open-consul/vendor/github.com/google/pprof/profile/profile.go

806 lines
20 KiB
Go
Raw Normal View History

generate a single debug file for a long duration capture (#10279) * debug: remove the CLI check for debug_enabled The API allows collecting profiles even debug_enabled=false as long as ACLs are enabled. Remove this check from the CLI so that users do not need to set debug_enabled=true for no reason. Also: - fix the API client to return errors on non-200 status codes for debug endpoints - improve the failure messages when pprof data can not be collected Co-Authored-By: Dhia Ayachi <dhia@hashicorp.com> * remove parallel test runs parallel runs create a race condition that fail the debug tests * snapshot the timestamp at the beginning of the capture - timestamp used to create the capture sub folder is snapshot only at the beginning of the capture and reused for subsequent captures - capture append to the file if it already exist * Revert "snapshot the timestamp at the beginning of the capture" This reverts commit c2d03346 * Refactor captureDynamic to extract capture logic for each item in a different func * snapshot the timestamp at the beginning of the capture - timestamp used to create the capture sub folder is snapshot only at the beginning of the capture and reused for subsequent captures - capture append to the file if it already exist * Revert "snapshot the timestamp at the beginning of the capture" This reverts commit c2d03346 * Refactor captureDynamic to extract capture logic for each item in a different func * extract wait group outside the go routine to avoid a race condition * capture pprof in a separate go routine * perform a single capture for pprof data for the whole duration * add missing vendor dependency * add a change log and fix documentation to reflect the change * create function for timestamp dir creation and simplify error handling * use error groups and ticker to simplify interval capture loop * Logs, profile and traces are captured for the full duration. Metrics, Heap and Go routines are captured every interval * refactor Logs capture routine and add log capture specific test * improve error reporting when log test fail * change test duration to 1s * make time parsing in log line more robust * refactor log time format in a const * test on log line empty the earliest possible and return Co-authored-by: Freddy <freddygv@users.noreply.github.com> * rename function to captureShortLived * more specific changelog Co-authored-by: Paul Banks <banks@banksco.de> * update documentation to reflect current implementation * add test for behavior when invalid param is passed to the command * fix argument line in test * a more detailed description of the new behaviour Co-authored-by: Paul Banks <banks@banksco.de> * print success right after the capture is done * remove an unnecessary error check Co-authored-by: Daniel Nephin <dnephin@hashicorp.com> * upgraded github.com/google/pprof v0.0.0-20181206194817-3ea8567a2e57 => v0.0.0-20210601050228-01bbb1931b22 Co-authored-by: Daniel Nephin <dnephin@hashicorp.com> Co-authored-by: Freddy <freddygv@users.noreply.github.com> Co-authored-by: Paul Banks <banks@banksco.de>
2021-06-07 17:00:51 +00:00
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package profile provides a representation of profile.proto and
// methods to encode/decode profiles in this format.
package profile
import (
"bytes"
"compress/gzip"
"fmt"
"io"
"io/ioutil"
"math"
"path/filepath"
"regexp"
"sort"
"strings"
"sync"
"time"
)
// Profile is an in-memory representation of profile.proto.
type Profile struct {
SampleType []*ValueType
DefaultSampleType string
Sample []*Sample
Mapping []*Mapping
Location []*Location
Function []*Function
Comments []string
DropFrames string
KeepFrames string
TimeNanos int64
DurationNanos int64
PeriodType *ValueType
Period int64
// The following fields are modified during encoding and copying,
// so are protected by a Mutex.
encodeMu sync.Mutex
commentX []int64
dropFramesX int64
keepFramesX int64
stringTable []string
defaultSampleTypeX int64
}
// ValueType corresponds to Profile.ValueType
type ValueType struct {
Type string // cpu, wall, inuse_space, etc
Unit string // seconds, nanoseconds, bytes, etc
typeX int64
unitX int64
}
// Sample corresponds to Profile.Sample
type Sample struct {
Location []*Location
Value []int64
Label map[string][]string
NumLabel map[string][]int64
NumUnit map[string][]string
locationIDX []uint64
labelX []label
}
// label corresponds to Profile.Label
type label struct {
keyX int64
// Exactly one of the two following values must be set
strX int64
numX int64 // Integer value for this label
// can be set if numX has value
unitX int64
}
// Mapping corresponds to Profile.Mapping
type Mapping struct {
ID uint64
Start uint64
Limit uint64
Offset uint64
File string
BuildID string
HasFunctions bool
HasFilenames bool
HasLineNumbers bool
HasInlineFrames bool
fileX int64
buildIDX int64
}
// Location corresponds to Profile.Location
type Location struct {
ID uint64
Mapping *Mapping
Address uint64
Line []Line
IsFolded bool
mappingIDX uint64
}
// Line corresponds to Profile.Line
type Line struct {
Function *Function
Line int64
functionIDX uint64
}
// Function corresponds to Profile.Function
type Function struct {
ID uint64
Name string
SystemName string
Filename string
StartLine int64
nameX int64
systemNameX int64
filenameX int64
}
// Parse parses a profile and checks for its validity. The input
// may be a gzip-compressed encoded protobuf or one of many legacy
// profile formats which may be unsupported in the future.
func Parse(r io.Reader) (*Profile, error) {
data, err := ioutil.ReadAll(r)
if err != nil {
return nil, err
}
return ParseData(data)
}
// ParseData parses a profile from a buffer and checks for its
// validity.
func ParseData(data []byte) (*Profile, error) {
var p *Profile
var err error
if len(data) >= 2 && data[0] == 0x1f && data[1] == 0x8b {
gz, err := gzip.NewReader(bytes.NewBuffer(data))
if err == nil {
data, err = ioutil.ReadAll(gz)
}
if err != nil {
return nil, fmt.Errorf("decompressing profile: %v", err)
}
}
if p, err = ParseUncompressed(data); err != nil && err != errNoData && err != errConcatProfile {
p, err = parseLegacy(data)
}
if err != nil {
return nil, fmt.Errorf("parsing profile: %v", err)
}
if err := p.CheckValid(); err != nil {
return nil, fmt.Errorf("malformed profile: %v", err)
}
return p, nil
}
var errUnrecognized = fmt.Errorf("unrecognized profile format")
var errMalformed = fmt.Errorf("malformed profile format")
var errNoData = fmt.Errorf("empty input file")
var errConcatProfile = fmt.Errorf("concatenated profiles detected")
func parseLegacy(data []byte) (*Profile, error) {
parsers := []func([]byte) (*Profile, error){
parseCPU,
parseHeap,
parseGoCount, // goroutine, threadcreate
parseThread,
parseContention,
parseJavaProfile,
}
for _, parser := range parsers {
p, err := parser(data)
if err == nil {
p.addLegacyFrameInfo()
return p, nil
}
if err != errUnrecognized {
return nil, err
}
}
return nil, errUnrecognized
}
// ParseUncompressed parses an uncompressed protobuf into a profile.
func ParseUncompressed(data []byte) (*Profile, error) {
if len(data) == 0 {
return nil, errNoData
}
p := &Profile{}
if err := unmarshal(data, p); err != nil {
return nil, err
}
if err := p.postDecode(); err != nil {
return nil, err
}
return p, nil
}
var libRx = regexp.MustCompile(`([.]so$|[.]so[._][0-9]+)`)
// massageMappings applies heuristic-based changes to the profile
// mappings to account for quirks of some environments.
func (p *Profile) massageMappings() {
// Merge adjacent regions with matching names, checking that the offsets match
if len(p.Mapping) > 1 {
mappings := []*Mapping{p.Mapping[0]}
for _, m := range p.Mapping[1:] {
lm := mappings[len(mappings)-1]
if adjacent(lm, m) {
lm.Limit = m.Limit
if m.File != "" {
lm.File = m.File
}
if m.BuildID != "" {
lm.BuildID = m.BuildID
}
p.updateLocationMapping(m, lm)
continue
}
mappings = append(mappings, m)
}
p.Mapping = mappings
}
// Use heuristics to identify main binary and move it to the top of the list of mappings
for i, m := range p.Mapping {
file := strings.TrimSpace(strings.Replace(m.File, "(deleted)", "", -1))
if len(file) == 0 {
continue
}
if len(libRx.FindStringSubmatch(file)) > 0 {
continue
}
if file[0] == '[' {
continue
}
// Swap what we guess is main to position 0.
p.Mapping[0], p.Mapping[i] = p.Mapping[i], p.Mapping[0]
break
}
// Keep the mapping IDs neatly sorted
for i, m := range p.Mapping {
m.ID = uint64(i + 1)
}
}
// adjacent returns whether two mapping entries represent the same
// mapping that has been split into two. Check that their addresses are adjacent,
// and if the offsets match, if they are available.
func adjacent(m1, m2 *Mapping) bool {
if m1.File != "" && m2.File != "" {
if m1.File != m2.File {
return false
}
}
if m1.BuildID != "" && m2.BuildID != "" {
if m1.BuildID != m2.BuildID {
return false
}
}
if m1.Limit != m2.Start {
return false
}
if m1.Offset != 0 && m2.Offset != 0 {
offset := m1.Offset + (m1.Limit - m1.Start)
if offset != m2.Offset {
return false
}
}
return true
}
func (p *Profile) updateLocationMapping(from, to *Mapping) {
for _, l := range p.Location {
if l.Mapping == from {
l.Mapping = to
}
}
}
func serialize(p *Profile) []byte {
p.encodeMu.Lock()
p.preEncode()
b := marshal(p)
p.encodeMu.Unlock()
return b
}
// Write writes the profile as a gzip-compressed marshaled protobuf.
func (p *Profile) Write(w io.Writer) error {
zw := gzip.NewWriter(w)
defer zw.Close()
_, err := zw.Write(serialize(p))
return err
}
// WriteUncompressed writes the profile as a marshaled protobuf.
func (p *Profile) WriteUncompressed(w io.Writer) error {
_, err := w.Write(serialize(p))
return err
}
// CheckValid tests whether the profile is valid. Checks include, but are
// not limited to:
// - len(Profile.Sample[n].value) == len(Profile.value_unit)
// - Sample.id has a corresponding Profile.Location
func (p *Profile) CheckValid() error {
// Check that sample values are consistent
sampleLen := len(p.SampleType)
if sampleLen == 0 && len(p.Sample) != 0 {
return fmt.Errorf("missing sample type information")
}
for _, s := range p.Sample {
if s == nil {
return fmt.Errorf("profile has nil sample")
}
if len(s.Value) != sampleLen {
return fmt.Errorf("mismatch: sample has %d values vs. %d types", len(s.Value), len(p.SampleType))
}
for _, l := range s.Location {
if l == nil {
return fmt.Errorf("sample has nil location")
}
}
}
// Check that all mappings/locations/functions are in the tables
// Check that there are no duplicate ids
mappings := make(map[uint64]*Mapping, len(p.Mapping))
for _, m := range p.Mapping {
if m == nil {
return fmt.Errorf("profile has nil mapping")
}
if m.ID == 0 {
return fmt.Errorf("found mapping with reserved ID=0")
}
if mappings[m.ID] != nil {
return fmt.Errorf("multiple mappings with same id: %d", m.ID)
}
mappings[m.ID] = m
}
functions := make(map[uint64]*Function, len(p.Function))
for _, f := range p.Function {
if f == nil {
return fmt.Errorf("profile has nil function")
}
if f.ID == 0 {
return fmt.Errorf("found function with reserved ID=0")
}
if functions[f.ID] != nil {
return fmt.Errorf("multiple functions with same id: %d", f.ID)
}
functions[f.ID] = f
}
locations := make(map[uint64]*Location, len(p.Location))
for _, l := range p.Location {
if l == nil {
return fmt.Errorf("profile has nil location")
}
if l.ID == 0 {
return fmt.Errorf("found location with reserved id=0")
}
if locations[l.ID] != nil {
return fmt.Errorf("multiple locations with same id: %d", l.ID)
}
locations[l.ID] = l
if m := l.Mapping; m != nil {
if m.ID == 0 || mappings[m.ID] != m {
return fmt.Errorf("inconsistent mapping %p: %d", m, m.ID)
}
}
for _, ln := range l.Line {
f := ln.Function
if f == nil {
return fmt.Errorf("location id: %d has a line with nil function", l.ID)
}
if f.ID == 0 || functions[f.ID] != f {
return fmt.Errorf("inconsistent function %p: %d", f, f.ID)
}
}
}
return nil
}
// Aggregate merges the locations in the profile into equivalence
// classes preserving the request attributes. It also updates the
// samples to point to the merged locations.
func (p *Profile) Aggregate(inlineFrame, function, filename, linenumber, address bool) error {
for _, m := range p.Mapping {
m.HasInlineFrames = m.HasInlineFrames && inlineFrame
m.HasFunctions = m.HasFunctions && function
m.HasFilenames = m.HasFilenames && filename
m.HasLineNumbers = m.HasLineNumbers && linenumber
}
// Aggregate functions
if !function || !filename {
for _, f := range p.Function {
if !function {
f.Name = ""
f.SystemName = ""
}
if !filename {
f.Filename = ""
}
}
}
// Aggregate locations
if !inlineFrame || !address || !linenumber {
for _, l := range p.Location {
if !inlineFrame && len(l.Line) > 1 {
l.Line = l.Line[len(l.Line)-1:]
}
if !linenumber {
for i := range l.Line {
l.Line[i].Line = 0
}
}
if !address {
l.Address = 0
}
}
}
return p.CheckValid()
}
// NumLabelUnits returns a map of numeric label keys to the units
// associated with those keys and a map of those keys to any units
// that were encountered but not used.
// Unit for a given key is the first encountered unit for that key. If multiple
// units are encountered for values paired with a particular key, then the first
// unit encountered is used and all other units are returned in sorted order
// in map of ignored units.
// If no units are encountered for a particular key, the unit is then inferred
// based on the key.
func (p *Profile) NumLabelUnits() (map[string]string, map[string][]string) {
numLabelUnits := map[string]string{}
ignoredUnits := map[string]map[string]bool{}
encounteredKeys := map[string]bool{}
// Determine units based on numeric tags for each sample.
for _, s := range p.Sample {
for k := range s.NumLabel {
encounteredKeys[k] = true
for _, unit := range s.NumUnit[k] {
if unit == "" {
continue
}
if wantUnit, ok := numLabelUnits[k]; !ok {
numLabelUnits[k] = unit
} else if wantUnit != unit {
if v, ok := ignoredUnits[k]; ok {
v[unit] = true
} else {
ignoredUnits[k] = map[string]bool{unit: true}
}
}
}
}
}
// Infer units for keys without any units associated with
// numeric tag values.
for key := range encounteredKeys {
unit := numLabelUnits[key]
if unit == "" {
switch key {
case "alignment", "request":
numLabelUnits[key] = "bytes"
default:
numLabelUnits[key] = key
}
}
}
// Copy ignored units into more readable format
unitsIgnored := make(map[string][]string, len(ignoredUnits))
for key, values := range ignoredUnits {
units := make([]string, len(values))
i := 0
for unit := range values {
units[i] = unit
i++
}
sort.Strings(units)
unitsIgnored[key] = units
}
return numLabelUnits, unitsIgnored
}
// String dumps a text representation of a profile. Intended mainly
// for debugging purposes.
func (p *Profile) String() string {
ss := make([]string, 0, len(p.Comments)+len(p.Sample)+len(p.Mapping)+len(p.Location))
for _, c := range p.Comments {
ss = append(ss, "Comment: "+c)
}
if pt := p.PeriodType; pt != nil {
ss = append(ss, fmt.Sprintf("PeriodType: %s %s", pt.Type, pt.Unit))
}
ss = append(ss, fmt.Sprintf("Period: %d", p.Period))
if p.TimeNanos != 0 {
ss = append(ss, fmt.Sprintf("Time: %v", time.Unix(0, p.TimeNanos)))
}
if p.DurationNanos != 0 {
ss = append(ss, fmt.Sprintf("Duration: %.4v", time.Duration(p.DurationNanos)))
}
ss = append(ss, "Samples:")
var sh1 string
for _, s := range p.SampleType {
dflt := ""
if s.Type == p.DefaultSampleType {
dflt = "[dflt]"
}
sh1 = sh1 + fmt.Sprintf("%s/%s%s ", s.Type, s.Unit, dflt)
}
ss = append(ss, strings.TrimSpace(sh1))
for _, s := range p.Sample {
ss = append(ss, s.string())
}
ss = append(ss, "Locations")
for _, l := range p.Location {
ss = append(ss, l.string())
}
ss = append(ss, "Mappings")
for _, m := range p.Mapping {
ss = append(ss, m.string())
}
return strings.Join(ss, "\n") + "\n"
}
// string dumps a text representation of a mapping. Intended mainly
// for debugging purposes.
func (m *Mapping) string() string {
bits := ""
if m.HasFunctions {
bits = bits + "[FN]"
}
if m.HasFilenames {
bits = bits + "[FL]"
}
if m.HasLineNumbers {
bits = bits + "[LN]"
}
if m.HasInlineFrames {
bits = bits + "[IN]"
}
return fmt.Sprintf("%d: %#x/%#x/%#x %s %s %s",
m.ID,
m.Start, m.Limit, m.Offset,
m.File,
m.BuildID,
bits)
}
// string dumps a text representation of a location. Intended mainly
// for debugging purposes.
func (l *Location) string() string {
ss := []string{}
locStr := fmt.Sprintf("%6d: %#x ", l.ID, l.Address)
if m := l.Mapping; m != nil {
locStr = locStr + fmt.Sprintf("M=%d ", m.ID)
}
if l.IsFolded {
locStr = locStr + "[F] "
}
if len(l.Line) == 0 {
ss = append(ss, locStr)
}
for li := range l.Line {
lnStr := "??"
if fn := l.Line[li].Function; fn != nil {
lnStr = fmt.Sprintf("%s %s:%d s=%d",
fn.Name,
fn.Filename,
l.Line[li].Line,
fn.StartLine)
if fn.Name != fn.SystemName {
lnStr = lnStr + "(" + fn.SystemName + ")"
}
}
ss = append(ss, locStr+lnStr)
// Do not print location details past the first line
locStr = " "
}
return strings.Join(ss, "\n")
}
// string dumps a text representation of a sample. Intended mainly
// for debugging purposes.
func (s *Sample) string() string {
ss := []string{}
var sv string
for _, v := range s.Value {
sv = fmt.Sprintf("%s %10d", sv, v)
}
sv = sv + ": "
for _, l := range s.Location {
sv = sv + fmt.Sprintf("%d ", l.ID)
}
ss = append(ss, sv)
const labelHeader = " "
if len(s.Label) > 0 {
ss = append(ss, labelHeader+labelsToString(s.Label))
}
if len(s.NumLabel) > 0 {
ss = append(ss, labelHeader+numLabelsToString(s.NumLabel, s.NumUnit))
}
return strings.Join(ss, "\n")
}
// labelsToString returns a string representation of a
// map representing labels.
func labelsToString(labels map[string][]string) string {
ls := []string{}
for k, v := range labels {
ls = append(ls, fmt.Sprintf("%s:%v", k, v))
}
sort.Strings(ls)
return strings.Join(ls, " ")
}
// numLabelsToString returns a string representation of a map
// representing numeric labels.
func numLabelsToString(numLabels map[string][]int64, numUnits map[string][]string) string {
ls := []string{}
for k, v := range numLabels {
units := numUnits[k]
var labelString string
if len(units) == len(v) {
values := make([]string, len(v))
for i, vv := range v {
values[i] = fmt.Sprintf("%d %s", vv, units[i])
}
labelString = fmt.Sprintf("%s:%v", k, values)
} else {
labelString = fmt.Sprintf("%s:%v", k, v)
}
ls = append(ls, labelString)
}
sort.Strings(ls)
return strings.Join(ls, " ")
}
// SetLabel sets the specified key to the specified value for all samples in the
// profile.
func (p *Profile) SetLabel(key string, value []string) {
for _, sample := range p.Sample {
if sample.Label == nil {
sample.Label = map[string][]string{key: value}
} else {
sample.Label[key] = value
}
}
}
// RemoveLabel removes all labels associated with the specified key for all
// samples in the profile.
func (p *Profile) RemoveLabel(key string) {
for _, sample := range p.Sample {
delete(sample.Label, key)
}
}
// HasLabel returns true if a sample has a label with indicated key and value.
func (s *Sample) HasLabel(key, value string) bool {
for _, v := range s.Label[key] {
if v == value {
return true
}
}
return false
}
// DiffBaseSample returns true if a sample belongs to the diff base and false
// otherwise.
func (s *Sample) DiffBaseSample() bool {
return s.HasLabel("pprof::base", "true")
}
// Scale multiplies all sample values in a profile by a constant and keeps
// only samples that have at least one non-zero value.
func (p *Profile) Scale(ratio float64) {
if ratio == 1 {
return
}
ratios := make([]float64, len(p.SampleType))
for i := range p.SampleType {
ratios[i] = ratio
}
p.ScaleN(ratios)
}
// ScaleN multiplies each sample values in a sample by a different amount
// and keeps only samples that have at least one non-zero value.
func (p *Profile) ScaleN(ratios []float64) error {
if len(p.SampleType) != len(ratios) {
return fmt.Errorf("mismatched scale ratios, got %d, want %d", len(ratios), len(p.SampleType))
}
allOnes := true
for _, r := range ratios {
if r != 1 {
allOnes = false
break
}
}
if allOnes {
return nil
}
fillIdx := 0
for _, s := range p.Sample {
keepSample := false
for i, v := range s.Value {
if ratios[i] != 1 {
val := int64(math.Round(float64(v) * ratios[i]))
s.Value[i] = val
keepSample = keepSample || val != 0
}
}
if keepSample {
p.Sample[fillIdx] = s
fillIdx++
}
}
p.Sample = p.Sample[:fillIdx]
return nil
}
// HasFunctions determines if all locations in this profile have
// symbolized function information.
func (p *Profile) HasFunctions() bool {
for _, l := range p.Location {
if l.Mapping != nil && !l.Mapping.HasFunctions {
return false
}
}
return true
}
// HasFileLines determines if all locations in this profile have
// symbolized file and line number information.
func (p *Profile) HasFileLines() bool {
for _, l := range p.Location {
if l.Mapping != nil && (!l.Mapping.HasFilenames || !l.Mapping.HasLineNumbers) {
return false
}
}
return true
}
// Unsymbolizable returns true if a mapping points to a binary for which
// locations can't be symbolized in principle, at least now. Examples are
// "[vdso]", [vsyscall]" and some others, see the code.
func (m *Mapping) Unsymbolizable() bool {
name := filepath.Base(m.File)
return strings.HasPrefix(name, "[") || strings.HasPrefix(name, "linux-vdso") || strings.HasPrefix(m.File, "/dev/dri/")
}
// Copy makes a fully independent copy of a profile.
func (p *Profile) Copy() *Profile {
pp := &Profile{}
if err := unmarshal(serialize(p), pp); err != nil {
panic(err)
}
if err := pp.postDecode(); err != nil {
panic(err)
}
return pp
}