open-consul/agent/consul/state/intention_test.go

697 lines
17 KiB
Go
Raw Normal View History

package state
import (
"testing"
"time"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/go-memdb"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestStore_IntentionGet_none(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Querying with no results returns nil.
ws := memdb.NewWatchSet()
idx, res, err := s.IntentionGet(ws, testUUID())
assert.Equal(uint64(1), idx)
assert.Nil(res)
assert.Nil(err)
}
func TestStore_IntentionSetGet_basic(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Call Get to populate the watch set
ws := memdb.NewWatchSet()
_, _, err := s.IntentionGet(ws, testUUID())
assert.Nil(err)
// Build a valid intention
ixn := &structs.Intention{
ID: testUUID(),
SourceNS: "default",
SourceName: "*",
DestinationNS: "default",
DestinationName: "web",
Meta: map[string]string{},
}
// Inserting a with empty ID is disallowed.
assert.NoError(s.IntentionSet(1, ixn))
// Make sure the index got updated.
assert.Equal(uint64(1), s.maxIndex(intentionsTableName))
assert.True(watchFired(ws), "watch fired")
// Read it back out and verify it.
expected := &structs.Intention{
ID: ixn.ID,
SourceNS: "default",
SourceName: "*",
DestinationNS: "default",
DestinationName: "web",
Meta: map[string]string{},
RaftIndex: structs.RaftIndex{
CreateIndex: 1,
ModifyIndex: 1,
},
}
2018-06-12 11:26:12 +00:00
expected.UpdatePrecedence()
ws = memdb.NewWatchSet()
idx, actual, err := s.IntentionGet(ws, ixn.ID)
assert.NoError(err)
assert.Equal(expected.CreateIndex, idx)
assert.Equal(expected, actual)
// Change a value and test updating
ixn.SourceNS = "foo"
assert.NoError(s.IntentionSet(2, ixn))
// Change a value that isn't in the unique 4 tuple and check we don't
// incorrectly consider this a duplicate when updating.
ixn.Action = structs.IntentionActionDeny
assert.NoError(s.IntentionSet(2, ixn))
// Make sure the index got updated.
assert.Equal(uint64(2), s.maxIndex(intentionsTableName))
assert.True(watchFired(ws), "watch fired")
// Read it back and verify the data was updated
expected.SourceNS = ixn.SourceNS
expected.Action = structs.IntentionActionDeny
expected.ModifyIndex = 2
ws = memdb.NewWatchSet()
idx, actual, err = s.IntentionGet(ws, ixn.ID)
assert.NoError(err)
assert.Equal(expected.ModifyIndex, idx)
assert.Equal(expected, actual)
// Attempt to insert another intention with duplicate 4-tuple
ixn = &structs.Intention{
ID: testUUID(),
SourceNS: "default",
SourceName: "*",
DestinationNS: "default",
DestinationName: "web",
Meta: map[string]string{},
}
// Duplicate 4-tuple should cause an error
ws = memdb.NewWatchSet()
assert.Error(s.IntentionSet(3, ixn))
// Make sure the index did NOT get updated.
assert.Equal(uint64(2), s.maxIndex(intentionsTableName))
assert.False(watchFired(ws), "watch not fired")
}
func TestStore_IntentionSet_emptyId(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
ws := memdb.NewWatchSet()
_, _, err := s.IntentionGet(ws, testUUID())
assert.NoError(err)
// Inserting a with empty ID is disallowed.
err = s.IntentionSet(1, &structs.Intention{})
assert.Error(err)
assert.Contains(err.Error(), ErrMissingIntentionID.Error())
// Index is not updated if nothing is saved.
assert.Equal(s.maxIndex(intentionsTableName), uint64(0))
assert.False(watchFired(ws), "watch fired")
}
2018-02-28 17:53:21 +00:00
func TestStore_IntentionSet_updateCreatedAt(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Build a valid intention
now := time.Now()
ixn := structs.Intention{
ID: testUUID(),
CreatedAt: now,
}
// Insert
assert.NoError(s.IntentionSet(1, &ixn))
// Change a value and test updating
ixnUpdate := ixn
ixnUpdate.CreatedAt = now.Add(10 * time.Second)
assert.NoError(s.IntentionSet(2, &ixnUpdate))
// Read it back and verify
_, actual, err := s.IntentionGet(nil, ixn.ID)
assert.NoError(err)
assert.Equal(now, actual.CreatedAt)
}
func TestStore_IntentionSet_metaNil(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Build a valid intention
ixn := structs.Intention{
ID: testUUID(),
}
// Insert
assert.NoError(s.IntentionSet(1, &ixn))
// Read it back and verify
_, actual, err := s.IntentionGet(nil, ixn.ID)
assert.NoError(err)
assert.NotNil(actual.Meta)
}
func TestStore_IntentionSet_metaSet(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Build a valid intention
ixn := structs.Intention{
ID: testUUID(),
Meta: map[string]string{"foo": "bar"},
}
// Insert
assert.NoError(s.IntentionSet(1, &ixn))
// Read it back and verify
_, actual, err := s.IntentionGet(nil, ixn.ID)
assert.NoError(err)
assert.Equal(ixn.Meta, actual.Meta)
}
func TestStore_IntentionDelete(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Call Get to populate the watch set
ws := memdb.NewWatchSet()
_, _, err := s.IntentionGet(ws, testUUID())
assert.NoError(err)
// Create
ixn := &structs.Intention{ID: testUUID()}
assert.NoError(s.IntentionSet(1, ixn))
// Make sure the index got updated.
assert.Equal(s.maxIndex(intentionsTableName), uint64(1))
assert.True(watchFired(ws), "watch fired")
// Delete
assert.NoError(s.IntentionDelete(2, ixn.ID))
// Make sure the index got updated.
assert.Equal(s.maxIndex(intentionsTableName), uint64(2))
assert.True(watchFired(ws), "watch fired")
// Sanity check to make sure it's not there.
idx, actual, err := s.IntentionGet(nil, ixn.ID)
assert.NoError(err)
assert.Equal(idx, uint64(2))
assert.Nil(actual)
}
2018-02-28 17:53:21 +00:00
func TestStore_IntentionsList(t *testing.T) {
s := testStateStore(t)
entMeta := structs.WildcardEnterpriseMeta()
2018-02-28 17:53:21 +00:00
// Querying with no results returns nil.
ws := memdb.NewWatchSet()
idx, res, err := s.Intentions(ws, entMeta)
require.NoError(t, err)
require.Nil(t, res)
require.Equal(t, uint64(1), idx)
testIntention := func(srcNS, src, dstNS, dst string) *structs.Intention {
id := testUUID()
return &structs.Intention{
ID: id,
SourceNS: srcNS,
SourceName: src,
DestinationNS: dstNS,
DestinationName: dst,
Meta: map[string]string{},
}
}
cmpIntention := func(ixn *structs.Intention, id string, index uint64) *structs.Intention {
ixn.ID = id
ixn.CreateIndex = index
ixn.ModifyIndex = index
ixn.UpdatePrecedence() // to match what is returned...
return ixn
}
2018-02-28 17:53:21 +00:00
// Create some intentions
ixns := structs.Intentions{
testIntention("default", "foo", "default", "bar"),
testIntention("default", "foo", "default", "*"),
testIntention("*", "*", "default", "*"),
testIntention("default", "*", "*", "*"),
testIntention("*", "*", "*", "*"),
2018-02-28 17:53:21 +00:00
}
// Create
for i, ixn := range ixns {
require.NoError(t, s.IntentionSet(uint64(1+i), ixn))
2018-02-28 17:53:21 +00:00
}
require.True(t, watchFired(ws), "watch fired")
2018-02-28 17:53:21 +00:00
// Read it back and verify.
expected := structs.Intentions{
cmpIntention(testIntention("default", "foo", "default", "bar"), ixns[0].ID, 1),
cmpIntention(testIntention("default", "foo", "default", "*"), ixns[1].ID, 2),
cmpIntention(testIntention("*", "*", "default", "*"), ixns[2].ID, 3),
cmpIntention(testIntention("default", "*", "*", "*"), ixns[3].ID, 4),
cmpIntention(testIntention("*", "*", "*", "*"), ixns[4].ID, 5),
2018-02-28 17:53:21 +00:00
}
idx, actual, err := s.Intentions(nil, entMeta)
require.NoError(t, err)
require.Equal(t, idx, uint64(5))
require.ElementsMatch(t, expected, actual)
2018-02-28 17:53:21 +00:00
}
// Test the matrix of match logic.
//
// Note that this doesn't need to test the intention sort logic exhaustively
// since this is tested in their sort implementation in the structs.
func TestStore_IntentionMatch_table(t *testing.T) {
type testCase struct {
Name string
Insert [][]string // List of intentions to insert
Query [][]string // List of intentions to match
Expected [][][]string // List of matches, where each match is a list of intentions
}
cases := []testCase{
{
"single exact namespace/name",
[][]string{
{"foo", "*"},
{"foo", "bar"},
{"foo", "baz"}, // shouldn't match
{"bar", "bar"}, // shouldn't match
{"bar", "*"}, // shouldn't match
{"*", "*"},
},
[][]string{
{"foo", "bar"},
},
[][][]string{
{
{"foo", "bar"},
{"foo", "*"},
{"*", "*"},
},
},
},
{
"multiple exact namespace/name",
[][]string{
{"foo", "*"},
{"foo", "bar"},
{"foo", "baz"}, // shouldn't match
{"bar", "bar"},
{"bar", "*"},
},
[][]string{
{"foo", "bar"},
{"bar", "bar"},
},
[][][]string{
{
{"foo", "bar"},
{"foo", "*"},
},
{
{"bar", "bar"},
{"bar", "*"},
},
},
},
{
"single exact namespace/name with duplicate destinations",
[][]string{
// 4-tuple specifies src and destination to test duplicate destinations
// with different sources. We flip them around to test in both
// directions. The first pair are the ones searched on in both cases so
// the duplicates need to be there.
{"foo", "bar", "foo", "*"},
{"foo", "bar", "bar", "*"},
{"*", "*", "*", "*"},
},
[][]string{
{"foo", "bar"},
},
[][][]string{
{
// Note the first two have the same precedence so we rely on arbitrary
// lexicographical tie-break behavior.
{"foo", "bar", "bar", "*"},
{"foo", "bar", "foo", "*"},
{"*", "*", "*", "*"},
},
},
},
}
// testRunner implements the test for a single case, but can be
// parameterized to run for both source and destination so we can
// test both cases.
testRunner := func(t *testing.T, tc testCase, typ structs.IntentionMatchType) {
// Insert the set
assert := assert.New(t)
s := testStateStore(t)
var idx uint64 = 1
for _, v := range tc.Insert {
ixn := &structs.Intention{ID: testUUID()}
switch typ {
case structs.IntentionMatchDestination:
ixn.DestinationNS = v[0]
ixn.DestinationName = v[1]
if len(v) == 4 {
ixn.SourceNS = v[2]
ixn.SourceName = v[3]
}
case structs.IntentionMatchSource:
ixn.SourceNS = v[0]
ixn.SourceName = v[1]
if len(v) == 4 {
ixn.DestinationNS = v[2]
ixn.DestinationName = v[3]
}
}
assert.NoError(s.IntentionSet(idx, ixn))
idx++
}
// Build the arguments
args := &structs.IntentionQueryMatch{Type: typ}
for _, q := range tc.Query {
args.Entries = append(args.Entries, structs.IntentionMatchEntry{
Namespace: q[0],
Name: q[1],
})
}
// Match
_, matches, err := s.IntentionMatch(nil, args)
assert.NoError(err)
// Should have equal lengths
require.Len(t, matches, len(tc.Expected))
// Verify matches
for i, expected := range tc.Expected {
var actual [][]string
for _, ixn := range matches[i] {
switch typ {
case structs.IntentionMatchDestination:
if len(expected) > 1 && len(expected[0]) == 4 {
actual = append(actual, []string{
ixn.DestinationNS,
ixn.DestinationName,
ixn.SourceNS,
ixn.SourceName,
})
} else {
actual = append(actual, []string{ixn.DestinationNS, ixn.DestinationName})
}
case structs.IntentionMatchSource:
if len(expected) > 1 && len(expected[0]) == 4 {
actual = append(actual, []string{
ixn.SourceNS,
ixn.SourceName,
ixn.DestinationNS,
ixn.DestinationName,
})
} else {
actual = append(actual, []string{ixn.SourceNS, ixn.SourceName})
}
}
}
assert.Equal(expected, actual)
}
}
for _, tc := range cases {
t.Run(tc.Name+" (destination)", func(t *testing.T) {
testRunner(t, tc, structs.IntentionMatchDestination)
})
t.Run(tc.Name+" (source)", func(t *testing.T) {
testRunner(t, tc, structs.IntentionMatchSource)
})
}
}
// Equivalent to TestStore_IntentionMatch_table but for IntentionMatchOne which matches a single service
func TestStore_IntentionMatchOne_table(t *testing.T) {
type testCase struct {
Name string
Insert [][]string // List of intentions to insert
Query []string // List of intentions to match
Expected [][]string // List of matches, where each match is a list of intentions
}
cases := []testCase{
{
"single exact namespace/name",
[][]string{
{"foo", "*"},
{"foo", "bar"},
{"foo", "baz"}, // shouldn't match
{"bar", "bar"}, // shouldn't match
{"bar", "*"}, // shouldn't match
{"*", "*"},
},
[]string{
"foo", "bar",
},
[][]string{
{"foo", "bar"},
{"foo", "*"},
{"*", "*"},
},
},
{
"single exact namespace/name with duplicate destinations",
[][]string{
// 4-tuple specifies src and destination to test duplicate destinations
// with different sources. We flip them around to test in both
// directions. The first pair are the ones searched on in both cases so
// the duplicates need to be there.
{"foo", "bar", "foo", "*"},
{"foo", "bar", "bar", "*"},
{"*", "*", "*", "*"},
},
[]string{
"foo", "bar",
},
[][]string{
// Note the first two have the same precedence so we rely on arbitrary
// lexicographical tie-break behavior.
{"foo", "bar", "bar", "*"},
{"foo", "bar", "foo", "*"},
{"*", "*", "*", "*"},
},
},
}
testRunner := func(t *testing.T, tc testCase, typ structs.IntentionMatchType) {
// Insert the set
assert := assert.New(t)
s := testStateStore(t)
var idx uint64 = 1
for _, v := range tc.Insert {
ixn := &structs.Intention{ID: testUUID()}
switch typ {
case structs.IntentionMatchDestination:
ixn.DestinationNS = v[0]
ixn.DestinationName = v[1]
if len(v) == 4 {
ixn.SourceNS = v[2]
ixn.SourceName = v[3]
}
case structs.IntentionMatchSource:
ixn.SourceNS = v[0]
ixn.SourceName = v[1]
if len(v) == 4 {
ixn.DestinationNS = v[2]
ixn.DestinationName = v[3]
}
}
assert.NoError(s.IntentionSet(idx, ixn))
idx++
}
// Build the arguments and match
entry := structs.IntentionMatchEntry{
Namespace: tc.Query[0],
Name: tc.Query[1],
}
_, matches, err := s.IntentionMatchOne(nil, entry, typ)
assert.NoError(err)
// Should have equal lengths
require.Len(t, matches, len(tc.Expected))
// Verify matches
var actual [][]string
for _, ixn := range matches {
switch typ {
case structs.IntentionMatchDestination:
if len(tc.Expected) > 1 && len(tc.Expected[0]) == 4 {
actual = append(actual, []string{
ixn.DestinationNS,
ixn.DestinationName,
ixn.SourceNS,
ixn.SourceName,
})
} else {
actual = append(actual, []string{ixn.DestinationNS, ixn.DestinationName})
}
case structs.IntentionMatchSource:
if len(tc.Expected) > 1 && len(tc.Expected[0]) == 4 {
actual = append(actual, []string{
ixn.SourceNS,
ixn.SourceName,
ixn.DestinationNS,
ixn.DestinationName,
})
} else {
actual = append(actual, []string{ixn.SourceNS, ixn.SourceName})
}
}
}
assert.Equal(tc.Expected, actual)
}
for _, tc := range cases {
t.Run(tc.Name+" (destination)", func(t *testing.T) {
testRunner(t, tc, structs.IntentionMatchDestination)
})
t.Run(tc.Name+" (source)", func(t *testing.T) {
testRunner(t, tc, structs.IntentionMatchSource)
})
}
}
func TestStore_Intention_Snapshot_Restore(t *testing.T) {
assert := assert.New(t)
s := testStateStore(t)
// Create some intentions.
ixns := structs.Intentions{
&structs.Intention{
DestinationName: "foo",
},
&structs.Intention{
DestinationName: "bar",
},
&structs.Intention{
DestinationName: "baz",
},
}
// Force the sort order of the UUIDs before we create them so the
// order is deterministic.
id := testUUID()
ixns[0].ID = "a" + id[1:]
ixns[1].ID = "b" + id[1:]
ixns[2].ID = "c" + id[1:]
// Now create
for i, ixn := range ixns {
assert.NoError(s.IntentionSet(uint64(4+i), ixn))
}
// Snapshot the queries.
snap := s.Snapshot()
defer snap.Close()
// Alter the real state store.
assert.NoError(s.IntentionDelete(7, ixns[0].ID))
// Verify the snapshot.
assert.Equal(snap.LastIndex(), uint64(6))
// Expect them sorted in insertion order
expected := structs.Intentions{
&structs.Intention{
ID: ixns[0].ID,
DestinationName: "foo",
Meta: map[string]string{},
RaftIndex: structs.RaftIndex{
CreateIndex: 4,
ModifyIndex: 4,
},
},
&structs.Intention{
ID: ixns[1].ID,
DestinationName: "bar",
Meta: map[string]string{},
RaftIndex: structs.RaftIndex{
CreateIndex: 5,
ModifyIndex: 5,
},
},
&structs.Intention{
ID: ixns[2].ID,
DestinationName: "baz",
Meta: map[string]string{},
RaftIndex: structs.RaftIndex{
CreateIndex: 6,
ModifyIndex: 6,
},
},
}
for i := range expected {
expected[i].UpdatePrecedence() // to match what is returned...
}
dump, err := snap.Intentions()
assert.NoError(err)
assert.Equal(expected, dump)
// Restore the values into a new state store.
func() {
s := testStateStore(t)
restore := s.Restore()
for _, ixn := range dump {
assert.NoError(restore.Intention(ixn))
}
restore.Commit()
// Read the restored values back out and verify that they match. Note that
// Intentions are returned precedence sorted unlike the snapshot so we need
// to rearrange the expected slice some.
expected[0], expected[1], expected[2] = expected[1], expected[2], expected[0]
entMeta := structs.WildcardEnterpriseMeta()
idx, actual, err := s.Intentions(nil, entMeta)
assert.NoError(err)
assert.Equal(idx, uint64(6))
assert.Equal(expected, actual)
}()
}