2019-06-24 18:21:51 +00:00
package consul
import (
2019-06-26 16:28:09 +00:00
"bytes"
2019-06-24 18:21:51 +00:00
"context"
"fmt"
"strings"
"time"
"golang.org/x/time/rate"
"github.com/hashicorp/consul/agent/connect"
"github.com/hashicorp/consul/agent/connect/ca"
"github.com/hashicorp/consul/agent/structs"
2019-07-26 19:57:57 +00:00
uuid "github.com/hashicorp/go-uuid"
2019-06-24 18:21:51 +00:00
)
const (
// loopRateLimit is the maximum rate per second at which we can rerun CA and intention
// replication watches.
loopRateLimit rate . Limit = 0.2
// retryBucketSize is the maximum number of stored rate limit attempts for looped
// blocking query operations.
retryBucketSize = 5
// maxIntentionTxnSize is the maximum size (in bytes) of a transaction used during
// Intention replication.
maxIntentionTxnSize = raftWarnSize / 4
)
var (
// maxRetryBackoff is the maximum number of seconds to wait between failed blocking
// queries when backing off.
maxRetryBackoff = 256
// maxRootsQueryTime is the maximum time the primary roots watch query can block before
// returning.
maxRootsQueryTime = maxQueryTime
)
2019-07-26 19:57:57 +00:00
// initializeCAConfig is used to initialize the CA config if necessary
// when setting up the CA during establishLeadership
func ( s * Server ) initializeCAConfig ( ) ( * structs . CAConfiguration , error ) {
state := s . fsm . State ( )
_ , config , err := state . CAConfig ( )
if err != nil {
return nil , err
}
if config != nil {
return config , nil
}
config = s . config . CAConfig
if config . ClusterID == "" {
id , err := uuid . GenerateUUID ( )
if err != nil {
return nil , err
}
config . ClusterID = id
}
req := structs . CARequest {
Op : structs . CAOpSetConfig ,
Config : config ,
}
if _ , err = s . raftApply ( structs . ConnectCARequestType , req ) ; err != nil {
return nil , err
}
return config , nil
}
// parseCARoot returns a filled-in structs.CARoot from a raw PEM value.
func parseCARoot ( pemValue , provider , clusterID string ) ( * structs . CARoot , error ) {
id , err := connect . CalculateCertFingerprint ( pemValue )
if err != nil {
return nil , fmt . Errorf ( "error parsing root fingerprint: %v" , err )
}
rootCert , err := connect . ParseCert ( pemValue )
if err != nil {
return nil , fmt . Errorf ( "error parsing root cert: %v" , err )
}
return & structs . CARoot {
ID : id ,
Name : fmt . Sprintf ( "%s CA Root Cert" , strings . Title ( provider ) ) ,
SerialNumber : rootCert . SerialNumber . Uint64 ( ) ,
SigningKeyID : connect . HexString ( rootCert . SubjectKeyId ) ,
ExternalTrustDomain : clusterID ,
NotBefore : rootCert . NotBefore ,
NotAfter : rootCert . NotAfter ,
RootCert : pemValue ,
Active : true ,
} , nil
}
// createProvider returns a connect CA provider from the given config.
func ( s * Server ) createCAProvider ( conf * structs . CAConfiguration ) ( ca . Provider , error ) {
switch conf . Provider {
case structs . ConsulCAProvider :
return & ca . ConsulProvider { Delegate : & consulCADelegate { s } } , nil
case structs . VaultCAProvider :
return & ca . VaultProvider { } , nil
default :
return nil , fmt . Errorf ( "unknown CA provider %q" , conf . Provider )
}
}
func ( s * Server ) getCAProvider ( ) ( ca . Provider , * structs . CARoot ) {
retries := 0
var result ca . Provider
var resultRoot * structs . CARoot
for result == nil {
s . caProviderLock . RLock ( )
result = s . caProvider
resultRoot = s . caProviderRoot
s . caProviderLock . RUnlock ( )
// In cases where an agent is started with managed proxies, we may ask
// for the provider before establishLeadership completes. If we're the
// leader, then wait and get the provider again
if result == nil && s . IsLeader ( ) && retries < 10 {
retries ++
time . Sleep ( 50 * time . Millisecond )
continue
}
break
}
return result , resultRoot
}
func ( s * Server ) setCAProvider ( newProvider ca . Provider , root * structs . CARoot ) {
s . caProviderLock . Lock ( )
defer s . caProviderLock . Unlock ( )
s . caProvider = newProvider
s . caProviderRoot = root
}
2019-06-24 18:21:51 +00:00
// initializeCA sets up the CA provider when gaining leadership, either bootstrapping
// the CA if this is the primary DC or making a remote RPC for intermediate signing
// if this is a secondary DC.
func ( s * Server ) initializeCA ( ) error {
// Bail if connect isn't enabled.
if ! s . config . ConnectEnabled {
return nil
}
// Initialize the provider based on the current config.
conf , err := s . initializeCAConfig ( )
if err != nil {
return err
}
provider , err := s . createCAProvider ( conf )
if err != nil {
return err
}
s . setCAProvider ( provider , nil )
2019-07-26 19:57:57 +00:00
// If this isn't the primary DC, run the secondary DC routine if the primary has already been upgraded to at least 1.6.0
2019-06-24 18:21:51 +00:00
if s . config . PrimaryDatacenter != s . config . Datacenter {
2019-07-26 19:57:57 +00:00
versionOk , foundPrimary := ServersInDCMeetMinimumVersion ( s . WANMembers ( ) , s . config . PrimaryDatacenter , minMultiDCConnectVersion )
if ! foundPrimary {
s . logger . Printf ( "[WARN] connect: primary datacenter is configured but unreachable - deferring initialization of the secondary datacenter CA" )
// return nil because we will initialize the secondary CA later
2019-06-24 18:21:51 +00:00
return nil
2019-07-26 19:57:57 +00:00
} else if ! versionOk {
// return nil because we will initialize the secondary CA later
s . logger . Printf ( "[WARN] connect: servers in the primary datacenter are not at least at version %s - deferring initialization of the secondary datacenter CA" , minMultiDCConnectVersion )
2019-06-24 18:21:51 +00:00
return nil
}
// Get the root CA to see if we need to refresh our intermediate.
args := structs . DCSpecificRequest {
Datacenter : s . config . PrimaryDatacenter ,
}
var roots structs . IndexedCARoots
if err := s . forwardDC ( "ConnectCA.Roots" , s . config . PrimaryDatacenter , & args , & roots ) ; err != nil {
return err
}
// Configure the CA provider and initialize the intermediate certificate if necessary.
if err := s . initializeSecondaryProvider ( provider , roots ) ; err != nil {
return fmt . Errorf ( "error configuring provider: %v" , err )
}
if err := s . initializeSecondaryCA ( provider , roots ) ; err != nil {
return err
}
s . logger . Printf ( "[INFO] connect: initialized secondary datacenter CA with provider %q" , conf . Provider )
return nil
}
return s . initializeRootCA ( provider , conf )
}
2019-07-26 19:57:57 +00:00
// initializeRootCA runs the initialization logic for a root CA.
func ( s * Server ) initializeRootCA ( provider ca . Provider , conf * structs . CAConfiguration ) error {
if err := provider . Configure ( conf . ClusterID , true , conf . Config ) ; err != nil {
return fmt . Errorf ( "error configuring provider: %v" , err )
}
if err := provider . GenerateRoot ( ) ; err != nil {
return fmt . Errorf ( "error generating CA root certificate: %v" , err )
}
// Get the active root cert from the CA
rootPEM , err := provider . ActiveRoot ( )
if err != nil {
return fmt . Errorf ( "error getting root cert: %v" , err )
}
rootCA , err := parseCARoot ( rootPEM , conf . Provider , conf . ClusterID )
if err != nil {
return err
}
2019-08-02 19:36:03 +00:00
// Also create the intermediate CA, which is the one that actually signs leaf certs
interPEM , err := provider . GenerateIntermediate ( )
if err != nil {
return fmt . Errorf ( "error generating intermediate cert: %v" , err )
}
_ , err = connect . ParseCert ( interPEM )
if err != nil {
return fmt . Errorf ( "error getting intermediate cert: %v" , err )
}
2019-07-30 21:47:39 +00:00
commonConfig , err := conf . GetCommonConfig ( )
if err != nil {
return err
}
rootCA . PrivateKeyType = commonConfig . PrivateKeyType
rootCA . PrivateKeyBits = commonConfig . PrivateKeyBits
2019-07-26 19:57:57 +00:00
// Check if the CA root is already initialized and exit if it is,
// adding on any existing intermediate certs since they aren't directly
// tied to the provider.
// Every change to the CA after this initial bootstrapping should
// be done through the rotation process.
state := s . fsm . State ( )
_ , activeRoot , err := state . CARootActive ( nil )
if err != nil {
return err
}
if activeRoot != nil {
// This state shouldn't be possible to get into because we update the root and
// CA config in the same FSM operation.
if activeRoot . ID != rootCA . ID {
return fmt . Errorf ( "stored CA root %q is not the active root (%s)" , rootCA . ID , activeRoot . ID )
}
rootCA . IntermediateCerts = activeRoot . IntermediateCerts
s . setCAProvider ( provider , rootCA )
return nil
}
// Get the highest index
idx , _ , err := state . CARoots ( nil )
if err != nil {
return err
}
// Store the root cert in raft
resp , err := s . raftApply ( structs . ConnectCARequestType , & structs . CARequest {
Op : structs . CAOpSetRoots ,
Index : idx ,
Roots : [ ] * structs . CARoot { rootCA } ,
} )
if err != nil {
s . logger . Printf ( "[ERR] connect: Apply failed %v" , err )
return err
}
if respErr , ok := resp . ( error ) ; ok {
return respErr
}
s . setCAProvider ( provider , rootCA )
s . logger . Printf ( "[INFO] connect: initialized primary datacenter CA with provider %q" , conf . Provider )
return nil
}
2019-06-24 18:21:51 +00:00
// initializeSecondaryCA runs the routine for generating an intermediate CA CSR and getting
// it signed by the primary DC if the root CA of the primary DC has changed since the last
// intermediate.
func ( s * Server ) initializeSecondaryCA ( provider ca . Provider , roots structs . IndexedCARoots ) error {
activeIntermediate , err := provider . ActiveIntermediate ( )
if err != nil {
return err
}
var storedRootID string
if activeIntermediate != "" {
storedRoot , err := provider . ActiveRoot ( )
if err != nil {
return err
}
storedRootID , err = connect . CalculateCertFingerprint ( storedRoot )
if err != nil {
return fmt . Errorf ( "error parsing root fingerprint: %v, %#v" , err , roots )
}
}
var newActiveRoot * structs . CARoot
for _ , root := range roots . Roots {
if root . ID == roots . ActiveRootID && root . Active {
newActiveRoot = root
break
}
}
if newActiveRoot == nil {
return fmt . Errorf ( "primary datacenter does not have an active root CA for Connect" )
}
// Update the roots list in the state store if there's a new active root.
state := s . fsm . State ( )
_ , activeRoot , err := state . CARootActive ( nil )
if err != nil {
return err
}
if activeRoot == nil || activeRoot . ID != newActiveRoot . ID {
idx , oldRoots , err := state . CARoots ( nil )
if err != nil {
return err
}
_ , config , err := state . CAConfig ( )
if err != nil {
return err
}
if config == nil {
return fmt . Errorf ( "local CA not initialized yet" )
}
newConf := * config
newConf . ClusterID = newActiveRoot . ExternalTrustDomain
// Copy the root list and append the new active root, updating the old root
// with the time it was rotated out.
var newRoots structs . CARoots
for _ , r := range oldRoots {
newRoot := * r
if newRoot . Active {
newRoot . Active = false
newRoot . RotatedOutAt = time . Now ( )
}
if newRoot . ExternalTrustDomain == "" {
newRoot . ExternalTrustDomain = config . ClusterID
}
newRoots = append ( newRoots , & newRoot )
}
newRoots = append ( newRoots , newActiveRoot )
args := & structs . CARequest {
Op : structs . CAOpSetRootsAndConfig ,
Index : idx ,
Roots : newRoots ,
Config : & newConf ,
}
resp , err := s . raftApply ( structs . ConnectCARequestType , & args )
if err != nil {
return err
}
if respErr , ok := resp . ( error ) ; ok {
return respErr
}
if respOk , ok := resp . ( bool ) ; ok && ! respOk {
return fmt . Errorf ( "could not atomically update roots and config" )
}
s . logger . Printf ( "[INFO] connect: updated root certificates from primary datacenter" )
}
// Get a signed intermediate from the primary DC if the provider
// hasn't been initialized yet or if the primary's root has changed.
if activeIntermediate == "" || storedRootID != roots . ActiveRootID {
csr , err := provider . GenerateIntermediateCSR ( )
if err != nil {
return err
}
var intermediatePEM string
if err := s . forwardDC ( "ConnectCA.SignIntermediate" , s . config . PrimaryDatacenter , s . generateCASignRequest ( csr ) , & intermediatePEM ) ; err != nil {
return err
}
if err := provider . SetIntermediate ( intermediatePEM , newActiveRoot . RootCert ) ; err != nil {
return err
}
// Append the new intermediate to our local active root entry.
newActiveRoot . IntermediateCerts = append ( newActiveRoot . IntermediateCerts , intermediatePEM )
s . logger . Printf ( "[INFO] connect: received new intermediate certificate from primary datacenter" )
}
s . setCAProvider ( provider , newActiveRoot )
return nil
}
func ( s * Server ) generateCASignRequest ( csr string ) * structs . CASignRequest {
return & structs . CASignRequest {
Datacenter : s . config . PrimaryDatacenter ,
CSR : csr ,
WriteRequest : structs . WriteRequest { Token : s . tokens . ReplicationToken ( ) } ,
}
}
// startConnectLeader starts multi-dc connect leader routines.
func ( s * Server ) startConnectLeader ( ) {
s . connectLock . Lock ( )
defer s . connectLock . Unlock ( )
if s . connectEnabled {
return
}
s . connectCh = make ( chan struct { } )
// Start the Connect secondary DC actions if enabled.
if s . config . ConnectEnabled && s . config . Datacenter != s . config . PrimaryDatacenter {
go s . secondaryCARootWatch ( s . connectCh )
go s . replicateIntentions ( s . connectCh )
2019-07-26 19:57:57 +00:00
2019-06-24 18:21:51 +00:00
}
2019-07-26 19:57:57 +00:00
go s . runCARootPruning ( s . connectCh )
2019-06-24 18:21:51 +00:00
s . connectEnabled = true
}
// stopConnectLeader stops connect specific leader functions.
func ( s * Server ) stopConnectLeader ( ) {
s . connectLock . Lock ( )
defer s . connectLock . Unlock ( )
if ! s . connectEnabled {
return
}
s . actingSecondaryLock . Lock ( )
s . actingSecondaryCA = false
s . actingSecondaryLock . Unlock ( )
close ( s . connectCh )
s . connectEnabled = false
}
2019-07-26 19:57:57 +00:00
func ( s * Server ) runCARootPruning ( stopCh <- chan struct { } ) {
ticker := time . NewTicker ( caRootPruneInterval )
defer ticker . Stop ( )
for {
select {
case <- stopCh :
return
case <- ticker . C :
if err := s . pruneCARoots ( ) ; err != nil {
s . logger . Printf ( "[ERR] connect: error pruning CA roots: %v" , err )
}
}
}
}
// pruneCARoots looks for any CARoots that have been rotated out and expired.
func ( s * Server ) pruneCARoots ( ) error {
if ! s . config . ConnectEnabled {
return nil
}
state := s . fsm . State ( )
idx , roots , err := state . CARoots ( nil )
if err != nil {
return err
}
_ , caConf , err := state . CAConfig ( )
if err != nil {
return err
}
common , err := caConf . GetCommonConfig ( )
if err != nil {
return err
}
var newRoots structs . CARoots
for _ , r := range roots {
if ! r . Active && ! r . RotatedOutAt . IsZero ( ) && time . Now ( ) . Sub ( r . RotatedOutAt ) > common . LeafCertTTL * 2 {
s . logger . Printf ( "[INFO] connect: pruning old unused root CA (ID: %s)" , r . ID )
continue
}
newRoot := * r
newRoots = append ( newRoots , & newRoot )
}
// Return early if there's nothing to remove.
if len ( newRoots ) == len ( roots ) {
return nil
}
// Commit the new root state.
var args structs . CARequest
args . Op = structs . CAOpSetRoots
args . Index = idx
args . Roots = newRoots
resp , err := s . raftApply ( structs . ConnectCARequestType , args )
if err != nil {
return err
}
if respErr , ok := resp . ( error ) ; ok {
return respErr
}
return nil
}
2019-06-24 18:21:51 +00:00
// secondaryCARootWatch maintains a blocking query to the primary datacenter's
// ConnectCA.Roots endpoint to monitor when it needs to request a new signed
// intermediate certificate.
func ( s * Server ) secondaryCARootWatch ( stopCh <- chan struct { } ) {
args := structs . DCSpecificRequest {
Datacenter : s . config . PrimaryDatacenter ,
QueryOptions : structs . QueryOptions {
MaxQueryTime : maxRootsQueryTime ,
} ,
}
s . logger . Printf ( "[DEBUG] connect: starting Connect CA root replication from primary datacenter %q" , s . config . PrimaryDatacenter )
retryLoopBackoff ( stopCh , func ( ) error {
var roots structs . IndexedCARoots
if err := s . forwardDC ( "ConnectCA.Roots" , s . config . PrimaryDatacenter , & args , & roots ) ; err != nil {
2019-07-26 19:57:57 +00:00
return fmt . Errorf ( "Error retrieving the primary datacenter's roots: %v" , err )
2019-06-24 18:21:51 +00:00
}
// Check to see if the primary has been upgraded in case we're waiting to switch to
// secondary mode.
provider , _ := s . getCAProvider ( )
2019-07-26 19:57:57 +00:00
if provider == nil {
// this happens when leadership is being revoked and this go routine will be stopped
return nil
}
2019-06-24 18:21:51 +00:00
if ! s . configuredSecondaryCA ( ) {
2019-07-26 19:57:57 +00:00
versionOk , primaryFound := ServersInDCMeetMinimumVersion ( s . WANMembers ( ) , s . config . PrimaryDatacenter , minMultiDCConnectVersion )
if ! primaryFound {
return fmt . Errorf ( "Primary datacenter is unreachable - deferring secondary CA initialization" )
2019-06-24 18:21:51 +00:00
}
2019-07-26 19:57:57 +00:00
if versionOk {
2019-06-24 18:21:51 +00:00
if err := s . initializeSecondaryProvider ( provider , roots ) ; err != nil {
2019-07-26 19:57:57 +00:00
return fmt . Errorf ( "Failed to initialize secondary CA provider: %v" , err )
2019-06-24 18:21:51 +00:00
}
}
}
// Run the secondary CA init routine to see if we need to request a new
// intermediate.
if s . configuredSecondaryCA ( ) {
if err := s . initializeSecondaryCA ( provider , roots ) ; err != nil {
2019-07-26 19:57:57 +00:00
return fmt . Errorf ( "Failed to initialize the secondary CA: %v" , err )
2019-06-24 18:21:51 +00:00
}
}
args . QueryOptions . MinQueryIndex = nextIndexVal ( args . QueryOptions . MinQueryIndex , roots . QueryMeta . Index )
return nil
} , func ( err error ) {
2019-07-26 19:57:57 +00:00
s . logger . Printf ( "[ERR] connect: %v" , err )
2019-06-24 18:21:51 +00:00
} )
}
// replicateIntentions executes a blocking query to the primary datacenter to replicate
// the intentions there to the local state.
func ( s * Server ) replicateIntentions ( stopCh <- chan struct { } ) {
args := structs . DCSpecificRequest {
Datacenter : s . config . PrimaryDatacenter ,
QueryOptions : structs . QueryOptions { Token : s . tokens . ReplicationToken ( ) } ,
}
s . logger . Printf ( "[DEBUG] connect: starting Connect intention replication from primary datacenter %q" , s . config . PrimaryDatacenter )
retryLoopBackoff ( stopCh , func ( ) error {
var remote structs . IndexedIntentions
if err := s . forwardDC ( "Intention.List" , s . config . PrimaryDatacenter , & args , & remote ) ; err != nil {
return err
}
_ , local , err := s . fsm . State ( ) . Intentions ( nil )
if err != nil {
return err
}
// Compute the diff between the remote and local intentions.
deletes , updates := diffIntentions ( local , remote . Intentions )
txnOpSets := batchIntentionUpdates ( deletes , updates )
// Apply batched updates to the state store.
for _ , ops := range txnOpSets {
txnReq := structs . TxnRequest { Ops : ops }
resp , err := s . raftApply ( structs . TxnRequestType , & txnReq )
if err != nil {
return err
}
if respErr , ok := resp . ( error ) ; ok {
return respErr
}
if txnResp , ok := resp . ( structs . TxnResponse ) ; ok {
if len ( txnResp . Errors ) > 0 {
return txnResp . Error ( )
}
} else {
return fmt . Errorf ( "unexpected return type %T" , resp )
}
}
args . QueryOptions . MinQueryIndex = nextIndexVal ( args . QueryOptions . MinQueryIndex , remote . QueryMeta . Index )
return nil
} , func ( err error ) {
s . logger . Printf ( "[ERR] connect: error replicating intentions: %v" , err )
} )
}
// retryLoopBackoff loops a given function indefinitely, backing off exponentially
// upon errors up to a maximum of maxRetryBackoff seconds.
func retryLoopBackoff ( stopCh <- chan struct { } , loopFn func ( ) error , errFn func ( error ) ) {
var failedAttempts uint
limiter := rate . NewLimiter ( loopRateLimit , retryBucketSize )
for {
// Rate limit how often we run the loop
limiter . Wait ( context . Background ( ) )
select {
case <- stopCh :
return
default :
}
if ( 1 << failedAttempts ) < maxRetryBackoff {
failedAttempts ++
}
retryTime := ( 1 << failedAttempts ) * time . Second
if err := loopFn ( ) ; err != nil {
errFn ( err )
time . Sleep ( retryTime )
continue
}
// Reset the failed attempts after a successful run.
failedAttempts = 0
}
}
// diffIntentions computes the difference between the local and remote intentions
// and returns lists of deletes and updates.
func diffIntentions ( local , remote structs . Intentions ) ( structs . Intentions , structs . Intentions ) {
2019-06-26 16:28:09 +00:00
localIdx := make ( map [ string ] [ ] byte , len ( local ) )
2019-06-24 18:21:51 +00:00
remoteIdx := make ( map [ string ] struct { } , len ( remote ) )
var deletes structs . Intentions
var updates structs . Intentions
for _ , intention := range local {
2019-06-26 16:28:09 +00:00
localIdx [ intention . ID ] = intention . Hash
2019-06-24 18:21:51 +00:00
}
for _ , intention := range remote {
remoteIdx [ intention . ID ] = struct { } { }
}
for _ , intention := range local {
if _ , ok := remoteIdx [ intention . ID ] ; ! ok {
deletes = append ( deletes , intention )
}
}
for _ , intention := range remote {
2019-06-26 16:28:09 +00:00
existingHash , ok := localIdx [ intention . ID ]
2019-06-24 18:21:51 +00:00
if ! ok {
updates = append ( updates , intention )
2019-06-26 16:28:09 +00:00
} else if bytes . Compare ( existingHash , intention . Hash ) != 0 {
2019-06-24 18:21:51 +00:00
updates = append ( updates , intention )
}
}
return deletes , updates
}
// batchIntentionUpdates breaks up the given updates into sets of TxnOps based
// on the estimated size of the operations.
func batchIntentionUpdates ( deletes , updates structs . Intentions ) [ ] structs . TxnOps {
var txnOps structs . TxnOps
for _ , delete := range deletes {
deleteOp := & structs . TxnIntentionOp {
Op : structs . IntentionOpDelete ,
Intention : delete ,
}
txnOps = append ( txnOps , & structs . TxnOp { Intention : deleteOp } )
}
for _ , update := range updates {
updateOp := & structs . TxnIntentionOp {
Op : structs . IntentionOpUpdate ,
Intention : update ,
}
txnOps = append ( txnOps , & structs . TxnOp { Intention : updateOp } )
}
// Divide the operations into chunks according to maxIntentionTxnSize.
var batchedOps [ ] structs . TxnOps
for batchStart := 0 ; batchStart < len ( txnOps ) ; {
// inner loop finds the last element to include in this batch.
batchSize := 0
batchEnd := batchStart
for ; batchEnd < len ( txnOps ) && batchSize < maxIntentionTxnSize ; batchEnd += 1 {
batchSize += txnOps [ batchEnd ] . Intention . Intention . EstimateSize ( )
}
batchedOps = append ( batchedOps , txnOps [ batchStart : batchEnd ] )
// txnOps[batchEnd] wasn't included as the slicing doesn't include the element at the stop index
batchStart = batchEnd
}
return batchedOps
}
// nextIndexVal computes the next index value to query for, resetting to zero
// if the index went backward.
func nextIndexVal ( prevIdx , idx uint64 ) uint64 {
if prevIdx > idx {
return 0
}
return idx
}
// initializeSecondaryProvider configures the given provider for a secondary, non-root datacenter.
func ( s * Server ) initializeSecondaryProvider ( provider ca . Provider , roots structs . IndexedCARoots ) error {
if roots . TrustDomain == "" {
return fmt . Errorf ( "trust domain from primary datacenter is not initialized" )
}
clusterID := strings . Split ( roots . TrustDomain , "." ) [ 0 ]
_ , conf , err := s . fsm . State ( ) . CAConfig ( )
if err != nil {
return err
}
if err := provider . Configure ( clusterID , false , conf . Config ) ; err != nil {
return fmt . Errorf ( "error configuring provider: %v" , err )
}
s . actingSecondaryLock . Lock ( )
s . actingSecondaryCA = true
s . actingSecondaryLock . Unlock ( )
return nil
}
func ( s * Server ) configuredSecondaryCA ( ) bool {
s . actingSecondaryLock . RLock ( )
defer s . actingSecondaryLock . RUnlock ( )
return s . actingSecondaryCA
}