open-consul/agent/consul/discoverychain/compile.go

644 lines
18 KiB
Go
Raw Normal View History

package discoverychain
import (
"fmt"
"strings"
"time"
"github.com/hashicorp/consul/agent/structs"
"github.com/mitchellh/mapstructure"
)
type CompileRequest struct {
ServiceName string
CurrentNamespace string
CurrentDatacenter string
InferDefaults bool // TODO(rb): remove this?
Entries *structs.DiscoveryChainConfigEntries
}
// Compile assembles a discovery chain in the form of a graph of nodes using
// raw config entries and local context.
//
// "Node" referenced in this file refers to a node in a graph and not to the
// Consul construct called a "Node".
//
// Omitting router and splitter entries for services not using an L7 protocol
// (like HTTP) happens during initial fetching, but for sanity purposes a quick
// reinforcement of that happens here, too.
//
// May return a *structs.ConfigEntryGraphError, but that is only expected when
// being used to validate modifications to the config entry graph. It should
// not be expected when compiling existing entries at runtime that are already
// valid.
func Compile(req CompileRequest) (*structs.CompiledDiscoveryChain, error) {
var (
serviceName = req.ServiceName
currentNamespace = req.CurrentNamespace
currentDatacenter = req.CurrentDatacenter
inferDefaults = req.InferDefaults
entries = req.Entries
)
if serviceName == "" {
return nil, fmt.Errorf("serviceName is required")
}
if currentNamespace == "" {
return nil, fmt.Errorf("currentNamespace is required")
}
if currentDatacenter == "" {
return nil, fmt.Errorf("currentDatacenter is required")
}
if entries == nil {
return nil, fmt.Errorf("entries is required")
}
c := &compiler{
serviceName: serviceName,
currentNamespace: currentNamespace,
currentDatacenter: currentDatacenter,
inferDefaults: inferDefaults,
entries: entries,
splitterNodes: make(map[string]*structs.DiscoveryGraphNode),
groupResolverNodes: make(map[structs.DiscoveryTarget]*structs.DiscoveryGraphNode),
resolvers: make(map[string]*structs.ServiceResolverConfigEntry),
retainResolvers: make(map[string]struct{}),
targets: make(map[structs.DiscoveryTarget]struct{}),
}
// Clone this resolver map to avoid mutating the input map during compilation.
if len(entries.Resolvers) > 0 {
for k, v := range entries.Resolvers {
c.resolvers[k] = v
}
}
return c.compile()
}
// compiler is a single-use struct for handling intermediate state necessary
// for assembling a discovery chain from raw config entries.
type compiler struct {
serviceName string
currentNamespace string
currentDatacenter string
inferDefaults bool
// config entries that are being compiled (will be mutated during compilation)
//
// This is an INPUT field.
entries *structs.DiscoveryChainConfigEntries
// cached nodes
splitterNodes map[string]*structs.DiscoveryGraphNode
groupResolverNodes map[structs.DiscoveryTarget]*structs.DiscoveryGraphNode // this is also an OUTPUT field
// usesAdvancedRoutingFeatures is set to true if config entries for routing
// or splitting appear in the compiled chain
usesAdvancedRoutingFeatures bool
// topNode is computed inside of assembleChain()
//
// This is an OUTPUT field.
topNode *structs.DiscoveryGraphNode
// protocol is the common protocol used for all referenced services. These
// cannot be mixed.
//
// This is an OUTPUT field.
protocol string
// resolvers is initially seeded by copying the provided entries.Resolvers
// map and default resolvers are added as they are needed.
//
// If redirects cause a resolver to not be needed it will be omitted from
// this map.
//
// This is an OUTPUT field.
resolvers map[string]*structs.ServiceResolverConfigEntry
// retainResolvers flags the elements of the resolvers map that should be
// retained in the final results.
retainResolvers map[string]struct{}
// This is an OUTPUT field.
targets map[structs.DiscoveryTarget]struct{}
}
func (c *compiler) recordServiceProtocol(serviceName string) error {
if serviceDefault := c.entries.GetService(serviceName); serviceDefault != nil {
return c.recordProtocol(serviceName, serviceDefault.Protocol)
}
if c.entries.GlobalProxy != nil {
var cfg proxyConfig
// Ignore errors and fallback on defaults if it does happen.
_ = mapstructure.WeakDecode(c.entries.GlobalProxy.Config, &cfg)
if cfg.Protocol != "" {
return c.recordProtocol(serviceName, cfg.Protocol)
}
}
return c.recordProtocol(serviceName, "")
}
// proxyConfig is a snippet from agent/xds/config.go:ProxyConfig
type proxyConfig struct {
Protocol string `mapstructure:"protocol"`
}
func (c *compiler) recordProtocol(fromService, protocol string) error {
if protocol == "" {
protocol = "tcp"
} else {
protocol = strings.ToLower(protocol)
}
if c.protocol == "" {
c.protocol = protocol
} else if c.protocol != protocol {
return &structs.ConfigEntryGraphError{
Message: fmt.Sprintf(
"discovery chain %q uses inconsistent protocols; service %q has %q which is not %q",
c.serviceName, fromService, protocol, c.protocol,
),
}
}
return nil
}
func (c *compiler) compile() (*structs.CompiledDiscoveryChain, error) {
if err := c.assembleChain(); err != nil {
return nil, err
}
if c.topNode == nil {
if c.inferDefaults {
panic("impossible to return no results with infer defaults set to true")
}
return nil, nil
}
if err := c.detectCircularSplits(); err != nil {
return nil, err
}
if err := c.detectCircularResolves(); err != nil {
return nil, err
}
c.flattenAdjacentSplitterNodes()
// Remove any unused resolvers.
for name, _ := range c.resolvers {
if _, ok := c.retainResolvers[name]; !ok {
delete(c.resolvers, name)
}
}
if !enableAdvancedRoutingForProtocol(c.protocol) && c.usesAdvancedRoutingFeatures {
return nil, &structs.ConfigEntryGraphError{
Message: fmt.Sprintf(
"discovery chain %q uses a protocol %q that does not permit advanced routing or splitting behavior",
c.serviceName, c.protocol,
),
}
}
targets := make([]structs.DiscoveryTarget, 0, len(c.targets))
for target, _ := range c.targets {
targets = append(targets, target)
}
structs.DiscoveryTargets(targets).Sort()
return &structs.CompiledDiscoveryChain{
ServiceName: c.serviceName,
Namespace: c.currentNamespace,
Datacenter: c.currentDatacenter,
Protocol: c.protocol,
Node: c.topNode,
Resolvers: c.resolvers,
Targets: targets,
GroupResolverNodes: c.groupResolverNodes, // TODO(rb): prune unused
}, nil
}
func (c *compiler) detectCircularSplits() error {
// TODO(rb): detect when a tree of splitters backtracks
return nil
}
func (c *compiler) detectCircularResolves() error {
// TODO(rb): detect when a series of redirects and failovers cause a circular reference
return nil
}
func (c *compiler) flattenAdjacentSplitterNodes() {
for {
anyChanged := false
for _, splitterNode := range c.splitterNodes {
fixedSplits := make([]*structs.DiscoverySplit, 0, len(splitterNode.Splits))
changed := false
for _, split := range splitterNode.Splits {
if split.Node.Type != structs.DiscoveryGraphNodeTypeSplitter {
fixedSplits = append(fixedSplits, split)
continue
}
changed = true
for _, innerSplit := range split.Node.Splits {
effectiveWeight := split.Weight * innerSplit.Weight / 100
newDiscoverySplit := &structs.DiscoverySplit{
Weight: structs.NormalizeServiceSplitWeight(effectiveWeight),
Node: innerSplit.Node,
}
fixedSplits = append(fixedSplits, newDiscoverySplit)
}
}
if changed {
splitterNode.Splits = fixedSplits
anyChanged = true
}
}
if !anyChanged {
return
}
}
}
// assembleChain will do the initial assembly of a chain of DiscoveryGraphNode
// entries from the provided config entries. No default resolvers are injected
// here so it is expected that if there are no discovery chain config entries
// set up for a given service that it will produce no topNode from this.
func (c *compiler) assembleChain() error {
if c.topNode != nil {
return fmt.Errorf("assembleChain should only be called once")
}
// Check for short circuit path.
if len(c.resolvers) == 0 && c.entries.IsChainEmpty() {
if !c.inferDefaults {
return nil // nothing explicitly configured
}
// Materialize defaults and cache.
c.resolvers[c.serviceName] = newDefaultServiceResolver(c.serviceName)
}
// The only router we consult is the one for the service name at the top of
// the chain.
router := c.entries.GetRouter(c.serviceName)
if router == nil {
// If no router is configured, move on down the line to the next hop of
// the chain.
node, err := c.getSplitterOrGroupResolverNode(c.newTarget(c.serviceName, "", "", ""))
if err != nil {
return err
}
c.topNode = node
return nil
}
routeNode := &structs.DiscoveryGraphNode{
Type: structs.DiscoveryGraphNodeTypeRouter,
Name: router.Name,
Routes: make([]*structs.DiscoveryRoute, 0, len(router.Routes)+1),
}
c.usesAdvancedRoutingFeatures = true
if err := c.recordServiceProtocol(router.Name); err != nil {
return err
}
for i, _ := range router.Routes {
// We don't use range variables here because we'll take the address of
// this route and store that in a DiscoveryGraphNode and the range
// variables share memory addresses between iterations which is exactly
// wrong for us here.
route := router.Routes[i]
compiledRoute := &structs.DiscoveryRoute{Definition: &route}
routeNode.Routes = append(routeNode.Routes, compiledRoute)
dest := route.Destination
svc := defaultIfEmpty(dest.Service, c.serviceName)
// Check to see if the destination is eligible for splitting.
var (
node *structs.DiscoveryGraphNode
err error
)
if dest.ServiceSubset == "" && dest.Namespace == "" {
node, err = c.getSplitterOrGroupResolverNode(
c.newTarget(svc, dest.ServiceSubset, dest.Namespace, ""),
)
} else {
node, err = c.getGroupResolverNode(
c.newTarget(svc, dest.ServiceSubset, dest.Namespace, ""),
false,
)
}
if err != nil {
return err
}
compiledRoute.DestinationNode = node
}
// If we have a router, we'll add a catch-all route at the end to send
// unmatched traffic to the next hop in the chain.
defaultDestinationNode, err := c.getSplitterOrGroupResolverNode(c.newTarget(c.serviceName, "", "", ""))
if err != nil {
return err
}
defaultRoute := &structs.DiscoveryRoute{
Definition: newDefaultServiceRoute(c.serviceName),
DestinationNode: defaultDestinationNode,
}
routeNode.Routes = append(routeNode.Routes, defaultRoute)
c.topNode = routeNode
return nil
}
func newDefaultServiceRoute(serviceName string) *structs.ServiceRoute {
return &structs.ServiceRoute{
Match: &structs.ServiceRouteMatch{
HTTP: &structs.ServiceRouteHTTPMatch{
PathPrefix: "/",
},
},
Destination: &structs.ServiceRouteDestination{
Service: serviceName,
},
}
}
func (c *compiler) newTarget(service, serviceSubset, namespace, datacenter string) structs.DiscoveryTarget {
if service == "" {
panic("newTarget called with empty service which makes no sense")
}
return structs.DiscoveryTarget{
Service: service,
ServiceSubset: serviceSubset,
Namespace: defaultIfEmpty(namespace, c.currentNamespace),
Datacenter: defaultIfEmpty(datacenter, c.currentDatacenter),
}
}
func (c *compiler) getSplitterOrGroupResolverNode(target structs.DiscoveryTarget) (*structs.DiscoveryGraphNode, error) {
nextNode, err := c.getSplitterNode(target.Service)
if err != nil {
return nil, err
} else if nextNode != nil {
return nextNode, nil
}
return c.getGroupResolverNode(target, false)
}
func (c *compiler) getSplitterNode(name string) (*structs.DiscoveryGraphNode, error) {
// Do we already have the node?
if prev, ok := c.splitterNodes[name]; ok {
return prev, nil
}
// Fetch the config entry.
splitter := c.entries.GetSplitter(name)
if splitter == nil {
return nil, nil
}
// Build node.
splitNode := &structs.DiscoveryGraphNode{
Type: structs.DiscoveryGraphNodeTypeSplitter,
Name: name,
Splits: make([]*structs.DiscoverySplit, 0, len(splitter.Splits)),
}
// If we record this exists before recursing down it will short-circuit
// sanely if there is some sort of graph loop below.
c.splitterNodes[name] = splitNode
for _, split := range splitter.Splits {
compiledSplit := &structs.DiscoverySplit{
Weight: split.Weight,
}
splitNode.Splits = append(splitNode.Splits, compiledSplit)
svc := defaultIfEmpty(split.Service, name)
// Check to see if the split is eligible for additional splitting.
if svc != name && split.ServiceSubset == "" && split.Namespace == "" {
nextNode, err := c.getSplitterNode(svc)
if err != nil {
return nil, err
} else if nextNode != nil {
compiledSplit.Node = nextNode
continue
}
// fall through to group-resolver
}
node, err := c.getGroupResolverNode(
c.newTarget(svc, split.ServiceSubset, split.Namespace, ""),
false,
)
if err != nil {
return nil, err
}
compiledSplit.Node = node
}
c.usesAdvancedRoutingFeatures = true
return splitNode, nil
}
// getGroupResolverNode handles most of the code to handle
// redirection/rewriting capabilities from a resolver config entry. It recurses
// into itself to _generate_ targets used for failover out of convenience.
func (c *compiler) getGroupResolverNode(target structs.DiscoveryTarget, recursedForFailover bool) (*structs.DiscoveryGraphNode, error) {
RESOLVE_AGAIN:
// Do we already have the node?
if prev, ok := c.groupResolverNodes[target]; ok {
return prev, nil
}
if err := c.recordServiceProtocol(target.Service); err != nil {
return nil, err
}
// Fetch the config entry.
resolver, ok := c.resolvers[target.Service]
if !ok {
// Materialize defaults and cache.
resolver = newDefaultServiceResolver(target.Service)
c.resolvers[target.Service] = resolver
}
// Handle redirects right up front.
//
// TODO(rb): What about a redirected subset reference? (web/v2, but web redirects to alt/"")
if resolver.Redirect != nil {
redirect := resolver.Redirect
redirectedTarget := target.CopyAndModify(
redirect.Service,
redirect.ServiceSubset,
redirect.Namespace,
redirect.Datacenter,
)
if redirectedTarget != target {
target = redirectedTarget
goto RESOLVE_AGAIN
}
}
// Handle default subset.
if target.ServiceSubset == "" && resolver.DefaultSubset != "" {
target.ServiceSubset = resolver.DefaultSubset
goto RESOLVE_AGAIN
}
if target.ServiceSubset != "" && !resolver.SubsetExists(target.ServiceSubset) {
return nil, &structs.ConfigEntryGraphError{
Message: fmt.Sprintf(
"service %q does not have a subset named %q",
target.Service,
target.ServiceSubset,
),
}
}
// Since we're actually building a node with it, we can keep it.
c.retainResolvers[target.Service] = struct{}{}
connectTimeout := resolver.ConnectTimeout
if connectTimeout < 1 {
connectTimeout = 5 * time.Second
}
// Build node.
groupResolverNode := &structs.DiscoveryGraphNode{
Type: structs.DiscoveryGraphNodeTypeGroupResolver,
Name: resolver.Name,
GroupResolver: &structs.DiscoveryGroupResolver{
Definition: resolver,
Default: resolver.IsDefault(),
Target: target,
ConnectTimeout: connectTimeout,
},
}
groupResolver := groupResolverNode.GroupResolver
// Default mesh gateway settings
if serviceDefault := c.entries.GetService(resolver.Name); serviceDefault != nil {
groupResolver.MeshGateway = serviceDefault.MeshGateway
}
if c.entries.GlobalProxy != nil && groupResolver.MeshGateway.Mode == structs.MeshGatewayModeDefault {
groupResolver.MeshGateway.Mode = c.entries.GlobalProxy.MeshGateway.Mode
}
// Retain this target even if we may not retain the group resolver.
c.targets[target] = struct{}{}
if recursedForFailover {
// If we recursed here from ourselves in a failover context, just emit
// this node without caching it or even processing failover again.
// This is a little weird but it keeps the redirect/default-subset
// logic in one place.
return groupResolverNode, nil
}
// If we record this exists before recursing down it will short-circuit
// sanely if there is some sort of graph loop below.
c.groupResolverNodes[target] = groupResolverNode
if len(resolver.Failover) > 0 {
f := resolver.Failover
// Determine which failover section applies.
failover, ok := f[target.ServiceSubset]
if !ok {
failover, ok = f["*"]
}
if ok {
// Determine which failover definitions apply.
var failoverTargets []structs.DiscoveryTarget
if len(failover.Datacenters) > 0 {
for _, dc := range failover.Datacenters {
// Rewrite the target as per the failover policy.
failoverTarget := target.CopyAndModify(
failover.Service,
failover.ServiceSubset,
failover.Namespace,
dc,
)
if failoverTarget != target { // don't failover to yourself
failoverTargets = append(failoverTargets, failoverTarget)
}
}
} else {
// Rewrite the target as per the failover policy.
failoverTarget := target.CopyAndModify(
failover.Service,
failover.ServiceSubset,
failover.Namespace,
"",
)
if failoverTarget != target { // don't failover to yourself
failoverTargets = append(failoverTargets, failoverTarget)
}
}
// If we filtered everything out then no point in having a failover.
if len(failoverTargets) > 0 {
df := &structs.DiscoveryFailover{
Definition: &failover,
}
groupResolver.Failover = df
// Convert the targets into targets by cheating a bit and
// recursing into ourselves.
for _, target := range failoverTargets {
failoverGroupResolverNode, err := c.getGroupResolverNode(target, true)
if err != nil {
return nil, err
}
failoverTarget := failoverGroupResolverNode.GroupResolver.Target
df.Targets = append(df.Targets, failoverTarget)
}
}
}
}
return groupResolverNode, nil
}
func newDefaultServiceResolver(serviceName string) *structs.ServiceResolverConfigEntry {
return &structs.ServiceResolverConfigEntry{
Kind: structs.ServiceResolver,
Name: serviceName,
}
}
func defaultIfEmpty(val, defaultVal string) string {
if val != "" {
return val
}
return defaultVal
}
func enableAdvancedRoutingForProtocol(protocol string) bool {
switch protocol {
case "http", "http2", "grpc":
return true
default:
return false
}
}