open-consul/agent/consul/state/peering.go

1508 lines
47 KiB
Go
Raw Normal View History

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package state
import (
"errors"
"fmt"
"sort"
"strings"
"github.com/hashicorp/go-memdb"
"google.golang.org/protobuf/proto"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/configentry"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/lib/maps"
Protobuf Refactoring for Multi-Module Cleanliness (#16302) Protobuf Refactoring for Multi-Module Cleanliness This commit includes the following: Moves all packages that were within proto/ to proto/private Rewrites imports to account for the packages being moved Adds in buf.work.yaml to enable buf workspaces Names the proto-public buf module so that we can override the Go package imports within proto/buf.yaml Bumps the buf version dependency to 1.14.0 (I was trying out the version to see if it would get around an issue - it didn't but it also doesn't break things and it seemed best to keep up with the toolchain changes) Why: In the future we will need to consume other protobuf dependencies such as the Google HTTP annotations for openapi generation or grpc-gateway usage. There were some recent changes to have our own ratelimiting annotations. The two combined were not working when I was trying to use them together (attempting to rebase another branch) Buf workspaces should be the solution to the problem Buf workspaces means that each module will have generated Go code that embeds proto file names relative to the proto dir and not the top level repo root. This resulted in proto file name conflicts in the Go global protobuf type registry. The solution to that was to add in a private/ directory into the path within the proto/ directory. That then required rewriting all the imports. Is this safe? AFAICT yes The gRPC wire protocol doesn't seem to care about the proto file names (although the Go grpc code does tack on the proto file name as Metadata in the ServiceDesc) Other than imports, there were no changes to any generated code as a result of this.
2023-02-17 21:14:46 +00:00
"github.com/hashicorp/consul/proto/private/pbpeering"
)
const (
tablePeering = "peering"
tablePeeringTrustBundles = "peering-trust-bundles"
tablePeeringSecrets = "peering-secrets"
tablePeeringSecretUUIDs = "peering-secret-uuids"
)
func peeringTableSchema() *memdb.TableSchema {
return &memdb.TableSchema{
Name: tablePeering,
Indexes: map[string]*memdb.IndexSchema{
indexID: {
Name: indexID,
AllowMissing: false,
Unique: true,
Indexer: indexerSingle[string, *pbpeering.Peering]{
readIndex: indexFromUUIDString,
writeIndex: indexIDFromPeering,
},
},
indexName: {
Name: indexName,
AllowMissing: false,
Unique: true,
Indexer: indexerSingleWithPrefix[Query, *pbpeering.Peering, any]{
readIndex: indexPeeringFromQuery,
writeIndex: indexFromPeering,
prefixIndex: prefixIndexFromQueryNoNamespace,
},
},
indexDeleted: {
Name: indexDeleted,
AllowMissing: false,
Unique: false,
Indexer: indexerSingle[BoolQuery, *pbpeering.Peering]{
readIndex: indexDeletedFromBoolQuery,
writeIndex: indexDeletedFromPeering,
},
},
},
}
}
func peeringTrustBundlesTableSchema() *memdb.TableSchema {
return &memdb.TableSchema{
Name: tablePeeringTrustBundles,
Indexes: map[string]*memdb.IndexSchema{
indexID: {
Name: indexID,
AllowMissing: false,
Unique: true,
Indexer: indexerSingleWithPrefix[Query, *pbpeering.PeeringTrustBundle, any]{
readIndex: indexPeeringFromQuery, // same as peering table since we'll use the query.Value
writeIndex: indexFromPeeringTrustBundle,
prefixIndex: prefixIndexFromQueryNoNamespace,
},
},
},
}
}
func peeringSecretsTableSchema() *memdb.TableSchema {
return &memdb.TableSchema{
Name: tablePeeringSecrets,
Indexes: map[string]*memdb.IndexSchema{
indexID: {
Name: indexID,
AllowMissing: false,
Unique: true,
Indexer: indexerSingle[string, *pbpeering.PeeringSecrets]{
readIndex: indexFromUUIDString,
writeIndex: indexIDFromPeeringSecret,
},
},
},
}
}
func peeringSecretUUIDsTableSchema() *memdb.TableSchema {
return &memdb.TableSchema{
Name: tablePeeringSecretUUIDs,
Indexes: map[string]*memdb.IndexSchema{
indexID: {
Name: indexID,
AllowMissing: false,
Unique: true,
Indexer: indexerSingle[string, string]{
readIndex: indexFromUUIDString,
writeIndex: indexFromUUIDString,
},
},
},
}
}
func indexIDFromPeeringSecret(p *pbpeering.PeeringSecrets) ([]byte, error) {
if p.PeerID == "" {
return nil, errMissingValueForIndex
}
uuid, err := uuidStringToBytes(p.PeerID)
if err != nil {
return nil, err
}
var b indexBuilder
b.Raw(uuid)
return b.Bytes(), nil
}
func indexIDFromPeering(p *pbpeering.Peering) ([]byte, error) {
if p.ID == "" {
return nil, errMissingValueForIndex
}
uuid, err := uuidStringToBytes(p.ID)
if err != nil {
return nil, err
}
var b indexBuilder
b.Raw(uuid)
return b.Bytes(), nil
}
func indexDeletedFromPeering(p *pbpeering.Peering) ([]byte, error) {
var b indexBuilder
b.Bool(!p.IsActive())
return b.Bytes(), nil
}
func (s *Store) PeeringSecretsRead(ws memdb.WatchSet, peerID string) (*pbpeering.PeeringSecrets, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
secret, err := peeringSecretsReadByPeerIDTxn(tx, ws, peerID)
if err != nil {
return nil, err
}
if secret == nil {
// TODO (peering) Return the tables index so caller can watch it for changes if the secret doesn't exist.
return nil, nil
}
return secret, nil
}
func peeringSecretsReadByPeerIDTxn(tx ReadTxn, ws memdb.WatchSet, id string) (*pbpeering.PeeringSecrets, error) {
watchCh, secretRaw, err := tx.FirstWatch(tablePeeringSecrets, indexID, id)
if err != nil {
return nil, fmt.Errorf("failed peering secret lookup: %w", err)
}
ws.Add(watchCh)
secret, ok := secretRaw.(*pbpeering.PeeringSecrets)
if secretRaw != nil && !ok {
return nil, fmt.Errorf("invalid type %T", secret)
}
return secret, nil
}
func (s *Store) PeeringSecretsWrite(idx uint64, req *pbpeering.SecretsWriteRequest) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
if err := s.peeringSecretsWriteTxn(tx, req); err != nil {
return fmt.Errorf("failed to write peering secret: %w", err)
}
return tx.Commit()
}
func (s *Store) peeringSecretsWriteTxn(tx WriteTxn, req *pbpeering.SecretsWriteRequest) error {
if req == nil || req.Request == nil {
return nil
}
if err := req.Validate(); err != nil {
return fmt.Errorf("invalid secret write request: %w", err)
}
peering, err := peeringReadByIDTxn(tx, nil, req.PeerID)
if err != nil {
return fmt.Errorf("failed to read peering by id: %w", err)
}
if peering == nil {
return fmt.Errorf("unknown peering %q for secret", req.PeerID)
}
// If the peering came from a peering token no validation is done for the given secrets.
// Dialing peers do not need to validate uniqueness because the secrets were generated elsewhere.
if peering.ShouldDial() {
r, ok := req.Request.(*pbpeering.SecretsWriteRequest_Establish)
if !ok {
return fmt.Errorf("invalid request type %T when persisting stream secret for dialing peer", req.Request)
}
secrets := pbpeering.PeeringSecrets{
PeerID: req.PeerID,
Stream: &pbpeering.PeeringSecrets_Stream{
ActiveSecretID: r.Establish.ActiveStreamSecret,
},
}
if err := tx.Insert(tablePeeringSecrets, &secrets); err != nil {
return fmt.Errorf("failed inserting peering: %w", err)
}
return nil
}
// If the peering token was generated locally, validate that the newly introduced UUID is still unique.
// RPC handlers validate that generated IDs are available, but availability cannot be guaranteed until the state store operation.
var newSecretID string
switch r := req.Request.(type) {
// Establishment secrets are written when generating peering tokens, and no other secret IDs are included.
case *pbpeering.SecretsWriteRequest_GenerateToken:
newSecretID = r.GenerateToken.EstablishmentSecret
// When exchanging an establishment secret a new pending stream secret is generated.
// Active stream secrets doesn't need to be checked for uniqueness because it is only ever promoted from pending.
case *pbpeering.SecretsWriteRequest_ExchangeSecret:
newSecretID = r.ExchangeSecret.PendingStreamSecret
}
if newSecretID != "" {
valid, err := validateProposedPeeringSecretUUIDTxn(tx, newSecretID)
if err != nil {
return fmt.Errorf("failed to check peering secret ID: %w", err)
}
if !valid {
return fmt.Errorf("peering secret is already in use, retry the operation")
}
err = tx.Insert(tablePeeringSecretUUIDs, newSecretID)
if err != nil {
return fmt.Errorf("failed to write secret UUID: %w", err)
}
}
existing, err := peeringSecretsReadByPeerIDTxn(tx, nil, req.PeerID)
if err != nil {
return err
}
secrets := pbpeering.PeeringSecrets{
PeerID: req.PeerID,
}
var toDelete []string
// Collect any overwritten UUIDs for deletion.
switch r := req.Request.(type) {
case *pbpeering.SecretsWriteRequest_GenerateToken:
// Store the newly-generated establishment secret, overwriting any that existed.
secrets.Establishment = &pbpeering.PeeringSecrets_Establishment{
SecretID: r.GenerateToken.GetEstablishmentSecret(),
}
// Merge in existing stream secrets when persisting a new establishment secret.
// This is to avoid invalidating stream secrets when a new peering token
// is generated.
secrets.Stream = existing.GetStream()
// When a new token is generated we replace any un-used establishment secrets.
if existingEstablishment := existing.GetEstablishment().GetSecretID(); existingEstablishment != "" {
toDelete = append(toDelete, existingEstablishment)
}
case *pbpeering.SecretsWriteRequest_ExchangeSecret:
if existing == nil {
return fmt.Errorf("cannot exchange peering secret: no known secrets for peering")
}
// Store the newly-generated pending stream secret, overwriting any that existed.
secrets.Stream = &pbpeering.PeeringSecrets_Stream{
PendingSecretID: r.ExchangeSecret.GetPendingStreamSecret(),
2022-08-03 22:32:53 +00:00
// Avoid invalidating existing active secrets when exchanging establishment secret for pending.
ActiveSecretID: existing.GetStream().GetActiveSecretID(),
}
// When exchanging an establishment secret we invalidate the existing establishment secret.
existingEstablishment := existing.GetEstablishment().GetSecretID()
switch {
case existingEstablishment == "":
// When there is no existing establishment secret we must not proceed because another ExchangeSecret
// RPC already invalidated it. Otherwise, this operation would overwrite the pending secret
// from the previous ExchangeSecret.
return fmt.Errorf("invalid establishment secret: peering was already established")
case existingEstablishment != r.ExchangeSecret.GetEstablishmentSecret():
// If there is an existing establishment secret but it is not the one from the request then
// we must not proceed because a newer one was generated.
return fmt.Errorf("invalid establishment secret")
default:
toDelete = append(toDelete, existingEstablishment)
}
// When exchanging an establishment secret unused pending secrets are overwritten.
if existingPending := existing.GetStream().GetPendingSecretID(); existingPending != "" {
toDelete = append(toDelete, existingPending)
}
case *pbpeering.SecretsWriteRequest_PromotePending:
if existing == nil {
return fmt.Errorf("cannot promote pending secret: no known secrets for peering")
}
if existing.GetStream().GetPendingSecretID() != r.PromotePending.GetActiveStreamSecret() {
// There is a potential race if multiple dialing clusters send an Open request with a valid
// pending secret. The secret could be validated for all concurrently at the RPC layer,
// but then the pending secret is promoted or otherwise changes for one dialer before the others.
return fmt.Errorf("invalid pending stream secret")
}
// Store the newly-generated pending stream secret, overwriting any that existed.
secrets.Stream = &pbpeering.PeeringSecrets_Stream{
// Promoting a pending secret moves it to active.
PendingSecretID: "",
// Store the newly-promoted pending secret as the active secret.
ActiveSecretID: r.PromotePending.GetActiveStreamSecret(),
}
// Avoid invalidating existing establishment secrets when promoting pending secrets.
secrets.Establishment = existing.GetEstablishment()
// If there was previously an active stream secret it gets replaced in favor of the pending secret
// that is being promoted.
if existingActive := existing.GetStream().GetActiveSecretID(); existingActive != "" {
toDelete = append(toDelete, existingActive)
}
case *pbpeering.SecretsWriteRequest_Establish:
// This should never happen. Dialing peers are the only ones that can call Establish,
// and the peering secrets for dialing peers should have been inserted earlier in the function.
return fmt.Errorf("an accepting peer should not have called Establish RPC")
default:
return fmt.Errorf("got unexpected request type: %T", req.Request)
}
for _, id := range toDelete {
if err := tx.Delete(tablePeeringSecretUUIDs, id); err != nil {
return fmt.Errorf("failed to free UUID: %w", err)
}
}
if err := tx.Insert(tablePeeringSecrets, &secrets); err != nil {
return fmt.Errorf("failed inserting peering: %w", err)
}
return nil
}
func (s *Store) PeeringSecretsDelete(idx uint64, peerID string, dialer bool) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
if err := peeringSecretsDeleteTxn(tx, peerID, dialer); err != nil {
return fmt.Errorf("failed to write peering secret: %w", err)
}
return tx.Commit()
}
func peeringSecretsDeleteTxn(tx WriteTxn, peerID string, dialer bool) error {
secretRaw, err := tx.First(tablePeeringSecrets, indexID, peerID)
if err != nil {
return fmt.Errorf("failed to fetch secret for peering: %w", err)
}
if secretRaw == nil {
return nil
}
if err := tx.Delete(tablePeeringSecrets, secretRaw); err != nil {
return fmt.Errorf("failed to delete secret for peering: %w", err)
}
// Dialing peers do not track secrets in tablePeeringSecretUUIDs.
if dialer {
return nil
}
secrets, ok := secretRaw.(*pbpeering.PeeringSecrets)
if !ok {
return fmt.Errorf("invalid type %T", secretRaw)
}
// Also clean up the UUID tracking table.
var toDelete []string
if establishment := secrets.GetEstablishment().GetSecretID(); establishment != "" {
toDelete = append(toDelete, establishment)
}
if pending := secrets.GetStream().GetPendingSecretID(); pending != "" {
toDelete = append(toDelete, pending)
}
if active := secrets.GetStream().GetActiveSecretID(); active != "" {
toDelete = append(toDelete, active)
}
for _, id := range toDelete {
if err := tx.Delete(tablePeeringSecretUUIDs, id); err != nil {
return fmt.Errorf("failed to free UUID: %w", err)
}
}
return nil
}
func (s *Store) ValidateProposedPeeringSecretUUID(id string) (bool, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return validateProposedPeeringSecretUUIDTxn(tx, id)
}
// validateProposedPeeringSecretUUIDTxn is used to test whether a candidate secretID can be used as a peering secret.
// Returns true if the given secret is not in use.
func validateProposedPeeringSecretUUIDTxn(tx ReadTxn, secretID string) (bool, error) {
secretRaw, err := tx.First(tablePeeringSecretUUIDs, indexID, secretID)
if err != nil {
return false, fmt.Errorf("failed peering secret lookup: %w", err)
}
secret, ok := secretRaw.(string)
if secretRaw != nil && !ok {
return false, fmt.Errorf("invalid type %T", secret)
}
return secret == "", nil
}
func (s *Store) PeeringReadByID(ws memdb.WatchSet, id string) (uint64, *pbpeering.Peering, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
peering, err := peeringReadByIDTxn(tx, ws, id)
if err != nil {
return 0, nil, fmt.Errorf("failed to read peering by id: %w", err)
}
if peering == nil {
// Return the tables index so caller can watch it for changes if the peering doesn't exist
return maxIndexWatchTxn(tx, ws, tablePeering), nil, nil
}
return peering.ModifyIndex, peering, nil
}
func peeringReadByIDTxn(tx ReadTxn, ws memdb.WatchSet, id string) (*pbpeering.Peering, error) {
watchCh, peeringRaw, err := tx.FirstWatch(tablePeering, indexID, id)
if err != nil {
return nil, fmt.Errorf("failed peering lookup: %w", err)
}
ws.Add(watchCh)
peering, ok := peeringRaw.(*pbpeering.Peering)
if peeringRaw != nil && !ok {
return nil, fmt.Errorf("invalid type %T", peering)
}
return peering, nil
}
func (s *Store) PeeringRead(ws memdb.WatchSet, q Query) (uint64, *pbpeering.Peering, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return peeringReadTxn(tx, ws, q)
}
func peeringReadTxn(tx ReadTxn, ws memdb.WatchSet, q Query) (uint64, *pbpeering.Peering, error) {
watchCh, peeringRaw, err := tx.FirstWatch(tablePeering, indexName, q)
if err != nil {
return 0, nil, fmt.Errorf("failed peering lookup: %w", err)
}
peering, ok := peeringRaw.(*pbpeering.Peering)
if peeringRaw != nil && !ok {
return 0, nil, fmt.Errorf("invalid type %T", peering)
}
ws.Add(watchCh)
if peering == nil {
// Return the tables index so caller can watch it for changes if the peering doesn't exist
return maxIndexWatchTxn(tx, ws, partitionedIndexEntryName(tablePeering, q.PartitionOrDefault())), nil, nil
}
return peering.ModifyIndex, peering, nil
}
func (s *Store) PeeringList(ws memdb.WatchSet, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.Peering, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return peeringListTxn(ws, tx, entMeta)
}
func peeringListTxn(ws memdb.WatchSet, tx ReadTxn, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.Peering, error) {
var (
iter memdb.ResultIterator
err error
idx uint64
)
if entMeta.PartitionOrDefault() == structs.WildcardSpecifier {
iter, err = tx.Get(tablePeering, indexID)
idx = maxIndexWatchTxn(tx, ws, tablePeering)
} else {
iter, err = tx.Get(tablePeering, indexName+"_prefix", entMeta)
idx = maxIndexWatchTxn(tx, ws, partitionedIndexEntryName(tablePeering, entMeta.PartitionOrDefault()))
}
if err != nil {
return 0, nil, fmt.Errorf("failed peering lookup: %v", err)
}
var result []*pbpeering.Peering
for entry := iter.Next(); entry != nil; entry = iter.Next() {
result = append(result, entry.(*pbpeering.Peering))
}
return idx, result, nil
}
func (s *Store) PeeringWrite(idx uint64, req *pbpeering.PeeringWriteRequest) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// Check that the ID and Name are set.
if req.Peering.ID == "" {
return errors.New("Missing Peering ID")
}
if req.Peering.Name == "" {
return errors.New("Missing Peering Name")
}
if req.Peering.State == pbpeering.PeeringState_DELETING && (req.Peering.DeletedAt == nil || structs.IsZeroProtoTime(req.Peering.DeletedAt)) {
return errors.New("Missing deletion time for peering in deleting state")
}
if req.Peering.DeletedAt != nil && !structs.IsZeroProtoTime(req.Peering.DeletedAt) && req.Peering.State != pbpeering.PeeringState_DELETING {
return fmt.Errorf("Unexpected state for peering with deletion time: %s", pbpeering.PeeringStateToAPI(req.Peering.State))
}
// Ensure the name is unique (cannot conflict with another peering with a different ID).
_, existing, err := peeringReadTxn(tx, nil, Query{
Value: req.Peering.Name,
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(req.Peering.Partition),
})
if err != nil {
return err
}
if existing != nil {
if req.Peering.ShouldDial() != existing.ShouldDial() {
return fmt.Errorf("Cannot switch peering dialing mode from %t to %t", existing.ShouldDial(), req.Peering.ShouldDial())
}
if req.Peering.ID != existing.ID {
return fmt.Errorf("A peering already exists with the name %q and a different ID %q", req.Peering.Name, existing.ID)
}
// Nothing to do if our peer wants to terminate the peering but the peering is already marked for deletion.
if existing.State == pbpeering.PeeringState_DELETING && req.Peering.State == pbpeering.PeeringState_TERMINATED {
return nil
}
// No-op deletion
if existing.State == pbpeering.PeeringState_DELETING && req.Peering.State == pbpeering.PeeringState_DELETING {
return nil
}
// No-op termination
if existing.State == pbpeering.PeeringState_TERMINATED && req.Peering.State == pbpeering.PeeringState_TERMINATED {
return nil
}
// Prevent modifications to Peering marked for deletion.
// This blocks generating new peering tokens or re-establishing the peering until the peering is done deleting.
if existing.State == pbpeering.PeeringState_DELETING {
return fmt.Errorf("cannot write to peering that is marked for deletion")
}
if req.Peering.State == pbpeering.PeeringState_UNDEFINED {
req.Peering.State = existing.State
}
// Prevent RemoteInfo from being overwritten with empty data
if !existing.Remote.IsEmpty() && req.Peering.Remote.IsEmpty() {
req.Peering.Remote = &pbpeering.RemoteInfo{
Partition: existing.Remote.Partition,
Datacenter: existing.Remote.Datacenter,
Locality: existing.Remote.Locality,
}
}
req.Peering.StreamStatus = nil
req.Peering.CreateIndex = existing.CreateIndex
req.Peering.ModifyIndex = idx
} else {
idMatch, err := peeringReadByIDTxn(tx, nil, req.Peering.ID)
if err != nil {
return err
}
if idMatch != nil {
return fmt.Errorf("A peering already exists with the ID %q and a different name %q", req.Peering.Name, existing.ID)
}
if !req.Peering.IsActive() {
return fmt.Errorf("cannot create a new peering marked for deletion")
}
if req.Peering.State == 0 {
req.Peering.State = pbpeering.PeeringState_PENDING
}
req.Peering.CreateIndex = idx
req.Peering.ModifyIndex = idx
}
// Ensure associated secrets are cleaned up when a peering is marked for deletion or terminated.
if !req.Peering.IsActive() {
if err := peeringSecretsDeleteTxn(tx, req.Peering.ID, req.Peering.ShouldDial()); err != nil {
return fmt.Errorf("failed to delete peering secrets: %w", err)
}
}
// Peerings are inserted before the associated StreamSecret because writing secrets
// depends on the peering existing.
if err := tx.Insert(tablePeering, req.Peering); err != nil {
return fmt.Errorf("failed inserting peering: %w", err)
}
// Write any secrets generated with the peering.
err = s.peeringSecretsWriteTxn(tx, req.GetSecretsRequest())
if err != nil {
return fmt.Errorf("failed to write peering establishment secret: %w", err)
}
if err := updatePeeringTableIndexes(tx, idx, req.Peering.PartitionOrDefault()); err != nil {
return err
}
return tx.Commit()
}
func (s *Store) PeeringDelete(idx uint64, q Query) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
existing, err := tx.First(tablePeering, indexName, q)
if err != nil {
return fmt.Errorf("failed peering lookup: %v", err)
}
if existing == nil {
return nil
}
if existing.(*pbpeering.Peering).IsActive() {
return fmt.Errorf("cannot delete a peering without first marking for deletion")
}
if err := tx.Delete(tablePeering, existing); err != nil {
return fmt.Errorf("failed deleting peering: %v", err)
}
if err := updatePeeringTableIndexes(tx, idx, q.PartitionOrDefault()); err != nil {
return err
}
return tx.Commit()
}
func (s *Store) PeeringTerminateByID(idx uint64, id string) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
existing, err := peeringReadByIDTxn(tx, nil, id)
if err != nil {
return fmt.Errorf("failed to read peering %q: %w", id, err)
}
if existing == nil {
return nil
}
c := proto.Clone(existing)
clone, ok := c.(*pbpeering.Peering)
if !ok {
return fmt.Errorf("invalid type %T, expected *pbpeering.Peering", existing)
}
clone.State = pbpeering.PeeringState_TERMINATED
clone.ModifyIndex = idx
if err := tx.Insert(tablePeering, clone); err != nil {
return fmt.Errorf("failed inserting peering: %w", err)
}
if err := updatePeeringTableIndexes(tx, idx, clone.PartitionOrDefault()); err != nil {
return err
}
return tx.Commit()
}
// ExportedServicesForPeer returns the list of typical and proxy services
// exported to a peer.
//
// TODO(peering): What to do about terminating gateways? Sometimes terminating
// gateways are the appropriate destination to dial for an upstream mesh
// service. However, that information is handled by observing the terminating
// gateway's config entry, which we wouldn't want to replicate. How would
// client peers know to route through terminating gateways when they're not
// dialing through a remote mesh gateway?
func (s *Store) ExportedServicesForPeer(ws memdb.WatchSet, peerID string, dc string) (uint64, *structs.ExportedServiceList, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
peering, err := peeringReadByIDTxn(tx, ws, peerID)
if err != nil {
return 0, nil, fmt.Errorf("failed to read peering: %w", err)
}
if peering == nil {
return 0, &structs.ExportedServiceList{}, nil
}
return exportedServicesForPeerTxn(ws, tx, peering, dc)
}
func (s *Store) ExportedServicesForAllPeersByName(ws memdb.WatchSet, dc string, entMeta acl.EnterpriseMeta) (uint64, map[string]structs.ServiceList, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
maxIdx, peerings, err := peeringListTxn(ws, tx, entMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to list peerings: %w", err)
}
out := make(map[string]structs.ServiceList)
for _, peering := range peerings {
idx, list, err := exportedServicesForPeerTxn(ws, tx, peering, dc)
if err != nil {
return 0, nil, fmt.Errorf("failed to list exported services for peer %q: %w", peering.ID, err)
}
if idx > maxIdx {
maxIdx = idx
}
m := list.ListAllDiscoveryChains()
if len(m) > 0 {
sns := maps.SliceOfKeys(m)
sort.Sort(structs.ServiceList(sns))
out[peering.Name] = sns
}
}
return maxIdx, out, nil
}
// exportedServicesForPeerTxn will find all services that are exported to a
// specific peering, and optionally include information about discovery chain
// reachable targets for these exported services if the "dc" parameter is
// specified.
func exportedServicesForPeerTxn(
ws memdb.WatchSet,
tx ReadTxn,
peering *pbpeering.Peering,
dc string,
) (uint64, *structs.ExportedServiceList, error) {
// The DC must be specified in order to compile discovery chains.
if dc == "" {
return 0, nil, fmt.Errorf("datacenter cannot be empty")
}
maxIdx := peering.ModifyIndex
entMeta := structs.NodeEnterpriseMetaInPartition(peering.Partition)
idx, exportConf, err := getExportedServicesConfigEntryTxn(tx, ws, nil, entMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to fetch exported-services config entry: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
if exportConf == nil {
return maxIdx, &structs.ExportedServiceList{}, nil
}
var (
// exportedServices will contain the listing of all service names that are being exported
// and will need to be queried for connect / discovery chain information.
exportedServices = make(map[structs.ServiceName]struct{})
// exportedConnectServices will contain the listing of all connect service names that are being exported.
exportedConnectServices = make(map[structs.ServiceName]struct{})
// namespaceConnectServices provides a listing of all connect service names for a particular partition+namespace pair.
namespaceConnectServices = make(map[acl.EnterpriseMeta]map[string]struct{})
// namespaceDiscoChains provides a listing of all disco chain names for a particular partition+namespace pair.
namespaceDiscoChains = make(map[acl.EnterpriseMeta]map[string]struct{})
)
// Helper function for inserting data and auto-creating maps.
insertEntry := func(m map[acl.EnterpriseMeta]map[string]struct{}, entMeta acl.EnterpriseMeta, name string) {
names, ok := m[entMeta]
if !ok {
names = make(map[string]struct{})
m[entMeta] = names
}
names[name] = struct{}{}
}
// Build the set of all services that will be exported.
// Any possible namespace wildcards or "consul" services should be removed by this step.
for _, svc := range exportConf.Services {
// Prevent exporting the "consul" service.
if svc.Name == structs.ConsulServiceName {
continue
}
svcEntMeta := acl.NewEnterpriseMetaWithPartition(entMeta.PartitionOrDefault(), svc.Namespace)
svcName := structs.NewServiceName(svc.Name, &svcEntMeta)
peerFound := false
for _, consumer := range svc.Consumers {
if consumer.Peer == peering.Name {
peerFound = true
break
}
}
// Only look for more information if the matching peer was found.
if !peerFound {
continue
}
// If this isn't a wildcard, we can simply add it to the list of services to watch and move to the next entry.
if svc.Name != structs.WildcardSpecifier {
exportedServices[svcName] = struct{}{}
continue
}
// If all services in the namespace are exported by the wildcard, query those service names.
idx, typicalServices, err := serviceNamesOfKindTxn(tx, ws, structs.ServiceKindTypical, svcEntMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to get typical service names: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, sn := range typicalServices {
// Prevent exporting the "consul" service.
if sn.Service.Name != structs.ConsulServiceName {
exportedServices[sn.Service] = struct{}{}
}
}
// List all config entries of kind service-resolver, service-router, service-splitter, because they
// will be exported as connect services.
idx, discoChains, err := listDiscoveryChainNamesTxn(tx, ws, nil, svcEntMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to get discovery chain names: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, sn := range discoChains {
// Prevent exporting the "consul" service.
if sn.Name != structs.ConsulServiceName {
exportedConnectServices[sn] = struct{}{}
insertEntry(namespaceDiscoChains, svcEntMeta, sn.Name)
}
}
}
// At least one of the following should be true for a name to replicate it as a *connect* service:
// - are a discovery chain by definition (service-router, service-splitter, service-resolver)
// - have an explicit sidecar kind=connect-proxy
// - use connect native mode
// - are registered with a terminating gateway
populateConnectService := func(sn structs.ServiceName) error {
// Load all disco-chains in this namespace if we haven't already.
if _, ok := namespaceDiscoChains[sn.EnterpriseMeta]; !ok {
// Check to see if we have a discovery chain with the same name.
idx, chains, err := listDiscoveryChainNamesTxn(tx, ws, nil, sn.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed to get connect services: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, sn := range chains {
insertEntry(namespaceDiscoChains, sn.EnterpriseMeta, sn.Name)
}
}
// Check to see if we have the connect service.
if _, ok := namespaceDiscoChains[sn.EnterpriseMeta][sn.Name]; ok {
exportedConnectServices[sn] = struct{}{}
// Do not early return because we have multiple watches that should be established.
}
// Load all services in this namespace if we haven't already.
if _, ok := namespaceConnectServices[sn.EnterpriseMeta]; !ok {
// This is more efficient than querying the service instance table.
idx, connectServices, err := serviceNamesOfKindTxn(tx, ws, structs.ServiceKindConnectEnabled, sn.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed to get connect services: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, ksn := range connectServices {
insertEntry(namespaceConnectServices, sn.EnterpriseMeta, ksn.Service.Name)
}
}
// Check to see if we have the connect service.
if _, ok := namespaceConnectServices[sn.EnterpriseMeta][sn.Name]; ok {
exportedConnectServices[sn] = struct{}{}
// Do not early return because we have multiple watches that should be established.
}
// Check if the service is exposed via terminating gateways.
svcGateways, err := tx.Get(tableGatewayServices, indexService, sn)
if err != nil {
return fmt.Errorf("failed gateway lookup for %q: %w", sn.Name, err)
}
ws.Add(svcGateways.WatchCh())
for svc := svcGateways.Next(); svc != nil; svc = svcGateways.Next() {
gs, ok := svc.(*structs.GatewayService)
if !ok {
return fmt.Errorf("failed converting to GatewayService for %q", sn.Name)
}
if gs.GatewayKind == structs.ServiceKindTerminatingGateway {
exportedConnectServices[sn] = struct{}{}
break
}
}
return nil
}
// Perform queries and check if each service is connect-enabled.
for sn := range exportedServices {
// Do not query for data if we already know it's a connect service.
if _, ok := exportedConnectServices[sn]; ok {
continue
}
if err := populateConnectService(sn); err != nil {
return 0, nil, err
}
}
// Fetch the protocol / targets for connect services.
chainInfo := make(map[structs.ServiceName]structs.ExportedDiscoveryChainInfo)
populateChainInfo := func(svc structs.ServiceName) error {
if _, ok := chainInfo[svc]; ok {
return nil // already processed
}
var info structs.ExportedDiscoveryChainInfo
idx, protocol, err := protocolForService(tx, ws, svc)
if err != nil {
return fmt.Errorf("failed to get protocol for service %q: %w", svc, err)
}
if idx > maxIdx {
maxIdx = idx
}
info.Protocol = protocol
idx, targets, err := discoveryChainOriginalTargetsTxn(tx, ws, dc, svc.Name, &svc.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed to get discovery chain targets for service %q: %w", svc, err)
}
if idx > maxIdx {
maxIdx = idx
}
// Prevent the consul service from being exported by a discovery chain.
for _, t := range targets {
if t.Service == structs.ConsulServiceName {
return nil
}
}
// We only need to populate the targets for replication purposes for L4 protocols, which
// do not ultimately get intercepted by the mesh gateways.
if !structs.IsProtocolHTTPLike(protocol) {
sort.Slice(targets, func(i, j int) bool {
return targets[i].ID < targets[j].ID
})
info.TCPTargets = targets
}
chainInfo[svc] = info
return nil
}
for svc := range exportedConnectServices {
if err := populateChainInfo(svc); err != nil {
return 0, nil, err
}
}
sortedServices := maps.SliceOfKeys(exportedServices)
structs.ServiceList(sortedServices).Sort()
list := &structs.ExportedServiceList{
Services: sortedServices,
DiscoChains: chainInfo,
}
return maxIdx, list, nil
}
func listAllExportedServices(
ws memdb.WatchSet,
tx ReadTxn,
overrides map[configentry.KindName]structs.ConfigEntry,
entMeta acl.EnterpriseMeta,
) (uint64, map[structs.ServiceName]struct{}, error) {
idx, export, err := getExportedServicesConfigEntryTxn(tx, ws, overrides, &entMeta)
if err != nil {
return 0, nil, err
}
found := make(map[structs.ServiceName]struct{})
if export == nil {
return idx, found, nil
}
_, services, err := listServicesExportedToAnyPeerByConfigEntry(ws, tx, export, overrides)
if err != nil {
return 0, nil, err
}
for _, svc := range services {
found[svc] = struct{}{}
}
return idx, found, nil
}
//nolint:unparam
func listServicesExportedToAnyPeerByConfigEntry(
ws memdb.WatchSet,
tx ReadTxn,
conf *structs.ExportedServicesConfigEntry,
overrides map[configentry.KindName]structs.ConfigEntry,
) (uint64, []structs.ServiceName, error) {
var (
entMeta = conf.GetEnterpriseMeta()
found = make(map[structs.ServiceName]struct{})
maxIdx uint64
)
for _, svc := range conf.Services {
svcMeta := acl.NewEnterpriseMetaWithPartition(entMeta.PartitionOrDefault(), svc.Namespace)
sawPeer := false
for _, consumer := range svc.Consumers {
if consumer.Peer == "" {
continue
}
sawPeer = true
sn := structs.NewServiceName(svc.Name, &svcMeta)
if _, ok := found[sn]; ok {
continue
}
if svc.Name != structs.WildcardSpecifier {
found[sn] = struct{}{}
}
}
if sawPeer && svc.Name == structs.WildcardSpecifier {
idx, discoChains, err := listDiscoveryChainNamesTxn(tx, ws, overrides, svcMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to get discovery chain names: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, sn := range discoChains {
found[sn] = struct{}{}
}
}
}
foundKeys := maps.SliceOfKeys(found)
structs.ServiceList(foundKeys).Sort()
return maxIdx, foundKeys, nil
}
// PeeringsForService returns the list of peerings that are associated with the service name provided in the query.
// This is used to configure connect proxies for a given service. The result is generated by querying for exported
// service config entries and filtering for those that match the given service.
//
// TODO(peering): this implementation does all of the work on read to materialize this list of peerings, we should explore
// writing to a separate index that has service peerings prepared ahead of time should this become a performance bottleneck.
func (s *Store) PeeringsForService(ws memdb.WatchSet, serviceName string, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.Peering, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return peeringsForServiceTxn(tx, ws, serviceName, entMeta)
}
func peeringsForServiceTxn(tx ReadTxn, ws memdb.WatchSet, serviceName string, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.Peering, error) {
// Return the idx of the config entry so the caller can watch for changes.
maxIdx, peerNames, err := peersForServiceTxn(tx, ws, serviceName, &entMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to read peers for service name %q: %w", serviceName, err)
}
var peerings []*pbpeering.Peering
// Lookup and return the peering corresponding to each name.
for _, name := range peerNames {
readQuery := Query{
Value: name,
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(entMeta.PartitionOrDefault()),
}
idx, peering, err := peeringReadTxn(tx, ws, readQuery)
if err != nil {
return 0, nil, fmt.Errorf("failed to read peering: %w", err)
}
if idx > maxIdx {
maxIdx = idx
}
if !peering.IsActive() {
continue
}
peerings = append(peerings, peering)
}
return maxIdx, peerings, nil
}
// TrustBundleListByService returns the trust bundles for all peers that the
// given service is exported to, via a discovery chain target.
func (s *Store) TrustBundleListByService(ws memdb.WatchSet, service, dc string, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.PeeringTrustBundle, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
realSvc := structs.NewServiceName(service, &entMeta)
maxIdx, chainNames, err := s.discoveryChainSourcesTxn(tx, ws, dc, realSvc)
if err != nil {
return 0, nil, fmt.Errorf("failed to list all discovery chains referring to %q: %w", realSvc, err)
}
peerNames := make(map[string]struct{})
for _, chainSvc := range chainNames {
idx, peers, err := peeringsForServiceTxn(tx, ws, chainSvc.Name, chainSvc.EnterpriseMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed to get peers for service %s: %v", chainSvc, err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, peer := range peers {
peerNames[peer.Name] = struct{}{}
}
}
peerNamesSlice := maps.SliceOfKeys(peerNames)
sort.Strings(peerNamesSlice)
var resp []*pbpeering.PeeringTrustBundle
for _, peerName := range peerNamesSlice {
pq := Query{
Value: strings.ToLower(peerName),
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(entMeta.PartitionOrDefault()),
}
idx, trustBundle, err := peeringTrustBundleReadTxn(tx, ws, pq)
if err != nil {
return 0, nil, fmt.Errorf("failed to read trust bundle for peer %s: %v", peerName, err)
}
if idx > maxIdx {
maxIdx = idx
}
if trustBundle != nil {
resp = append(resp, trustBundle)
}
}
return maxIdx, resp, nil
}
// PeeringTrustBundleList returns the peering trust bundles for all peers.
func (s *Store) PeeringTrustBundleList(ws memdb.WatchSet, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.PeeringTrustBundle, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return peeringTrustBundleListTxn(tx, ws, entMeta)
}
func peeringTrustBundleListTxn(tx ReadTxn, ws memdb.WatchSet, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.PeeringTrustBundle, error) {
iter, err := tx.Get(tablePeeringTrustBundles, indexID+"_prefix", entMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed peering trust bundle lookup: %w", err)
}
idx := maxIndexWatchTxn(tx, ws, partitionedIndexEntryName(tablePeeringTrustBundles, entMeta.PartitionOrDefault()))
var result []*pbpeering.PeeringTrustBundle
for entry := iter.Next(); entry != nil; entry = iter.Next() {
result = append(result, entry.(*pbpeering.PeeringTrustBundle))
}
return idx, result, nil
}
// PeeringTrustBundleRead returns the peering trust bundle for the peer name given as the query value.
func (s *Store) PeeringTrustBundleRead(ws memdb.WatchSet, q Query) (uint64, *pbpeering.PeeringTrustBundle, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return peeringTrustBundleReadTxn(tx, ws, q)
}
func peeringTrustBundleReadTxn(tx ReadTxn, ws memdb.WatchSet, q Query) (uint64, *pbpeering.PeeringTrustBundle, error) {
watchCh, ptbRaw, err := tx.FirstWatch(tablePeeringTrustBundles, indexID, q)
if err != nil {
return 0, nil, fmt.Errorf("failed peering trust bundle lookup: %w", err)
}
ptb, ok := ptbRaw.(*pbpeering.PeeringTrustBundle)
if ptbRaw != nil && !ok {
return 0, nil, fmt.Errorf("invalid type %T", ptb)
}
ws.Add(watchCh)
if ptb == nil {
// Return the tables index so caller can watch it for changes if the trust bundle doesn't exist
return maxIndexWatchTxn(tx, ws, partitionedIndexEntryName(tablePeeringTrustBundles, q.PartitionOrDefault())), nil, nil
}
return ptb.ModifyIndex, ptb, nil
}
// PeeringTrustBundleWrite writes ptb to the state store.
// It also updates the corresponding peering object with the new certs.
// If there is an existing trust bundle with the given peer name, it will be overwritten.
// If there is no corresponding peering, then an error is returned.
func (s *Store) PeeringTrustBundleWrite(idx uint64, ptb *pbpeering.PeeringTrustBundle) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
if ptb.PeerName == "" {
return errors.New("missing peer name")
}
// Check for the existence of the peering object
_, existingPeering, err := peeringReadTxn(tx, nil, Query{
Value: ptb.PeerName,
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(ptb.Partition),
})
if err != nil {
return err
}
if existingPeering == nil {
return fmt.Errorf("cannot write peering trust bundle for unknown peering %s", ptb.PeerName)
}
// Prevent modifications to Peering marked for deletion.
// This blocks generating new peering tokens or re-establishing the peering until the peering is done deleting.
if existingPeering.State == pbpeering.PeeringState_DELETING {
return fmt.Errorf("cannot write to peering that is marked for deletion")
}
c := proto.Clone(existingPeering)
clone, ok := c.(*pbpeering.Peering)
if !ok {
return fmt.Errorf("invalid type %T, expected *pbpeering.Peering", clone)
}
// Update the certs on the peering
rootPEMs := make([]string, 0, len(ptb.RootPEMs))
for _, c := range ptb.RootPEMs {
rootPEMs = append(rootPEMs, lib.EnsureTrailingNewline(c))
}
clone.PeerCAPems = rootPEMs
clone.ModifyIndex = idx
if err := tx.Insert(tablePeering, clone); err != nil {
return fmt.Errorf("failed inserting peering: %w", err)
}
if err := updatePeeringTableIndexes(tx, idx, clone.PartitionOrDefault()); err != nil {
return err
}
// Check for the existing trust bundle and update
q := Query{
Value: ptb.PeerName,
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(ptb.Partition),
}
existingRaw, err := tx.First(tablePeeringTrustBundles, indexID, q)
if err != nil {
return fmt.Errorf("failed peering trust bundle lookup: %w", err)
}
existingPTB, ok := existingRaw.(*pbpeering.PeeringTrustBundle)
if existingRaw != nil && !ok {
return fmt.Errorf("invalid type %T", existingRaw)
}
if existingPTB != nil {
ptb.CreateIndex = existingPTB.CreateIndex
} else {
ptb.CreateIndex = idx
}
ptb.ModifyIndex = idx
if err := tx.Insert(tablePeeringTrustBundles, ptb); err != nil {
return fmt.Errorf("failed inserting peering trust bundle: %w", err)
}
if err := updatePeeringTrustBundlesTableIndexes(tx, idx, ptb.PartitionOrDefault()); err != nil {
return err
}
return tx.Commit()
}
func (s *Store) PeeringTrustBundleDelete(idx uint64, q Query) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
existing, err := tx.First(tablePeeringTrustBundles, indexID, q)
if err != nil {
return fmt.Errorf("failed peering trust bundle lookup: %v", err)
}
if existing == nil {
return nil
}
if err := tx.Delete(tablePeeringTrustBundles, existing); err != nil {
return fmt.Errorf("failed deleting peering trust bundle: %v", err)
}
if err := updatePeeringTrustBundlesTableIndexes(tx, idx, q.PartitionOrDefault()); err != nil {
return err
}
return tx.Commit()
}
func (s *Snapshot) Peerings() (memdb.ResultIterator, error) {
return s.tx.Get(tablePeering, indexName)
}
func (s *Snapshot) PeeringTrustBundles() (memdb.ResultIterator, error) {
return s.tx.Get(tablePeeringTrustBundles, indexID)
}
func (s *Snapshot) PeeringSecrets() (memdb.ResultIterator, error) {
return s.tx.Get(tablePeeringSecrets, indexID)
}
func (r *Restore) Peering(p *pbpeering.Peering) error {
if err := r.tx.Insert(tablePeering, p); err != nil {
return fmt.Errorf("failed restoring peering: %w", err)
}
if err := updatePeeringTableIndexes(r.tx, p.ModifyIndex, p.PartitionOrDefault()); err != nil {
return err
}
return nil
}
func (r *Restore) PeeringTrustBundle(ptb *pbpeering.PeeringTrustBundle) error {
if err := r.tx.Insert(tablePeeringTrustBundles, ptb); err != nil {
return fmt.Errorf("failed restoring peering trust bundle: %w", err)
}
if err := updatePeeringTrustBundlesTableIndexes(r.tx, ptb.ModifyIndex, ptb.PartitionOrDefault()); err != nil {
return err
}
return nil
}
func (r *Restore) PeeringSecrets(p *pbpeering.PeeringSecrets) error {
if err := r.tx.Insert(tablePeeringSecrets, p); err != nil {
return fmt.Errorf("failed restoring peering secrets: %w", err)
}
var uuids []string
if establishment := p.GetEstablishment().GetSecretID(); establishment != "" {
uuids = append(uuids, establishment)
}
if pending := p.GetStream().GetPendingSecretID(); pending != "" {
uuids = append(uuids, pending)
}
if active := p.GetStream().GetActiveSecretID(); active != "" {
uuids = append(uuids, active)
}
for _, id := range uuids {
if err := r.tx.Insert(tablePeeringSecretUUIDs, id); err != nil {
return fmt.Errorf("failed restoring peering secret UUIDs: %w", err)
}
}
return nil
}
// peersForServiceTxn returns the names of all peers that a service is exported to.
func peersForServiceTxn(
tx ReadTxn,
ws memdb.WatchSet,
serviceName string,
entMeta *acl.EnterpriseMeta,
) (uint64, []string, error) {
// Exported service config entries are scoped to partitions so they are in the default namespace.
partitionMeta := structs.DefaultEnterpriseMetaInPartition(entMeta.PartitionOrDefault())
idx, rawEntry, err := configEntryTxn(tx, ws, structs.ExportedServices, partitionMeta.PartitionOrDefault(), partitionMeta)
if err != nil {
return 0, nil, err
}
if rawEntry == nil {
return idx, nil, err
}
entry, ok := rawEntry.(*structs.ExportedServicesConfigEntry)
if !ok {
return 0, nil, fmt.Errorf("unexpected type %T for pbpeering.Peering index", rawEntry)
}
var (
wildcardNamespaceIdx = -1
wildcardServiceIdx = -1
exactMatchIdx = -1
)
// Ensure the metadata is defaulted since we make assertions against potentially empty values below.
// In OSS this is a no-op.
if entMeta == nil {
entMeta = acl.DefaultEnterpriseMeta()
}
entMeta.Normalize()
// Services can be exported via wildcards or by their exact name:
// Namespace: *, Service: *
// Namespace: Exact, Service: *
// Namespace: Exact, Service: Exact
for i, service := range entry.Services {
switch {
case service.Namespace == structs.WildcardSpecifier:
wildcardNamespaceIdx = i
case service.Name == structs.WildcardSpecifier && acl.EqualNamespaces(service.Namespace, entMeta.NamespaceOrDefault()):
wildcardServiceIdx = i
case service.Name == serviceName && acl.EqualNamespaces(service.Namespace, entMeta.NamespaceOrDefault()):
exactMatchIdx = i
}
}
var results []string
// Prefer the exact match over the wildcard match. This matches how we handle intention precedence.
var targetIdx int
switch {
case exactMatchIdx >= 0:
targetIdx = exactMatchIdx
case wildcardServiceIdx >= 0:
targetIdx = wildcardServiceIdx
case wildcardNamespaceIdx >= 0:
targetIdx = wildcardNamespaceIdx
default:
return idx, results, nil
}
for _, c := range entry.Services[targetIdx].Consumers {
if c.Peer != "" {
results = append(results, c.Peer)
}
}
return idx, results, nil
}
func (s *Store) PeeringListDeleted(ws memdb.WatchSet) (uint64, []*pbpeering.Peering, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
return peeringListDeletedTxn(tx, ws)
}
func peeringListDeletedTxn(tx ReadTxn, ws memdb.WatchSet) (uint64, []*pbpeering.Peering, error) {
iter, err := tx.Get(tablePeering, indexDeleted, BoolQuery{Value: true})
if err != nil {
return 0, nil, fmt.Errorf("failed peering lookup: %v", err)
}
// Instead of watching iter.WatchCh() we only need to watch the index entry for the peering table
// This is sufficient to pick up any changes to peerings.
idx := maxIndexWatchTxn(tx, ws, tablePeering)
var result []*pbpeering.Peering
for t := iter.Next(); t != nil; t = iter.Next() {
result = append(result, t.(*pbpeering.Peering))
}
return idx, result, nil
}