, "other", 0)
})
// Services:
// api and api-proxy on node foo
// web and web-proxy on node foo
//
// Intentions
// * -> * (deny) intention
// web -> api (allow)
registerIntentionUpstreamEntries(t, codec, "")
testutil.RunStep(t, "test the errNotChanged path", func(t *testing.T) {
server: suppress spurious blocking query returns where multiple config entries are involved (#12362) Starting from and extending the mechanism introduced in #12110 we can specially handle the 3 main special Consul RPC endpoints that react to many config entries in a single blocking query in Connect: - `DiscoveryChain.Get` - `ConfigEntry.ResolveServiceConfig` - `Intentions.Match` All of these will internally watch for many config entries, and at least one of those will likely be not found in any given query. Because these are blends of multiple reads the exact solution from #12110 isn't perfectly aligned, but we can tweak the approach slightly and regain the utility of that mechanism. ### No Config Entries Found In this case, despite looking for many config entries none may be found at all. Unlike #12110 in this scenario we do not return an empty reply to the caller, but instead synthesize a struct from default values to return. This can be handled nearly identically to #12110 with the first 1-2 replies being non-empty payloads followed by the standard spurious wakeup suppression mechanism from #12110. ### No Change Since Last Wakeup Once a blocking query loop on the server has completed and slept at least once, there is a further optimization we can make here to detect if any of the config entries that were present at specific versions for the prior execution of the loop are identical for the loop we just woke up for. In that scenario we can return a slightly different internal sentinel error and basically externally handle it similar to #12110. This would mean that even if 20 discovery chain read RPC handling goroutines wakeup due to the creation of an unrelated config entry, the only ones that will terminate and reply with a blob of data are those that genuinely have new data to report. ### Extra Endpoints Since this pattern is pretty reusable, other key config-entry-adjacent endpoints used by `agent/proxycfg` also were updated: - `ConfigEntry.List` - `Internal.IntentionUpstreams` (tproxy)
2022-02-25 21:46:34 +00:00
run(t, "completely-different-other", 1)
})
}
func TestInternal_IntentionUpstreams_ACL(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLInitialManagementToken = TestDefaultInitialManagementToken
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// Services:
// api and api-proxy on node foo
// web and web-proxy on node foo
//
// Intentions
// * -> * (deny) intention
// web -> api (allow)
registerIntentionUpstreamEntries(t, codec, TestDefaultInitialManagementToken)
t.Run("valid token", func(t *testing.T) {
// Token grants read to read api service
userToken, err := upsertTestTokenWithPolicyRules(codec, TestDefaultInitialManagementToken, "dc1", `
service_prefix "api" { policy = "read" }
`)
require.NoError(t, err)
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
QueryOptions: structs.QueryOptions{Token: userToken.SecretID},
}
var out structs.IndexedServiceList
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.IntentionUpstreams", &args, &out))
// foo/api
require.Len(r, out.Services, 1)
expectUp := structs.ServiceList{
structs.NewServiceName("api", structs.DefaultEnterpriseMetaInDefaultPartition()),
}
require.Equal(r, expectUp, out.Services)
})
})
t.Run("invalid token filters results", func(t *testing.T) {
// Token grants read to read an unrelated service, mongo
userToken, err := upsertTestTokenWithPolicyRules(codec, TestDefaultInitialManagementToken, "dc1", `
service_prefix "mongo" { policy = "read" }
`)
require.NoError(t, err)
retry.Run(t, func(r *retry.R) {
args := structs.ServiceSpecificRequest{
Datacenter: "dc1",
ServiceName: "web",
QueryOptions: structs.QueryOptions{Token: userToken.SecretID},
}
var out structs.IndexedServiceList
require.NoError(r, msgpackrpc.CallWithCodec(codec, "Internal.IntentionUpstreams", &args, &out))
// Token can't read api service
require.Empty(r, out.Services)
})
})
}
2022-03-22 23:58:41 +00:00
func TestInternal_CatalogOverview(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServerWithConfig(t, func(c *Config) {
2022-03-22 23:58:41 +00:00
c.MetricsReportingInterval = 100 * time.Millisecond
})
codec := rpcClient(t, s1)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
arg := structs.DCSpecificRequest{
Datacenter: "dc1",
}
retry.Run(t, func(r *retry.R) {
var out structs.CatalogSummary
if err := msgpackrpc.CallWithCodec(codec, "Internal.CatalogOverview", &arg, &out); err != nil {
r.Fatalf("err: %v", err)
}
expected := structs.CatalogSummary{
Nodes: []structs.HealthSummary{
{
Total: 1,
Passing: 1,
EnterpriseMeta: *structs.NodeEnterpriseMetaInDefaultPartition(),
},
},
Services: []structs.HealthSummary{
{
Name: "consul",
Total: 1,
Passing: 1,
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
},
Checks: []structs.HealthSummary{
{
Name: "Serf Health Status",
Total: 1,
Passing: 1,
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
},
},
}
require.Equal(r, expected, out)
})
}
func TestInternal_CatalogOverview_ACLDeny(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServerWithConfig(t, func(c *Config) {
2022-03-22 23:58:41 +00:00
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLInitialManagementToken = TestDefaultInitialManagementToken
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
})
codec := rpcClient(t, s1)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
arg := structs.DCSpecificRequest{
Datacenter: "dc1",
}
var out structs.CatalogSummary
err := msgpackrpc.CallWithCodec(codec, "Internal.CatalogOverview", &arg, &out)
require.True(t, acl.IsErrPermissionDenied(err))
opReadToken, err := upsertTestTokenWithPolicyRules(
codec, TestDefaultInitialManagementToken, "dc1", `operator = "read"`)
require.NoError(t, err)
arg.Token = opReadToken.SecretID
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.CatalogOverview", &arg, &out))
}
func TestInternal_PeeredUpstreams(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
_, s1 := testServerWithConfig(t)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Services
// api local
// web peer: peer-a
// web-proxy peer: peer-a
// web peer: peer-b
// web-proxy peer: peer-b
2022-06-29 20:53:22 +00:00
registerLocalAndRemoteServicesVIPEnabled(t, s1.fsm.State())
codec := rpcClient(t, s1)
args := structs.PartitionSpecificRequest{
Datacenter: "dc1",
EnterpriseMeta: *acl.DefaultEnterpriseMeta(),
}
var out structs.IndexedPeeredServiceList
require.NoError(t, msgpackrpc.CallWithCodec(codec, "Internal.PeeredUpstreams", &args, &out))
require.Len(t, out.Services, 2)
expect := []structs.PeeredServiceName{
{Peer: "peer-a", ServiceName: structs.NewServiceName("web", structs.DefaultEnterpriseMetaInDefaultPartition())},
{Peer: "peer-b", ServiceName: structs.NewServiceName("web", structs.DefaultEnterpriseMetaInDefaultPartition())},
}
require.Equal(t, expect, out.Services)
}