open-consul/agent/consul/leader_connect_test.go

1609 lines
46 KiB
Go
Raw Normal View History

package consul
import (
"context"
"crypto/x509"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"reflect"
"strings"
"testing"
"time"
msgpackrpc "github.com/hashicorp/consul-net-rpc/net-rpc-msgpackrpc"
2020-12-22 23:27:18 +00:00
uuid "github.com/hashicorp/go-uuid"
"github.com/stretchr/testify/require"
"github.com/hashicorp/consul/agent/connect"
"github.com/hashicorp/consul/agent/connect/ca"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/agent/token"
"github.com/hashicorp/consul/sdk/testutil/retry"
"github.com/hashicorp/consul/testrpc"
)
func TestConnectCA_ConfigurationSet_ChangeKeyConfig_Primary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
types := []struct {
keyType string
keyBits int
}{
{connect.DefaultPrivateKeyType, connect.DefaultPrivateKeyBits},
{"ec", 256},
{"ec", 384},
{"rsa", 2048},
{"rsa", 4096},
}
for _, src := range types {
for _, dst := range types {
if src == dst {
continue // skip
}
src := src
dst := dst
t.Run(fmt.Sprintf("%s-%d to %s-%d", src.keyType, src.keyBits, dst.keyType, dst.keyBits), func(t *testing.T) {
t.Parallel()
providerState := map[string]string{"foo": "dc1-value"}
// Initialize primary as the primary DC
dir1, srv := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc1"
c.PrimaryDatacenter = "dc1"
c.Build = "1.6.0"
c.CAConfig.Config["PrivateKeyType"] = src.keyType
c.CAConfig.Config["PrivateKeyBits"] = src.keyBits
c.CAConfig.Config["test_state"] = providerState
})
defer os.RemoveAll(dir1)
defer srv.Shutdown()
codec := rpcClient(t, srv)
defer codec.Close()
testrpc.WaitForLeader(t, srv.RPC, "dc1")
testrpc.WaitForActiveCARoot(t, srv.RPC, "dc1", nil)
var (
provider ca.Provider
caRoot *structs.CARoot
)
retry.Run(t, func(r *retry.R) {
provider, caRoot = getCAProviderWithLock(srv)
require.NotNil(r, caRoot)
// Sanity check CA is using the correct key type
require.Equal(r, src.keyType, caRoot.PrivateKeyType)
require.Equal(r, src.keyBits, caRoot.PrivateKeyBits)
})
runStep(t, "sign leaf cert and make sure chain is correct", func(t *testing.T) {
spiffeService := &connect.SpiffeIDService{
Host: "node1",
Namespace: "default",
Datacenter: "dc1",
Service: "foo",
}
raw, _ := connect.TestCSR(t, spiffeService)
leafCsr, err := connect.ParseCSR(raw)
require.NoError(t, err)
leafPEM, err := provider.Sign(leafCsr)
require.NoError(t, err)
// Check that the leaf signed by the new cert can be verified using the
// returned cert chain
require.NoError(t, connect.ValidateLeaf(caRoot.RootCert, leafPEM, []string{}))
})
runStep(t, "verify persisted state is correct", func(t *testing.T) {
state := srv.fsm.State()
_, caConfig, err := state.CAConfig(nil)
require.NoError(t, err)
require.Equal(t, providerState, caConfig.State)
})
runStep(t, "change roots", func(t *testing.T) {
// Update a config value
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"PrivateKey": "",
"RootCert": "",
"PrivateKeyType": dst.keyType,
"PrivateKeyBits": dst.keyBits,
// This verifies the state persistence for providers although Consul
// provider doesn't actually use that mechanism outside of tests.
"test_state": providerState,
},
}
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.ConfigurationSet", args, &reply))
})
var (
newProvider ca.Provider
newCaRoot *structs.CARoot
)
retry.Run(t, func(r *retry.R) {
newProvider, newCaRoot = getCAProviderWithLock(srv)
require.NotNil(r, newCaRoot)
// Sanity check CA is using the correct key type
require.Equal(r, dst.keyType, newCaRoot.PrivateKeyType)
require.Equal(r, dst.keyBits, newCaRoot.PrivateKeyBits)
})
runStep(t, "sign leaf cert and make sure NEW chain is correct", func(t *testing.T) {
spiffeService := &connect.SpiffeIDService{
Host: "node1",
Namespace: "default",
Datacenter: "dc1",
Service: "foo",
}
raw, _ := connect.TestCSR(t, spiffeService)
leafCsr, err := connect.ParseCSR(raw)
require.NoError(t, err)
leafPEM, err := newProvider.Sign(leafCsr)
require.NoError(t, err)
// Check that the leaf signed by the new cert can be verified using the
// returned cert chain
require.NoError(t, connect.ValidateLeaf(newCaRoot.RootCert, leafPEM, []string{}))
})
runStep(t, "verify persisted state is still correct", func(t *testing.T) {
state := srv.fsm.State()
_, caConfig, err := state.CAConfig(nil)
require.NoError(t, err)
require.Equal(t, providerState, caConfig.State)
})
})
}
}
}
func TestCAManager_Initialize_Secondary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
tests := []struct {
keyType string
keyBits int
}{
{connect.DefaultPrivateKeyType, connect.DefaultPrivateKeyBits},
{"rsa", 2048},
}
dc1State := map[string]string{"foo": "dc1-value"}
dc2State := map[string]string{"foo": "dc2-value"}
for _, tc := range tests {
tc := tc
t.Run(fmt.Sprintf("%s-%d", tc.keyType, tc.keyBits), func(t *testing.T) {
initialManagementToken := "8a85f086-dd95-4178-b128-e10902767c5c"
// Initialize primary as the primary DC
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "primary"
c.PrimaryDatacenter = "primary"
c.Build = "1.6.0"
c.ACLsEnabled = true
c.ACLInitialManagementToken = initialManagementToken
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
c.CAConfig.Config["PrivateKeyType"] = tc.keyType
c.CAConfig.Config["PrivateKeyBits"] = tc.keyBits
c.CAConfig.Config["test_state"] = dc1State
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
s1.tokens.UpdateAgentToken(initialManagementToken, token.TokenSourceConfig)
testrpc.WaitForLeader(t, s1.RPC, "primary")
// secondary as a secondary DC
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "secondary"
c.PrimaryDatacenter = "primary"
c.Build = "1.6.0"
c.ACLsEnabled = true
c.ACLResolverSettings.ACLDefaultPolicy = "deny"
c.ACLTokenReplication = true
c.CAConfig.Config["PrivateKeyType"] = tc.keyType
c.CAConfig.Config["PrivateKeyBits"] = tc.keyBits
c.CAConfig.Config["test_state"] = dc2State
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
s2.tokens.UpdateAgentToken(initialManagementToken, token.TokenSourceConfig)
s2.tokens.UpdateReplicationToken(initialManagementToken, token.TokenSourceConfig)
// Create the WAN link
joinWAN(t, s2, s1)
testrpc.WaitForLeader(t, s2.RPC, "secondary")
// Ensure s2 is authoritative.
waitForNewACLReplication(t, s2, structs.ACLReplicateTokens, 1, 1, 0)
// Wait until the providers are fully bootstrapped.
var (
caRoot *structs.CARoot
secondaryProvider ca.Provider
intermediatePEM string
err error
)
retry.Run(t, func(r *retry.R) {
_, caRoot = getCAProviderWithLock(s1)
secondaryProvider, _ = getCAProviderWithLock(s2)
intermediatePEM, err = secondaryProvider.ActiveIntermediate()
require.NoError(r, err)
// Sanity check CA is using the correct key type
require.Equal(r, tc.keyType, caRoot.PrivateKeyType)
require.Equal(r, tc.keyBits, caRoot.PrivateKeyBits)
// Verify the root lists are equal in each DC's state store.
state1 := s1.fsm.State()
_, roots1, err := state1.CARoots(nil)
require.NoError(r, err)
state2 := s2.fsm.State()
_, roots2, err := state2.CARoots(nil)
require.NoError(r, err)
require.Len(r, roots1, 1)
require.Len(r, roots2, 1)
require.Equal(r, roots1[0].ID, roots2[0].ID)
require.Equal(r, roots1[0].RootCert, roots2[0].RootCert)
require.Empty(r, roots1[0].IntermediateCerts)
require.NotEmpty(r, roots2[0].IntermediateCerts)
})
// Have secondary sign a leaf cert and make sure the chain is correct.
spiffeService := &connect.SpiffeIDService{
Host: "node1",
Namespace: "default",
Datacenter: "primary",
Service: "foo",
}
raw, _ := connect.TestCSR(t, spiffeService)
leafCsr, err := connect.ParseCSR(raw)
require.NoError(t, err)
leafPEM, err := secondaryProvider.Sign(leafCsr)
require.NoError(t, err)
// Check that the leaf signed by the new cert can be verified using the
// returned cert chain (signed intermediate + remote root).
require.NoError(t, connect.ValidateLeaf(caRoot.RootCert, leafPEM, []string{intermediatePEM}))
// Verify that both primary and secondary persisted state as expected -
// pass through from the config.
{
state := s1.fsm.State()
_, caConfig, err := state.CAConfig(nil)
require.NoError(t, err)
require.Equal(t, dc1State, caConfig.State)
}
{
state := s2.fsm.State()
_, caConfig, err := state.CAConfig(nil)
require.NoError(t, err)
require.Equal(t, dc2State, caConfig.State)
}
})
}
}
func getCAProviderWithLock(s *Server) (ca.Provider, *structs.CARoot) {
return s.caManager.getCAProvider()
}
func TestCAManager_RenewIntermediate_Vault_Primary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
ca.SkipIfVaultNotPresent(t)
// no parallel execution because we change globals
patchIntermediateCertRenewInterval(t)
testVault := ca.NewTestVaultServer(t)
_, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.CAConfig = &structs.CAConfiguration{
Provider: "vault",
Config: map[string]interface{}{
"Address": testVault.Addr,
"Token": testVault.RootToken,
"RootPKIPath": "pki-root/",
"IntermediatePKIPath": "pki-intermediate/",
"LeafCertTTL": "2s",
"IntermediateCertTTL": "7s",
},
}
})
defer func() {
s1.Shutdown()
s1.leaderRoutineManager.Wait()
}()
testrpc.WaitForActiveCARoot(t, s1.RPC, "dc1", nil)
store := s1.caManager.delegate.State()
_, activeRoot, err := store.CARootActive(nil)
require.NoError(t, err)
t.Log("original SigningKeyID", activeRoot.SigningKeyID)
intermediatePEM := s1.caManager.getLeafSigningCertFromRoot(activeRoot)
intermediateCert, err := connect.ParseCert(intermediatePEM)
require.NoError(t, err)
require.Equal(t, connect.HexString(intermediateCert.SubjectKeyId), activeRoot.SigningKeyID)
require.Equal(t, intermediatePEM, s1.caManager.getLeafSigningCertFromRoot(activeRoot))
// Wait for dc1's intermediate to be refreshed.
retry.Run(t, func(r *retry.R) {
store := s1.caManager.delegate.State()
_, storedRoot, err := store.CARootActive(nil)
r.Check(err)
newIntermediatePEM := s1.caManager.getLeafSigningCertFromRoot(storedRoot)
if newIntermediatePEM == intermediatePEM {
r.Fatal("not a renewed intermediate")
}
intermediateCert, err = connect.ParseCert(newIntermediatePEM)
r.Check(err)
intermediatePEM = newIntermediatePEM
})
codec := rpcClient(t, s1)
roots := structs.IndexedCARoots{}
err = msgpackrpc.CallWithCodec(codec, "ConnectCA.Roots", &structs.DCSpecificRequest{}, &roots)
require.NoError(t, err)
require.Len(t, roots.Roots, 1)
activeRoot = roots.Active()
require.Equal(t, connect.HexString(intermediateCert.SubjectKeyId), activeRoot.SigningKeyID)
require.Equal(t, intermediatePEM, s1.caManager.getLeafSigningCertFromRoot(activeRoot))
// Have the new intermediate sign a leaf cert and make sure the chain is correct.
spiffeService := &connect.SpiffeIDService{
Host: roots.TrustDomain,
Namespace: "default",
Datacenter: "dc1",
Service: "foo",
}
csr, _ := connect.TestCSR(t, spiffeService)
req := structs.CASignRequest{CSR: csr}
cert := structs.IssuedCert{}
err = msgpackrpc.CallWithCodec(codec, "ConnectCA.Sign", &req, &cert)
require.NoError(t, err)
verifyLeafCert(t, activeRoot, cert.CertPEM)
}
func patchIntermediateCertRenewInterval(t *testing.T) {
origInterval := structs.IntermediateCertRenewInterval
origMinTTL := structs.MinLeafCertTTL
structs.IntermediateCertRenewInterval = 200 * time.Millisecond
structs.MinLeafCertTTL = time.Second
t.Cleanup(func() {
structs.IntermediateCertRenewInterval = origInterval
structs.MinLeafCertTTL = origMinTTL
})
}
func TestCAManager_RenewIntermediate_Secondary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
// no parallel execution because we change globals
patchIntermediateCertRenewInterval(t)
_, s1 := testServerWithConfig(t, func(c *Config) {
c.Build = "1.6.0"
c.CAConfig = &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"PrivateKey": "",
"RootCert": "",
"LeafCertTTL": "5s",
// The retry loop only retries for 7sec max and
// the ttl needs to be below so that it
// triggers definitely.
// Since certs are created so that they are
// valid from 1minute in the past, we need to
// account for that, otherwise it will be
// expired immediately.
"IntermediateCertTTL": time.Minute + (5 * time.Second),
},
}
})
defer func() {
s1.Shutdown()
s1.leaderRoutineManager.Wait()
}()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// dc2 as a secondary DC
_, s2 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
})
defer func() {
s2.Shutdown()
s2.leaderRoutineManager.Wait()
}()
// Create the WAN link
joinWAN(t, s2, s1)
testrpc.WaitForActiveCARoot(t, s2.RPC, "dc2", nil)
store := s2.fsm.State()
_, activeRoot, err := store.CARootActive(nil)
require.NoError(t, err)
t.Log("original SigningKeyID", activeRoot.SigningKeyID)
intermediatePEM := s2.caManager.getLeafSigningCertFromRoot(activeRoot)
intermediateCert, err := connect.ParseCert(intermediatePEM)
require.NoError(t, err)
require.Equal(t, intermediatePEM, s2.caManager.getLeafSigningCertFromRoot(activeRoot))
require.Equal(t, connect.HexString(intermediateCert.SubjectKeyId), activeRoot.SigningKeyID)
// Wait for dc2's intermediate to be refreshed.
retry.Run(t, func(r *retry.R) {
store := s2.caManager.delegate.State()
_, storedRoot, err := store.CARootActive(nil)
r.Check(err)
newIntermediatePEM := s2.caManager.getLeafSigningCertFromRoot(storedRoot)
if newIntermediatePEM == intermediatePEM {
r.Fatal("not a renewed intermediate")
}
intermediateCert, err = connect.ParseCert(newIntermediatePEM)
r.Check(err)
intermediatePEM = newIntermediatePEM
})
codec := rpcClient(t, s2)
roots := structs.IndexedCARoots{}
err = msgpackrpc.CallWithCodec(codec, "ConnectCA.Roots", &structs.DCSpecificRequest{}, &roots)
require.NoError(t, err)
require.Len(t, roots.Roots, 1)
_, activeRoot, err = store.CARootActive(nil)
require.NoError(t, err)
require.Equal(t, connect.HexString(intermediateCert.SubjectKeyId), activeRoot.SigningKeyID)
require.Equal(t, intermediatePEM, s2.caManager.getLeafSigningCertFromRoot(activeRoot))
// Have dc2 sign a leaf cert and make sure the chain is correct.
spiffeService := &connect.SpiffeIDService{
Host: roots.TrustDomain,
Namespace: "default",
Datacenter: "dc2",
Service: "foo",
}
csr, _ := connect.TestCSR(t, spiffeService)
req := structs.CASignRequest{CSR: csr}
cert := structs.IssuedCert{}
err = msgpackrpc.CallWithCodec(codec, "ConnectCA.Sign", &req, &cert)
require.NoError(t, err)
verifyLeafCert(t, activeRoot, cert.CertPEM)
}
func TestConnectCA_ConfigurationSet_RootRotation_Secondary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.Build = "1.6.0"
c.PrimaryDatacenter = "dc1"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// dc2 as a secondary DC
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
c.Build = "1.6.0"
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
// Create the WAN link
joinWAN(t, s2, s1)
testrpc.WaitForLeader(t, s2.RPC, "dc2")
// Get the original intermediate
secondaryProvider, _ := getCAProviderWithLock(s2)
oldIntermediatePEM, err := secondaryProvider.ActiveIntermediate()
require.NoError(t, err)
require.NotEmpty(t, oldIntermediatePEM)
// Capture the current root
var originalRoot *structs.CARoot
{
rootList, activeRoot, err := getTestRoots(s1, "dc1")
require.NoError(t, err)
require.Len(t, rootList.Roots, 1)
originalRoot = activeRoot
}
// Wait for current state to be reflected in both datacenters.
testrpc.WaitForActiveCARoot(t, s1.RPC, "dc1", originalRoot)
testrpc.WaitForActiveCARoot(t, s2.RPC, "dc2", originalRoot)
// Update the provider config to use a new private key, which should
// cause a rotation.
_, newKey, err := connect.GeneratePrivateKey()
require.NoError(t, err)
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"PrivateKey": newKey,
"RootCert": "",
"IntermediateCertTTL": 72 * 24 * time.Hour,
},
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
require.NoError(t, s1.RPC("ConnectCA.ConfigurationSet", args, &reply))
}
var updatedRoot *structs.CARoot
{
rootList, activeRoot, err := getTestRoots(s1, "dc1")
require.NoError(t, err)
require.Len(t, rootList.Roots, 2)
updatedRoot = activeRoot
}
testrpc.WaitForActiveCARoot(t, s1.RPC, "dc1", updatedRoot)
testrpc.WaitForActiveCARoot(t, s2.RPC, "dc2", updatedRoot)
// Wait for dc2's intermediate to be refreshed.
var intermediatePEM string
retry.Run(t, func(r *retry.R) {
intermediatePEM, err = secondaryProvider.ActiveIntermediate()
r.Check(err)
if intermediatePEM == oldIntermediatePEM {
r.Fatal("not a new intermediate")
}
})
require.NoError(t, err)
// Verify the root lists have been rotated in each DC's state store.
state1 := s1.fsm.State()
_, primaryRoot, err := state1.CARootActive(nil)
require.NoError(t, err)
state2 := s2.fsm.State()
_, roots2, err := state2.CARoots(nil)
require.NoError(t, err)
require.Equal(t, 2, len(roots2))
newRoot := roots2[0]
oldRoot := roots2[1]
if roots2[1].Active {
newRoot = roots2[1]
oldRoot = roots2[0]
}
require.False(t, oldRoot.Active)
require.True(t, newRoot.Active)
require.Equal(t, primaryRoot.ID, newRoot.ID)
require.Equal(t, primaryRoot.RootCert, newRoot.RootCert)
// Get the new root from dc1 and validate a chain of:
// dc2 leaf -> dc2 intermediate -> dc1 root
_, caRoot := getCAProviderWithLock(s1)
// Have dc2 sign a leaf cert and make sure the chain is correct.
spiffeService := &connect.SpiffeIDService{
Host: "node1",
Namespace: "default",
Datacenter: "dc1",
Service: "foo",
}
2019-08-27 21:45:58 +00:00
raw, _ := connect.TestCSR(t, spiffeService)
leafCsr, err := connect.ParseCSR(raw)
require.NoError(t, err)
leafPEM, err := secondaryProvider.Sign(leafCsr)
require.NoError(t, err)
cert, err := connect.ParseCert(leafPEM)
require.NoError(t, err)
// Check that the leaf signed by the new intermediate can be verified using the
// returned cert chain (signed intermediate + remote root).
intermediatePool := x509.NewCertPool()
intermediatePool.AppendCertsFromPEM([]byte(intermediatePEM))
rootPool := x509.NewCertPool()
rootPool.AppendCertsFromPEM([]byte(caRoot.RootCert))
_, err = cert.Verify(x509.VerifyOptions{
Intermediates: intermediatePool,
Roots: rootPool,
})
require.NoError(t, err)
}
func TestCAManager_Initialize_Vault_FixesSigningKeyID_Primary(t *testing.T) {
ca.SkipIfVaultNotPresent(t)
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
testVault := ca.NewTestVaultServer(t)
defer testVault.Stop()
dir1pre, s1pre := testServerWithConfig(t, func(c *Config) {
c.Build = "1.6.0"
c.PrimaryDatacenter = "dc1"
c.CAConfig = &structs.CAConfiguration{
Provider: "vault",
Config: map[string]interface{}{
"Address": testVault.Addr,
"Token": testVault.RootToken,
"RootPKIPath": "pki-root/",
"IntermediatePKIPath": "pki-intermediate/",
},
}
})
defer os.RemoveAll(dir1pre)
defer s1pre.Shutdown()
testrpc.WaitForLeader(t, s1pre.RPC, "dc1")
// Restore the pre-1.9.3/1.8.8/1.7.12 behavior of the SigningKeyID not being derived
// from the intermediates in the primary (which only matters for provider=vault).
var primaryRootSigningKeyID string
{
state := s1pre.fsm.State()
// Get the highest index
idx, activePrimaryRoot, err := state.CARootActive(nil)
require.NoError(t, err)
require.NotNil(t, activePrimaryRoot)
rootCert, err := connect.ParseCert(activePrimaryRoot.RootCert)
require.NoError(t, err)
// Force this to be derived just from the root, not the intermediate.
primaryRootSigningKeyID = connect.EncodeSigningKeyID(rootCert.SubjectKeyId)
activePrimaryRoot.SigningKeyID = primaryRootSigningKeyID
// Store the root cert in raft
_, err = s1pre.raftApply(structs.ConnectCARequestType, &structs.CARequest{
Op: structs.CAOpSetRoots,
Index: idx,
Roots: []*structs.CARoot{activePrimaryRoot},
})
require.NoError(t, err)
}
// Shutdown s1pre and restart it to trigger the secondary CA init to correct
// the SigningKeyID.
s1pre.Shutdown()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.DataDir = s1pre.config.DataDir
c.Datacenter = "dc1"
c.PrimaryDatacenter = "dc1"
c.NodeName = s1pre.config.NodeName
c.NodeID = s1pre.config.NodeID
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Retry since it will take some time to init the primary CA fully and there
// isn't a super clean way to watch specifically until it's done than polling
// the CA provider anyway.
retry.Run(t, func(r *retry.R) {
// verify that the root is now corrected
provider, activeRoot := getCAProviderWithLock(s1)
require.NotNil(r, provider)
require.NotNil(r, activeRoot)
activeIntermediate, err := provider.ActiveIntermediate()
require.NoError(r, err)
intermediateCert, err := connect.ParseCert(activeIntermediate)
require.NoError(r, err)
// Force this to be derived just from the root, not the intermediate.
expect := connect.EncodeSigningKeyID(intermediateCert.SubjectKeyId)
// The in-memory representation was saw the correction via a setCAProvider call.
require.Equal(r, expect, activeRoot.SigningKeyID)
// The state store saw the correction, too.
_, activePrimaryRoot, err := s1.fsm.State().CARootActive(nil)
require.NoError(r, err)
require.NotNil(r, activePrimaryRoot)
require.Equal(r, expect, activePrimaryRoot.SigningKeyID)
})
}
func TestCAManager_Initialize_FixesSigningKeyID_Secondary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.Build = "1.6.0"
c.PrimaryDatacenter = "dc1"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// dc2 as a secondary DC
dir2pre, s2pre := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
c.Build = "1.6.0"
})
defer os.RemoveAll(dir2pre)
defer s2pre.Shutdown()
// Create the WAN link
joinWAN(t, s2pre, s1)
testrpc.WaitForLeader(t, s2pre.RPC, "dc2")
// Restore the pre-1.6.1 behavior of the SigningKeyID not being derived
// from the intermediates.
var secondaryRootSigningKeyID string
{
state := s2pre.fsm.State()
// Get the highest index
idx, activeSecondaryRoot, err := state.CARootActive(nil)
require.NoError(t, err)
require.NotNil(t, activeSecondaryRoot)
rootCert, err := connect.ParseCert(activeSecondaryRoot.RootCert)
require.NoError(t, err)
// Force this to be derived just from the root, not the intermediate.
secondaryRootSigningKeyID = connect.EncodeSigningKeyID(rootCert.SubjectKeyId)
activeSecondaryRoot.SigningKeyID = secondaryRootSigningKeyID
// Store the root cert in raft
_, err = s2pre.raftApply(structs.ConnectCARequestType, &structs.CARequest{
Op: structs.CAOpSetRoots,
Index: idx,
Roots: []*structs.CARoot{activeSecondaryRoot},
})
require.NoError(t, err)
}
// Shutdown s2pre and restart it to trigger the secondary CA init to correct
// the SigningKeyID.
s2pre.Shutdown()
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.DataDir = s2pre.config.DataDir
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
c.NodeName = s2pre.config.NodeName
c.NodeID = s2pre.config.NodeID
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
testrpc.WaitForLeader(t, s2.RPC, "dc2")
// Retry since it will take some time to init the secondary CA fully and there
// isn't a super clean way to watch specifically until it's done than polling
// the CA provider anyway.
retry.Run(t, func(r *retry.R) {
// verify that the root is now corrected
provider, activeRoot := getCAProviderWithLock(s2)
2019-10-16 16:39:22 +00:00
require.NotNil(r, provider)
require.NotNil(r, activeRoot)
activeIntermediate, err := provider.ActiveIntermediate()
2019-10-16 16:39:22 +00:00
require.NoError(r, err)
intermediateCert, err := connect.ParseCert(activeIntermediate)
2019-10-16 16:39:22 +00:00
require.NoError(r, err)
// Force this to be derived just from the root, not the intermediate.
expect := connect.EncodeSigningKeyID(intermediateCert.SubjectKeyId)
// The in-memory representation was saw the correction via a setCAProvider call.
2019-10-16 16:39:22 +00:00
require.Equal(r, expect, activeRoot.SigningKeyID)
// The state store saw the correction, too.
_, activeSecondaryRoot, err := s2.fsm.State().CARootActive(nil)
require.NoError(r, err)
require.NotNil(r, activeSecondaryRoot)
require.Equal(r, expect, activeSecondaryRoot.SigningKeyID)
})
}
func TestCAManager_Initialize_TransitionFromPrimaryToSecondary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
// Initialize dc1 as the primary DC
id1, err := uuid.GenerateUUID()
require.NoError(t, err)
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.CAConfig.ClusterID = id1
c.Build = "1.6.0"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// dc2 as a primary DC initially
id2, err := uuid.GenerateUUID()
require.NoError(t, err)
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc2"
c.CAConfig.ClusterID = id2
c.Build = "1.6.0"
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
// Get the initial (primary) roots state for the secondary
testrpc.WaitForLeader(t, s2.RPC, "dc2")
args := structs.DCSpecificRequest{Datacenter: "dc2"}
var dc2PrimaryRoots structs.IndexedCARoots
require.NoError(t, s2.RPC("ConnectCA.Roots", &args, &dc2PrimaryRoots))
require.Len(t, dc2PrimaryRoots.Roots, 1)
// Shutdown s2 and restart it with the dc1 as the primary
s2.Shutdown()
dir3, s3 := testServerWithConfig(t, func(c *Config) {
c.DataDir = s2.config.DataDir
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
c.NodeName = s2.config.NodeName
c.NodeID = s2.config.NodeID
})
defer os.RemoveAll(dir3)
defer s3.Shutdown()
// Create the WAN link
joinWAN(t, s3, s1)
testrpc.WaitForLeader(t, s3.RPC, "dc2")
// Verify the secondary has migrated its TrustDomain and added the new primary's root.
retry.Run(t, func(r *retry.R) {
args = structs.DCSpecificRequest{Datacenter: "dc1"}
var dc1Roots structs.IndexedCARoots
require.NoError(r, s1.RPC("ConnectCA.Roots", &args, &dc1Roots))
require.Len(r, dc1Roots.Roots, 1)
args = structs.DCSpecificRequest{Datacenter: "dc2"}
var dc2SecondaryRoots structs.IndexedCARoots
require.NoError(r, s3.RPC("ConnectCA.Roots", &args, &dc2SecondaryRoots))
// dc2's TrustDomain should have changed to the primary's
require.Equal(r, dc2SecondaryRoots.TrustDomain, dc1Roots.TrustDomain)
require.NotEqual(r, dc2SecondaryRoots.TrustDomain, dc2PrimaryRoots.TrustDomain)
// Both roots should be present and correct
require.Len(r, dc2SecondaryRoots.Roots, 2)
var oldSecondaryRoot *structs.CARoot
var newSecondaryRoot *structs.CARoot
if dc2SecondaryRoots.Roots[0].ID == dc2PrimaryRoots.Roots[0].ID {
oldSecondaryRoot = dc2SecondaryRoots.Roots[0]
newSecondaryRoot = dc2SecondaryRoots.Roots[1]
} else {
oldSecondaryRoot = dc2SecondaryRoots.Roots[1]
newSecondaryRoot = dc2SecondaryRoots.Roots[0]
}
// The old root should have its TrustDomain filled in as the old domain.
require.Equal(r, oldSecondaryRoot.ExternalTrustDomain, strings.TrimSuffix(dc2PrimaryRoots.TrustDomain, ".consul"))
require.Equal(r, oldSecondaryRoot.ID, dc2PrimaryRoots.Roots[0].ID)
require.Equal(r, oldSecondaryRoot.RootCert, dc2PrimaryRoots.Roots[0].RootCert)
require.Equal(r, newSecondaryRoot.ID, dc1Roots.Roots[0].ID)
require.Equal(r, newSecondaryRoot.RootCert, dc1Roots.Roots[0].RootCert)
})
}
func TestCAManager_Initialize_SecondaryBeforePrimary(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
// Initialize dc1 as the primary DC
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.Build = "1.3.0"
c.MaxQueryTime = 500 * time.Millisecond
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// dc2 as a secondary DC
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
c.Build = "1.6.0"
c.MaxQueryTime = 500 * time.Millisecond
})
defer os.RemoveAll(dir2)
defer s2.Shutdown()
// Create the WAN link
joinWAN(t, s2, s1)
testrpc.WaitForLeader(t, s2.RPC, "dc2")
// ensure all the CA initialization stuff would have already been done
// this is necessary to ensure that not only has a leader been elected
// but that it has also finished its establishLeadership call
retry.Run(t, func(r *retry.R) {
require.True(r, s1.isReadyForConsistentReads())
require.True(r, s2.isReadyForConsistentReads())
})
// Verify the primary has a root (we faked its version too low but since its the primary it ignores any version checks)
retry.Run(t, func(r *retry.R) {
state1 := s1.fsm.State()
_, roots1, err := state1.CARoots(nil)
require.NoError(r, err)
require.Len(r, roots1, 1)
})
// Verify the secondary does not have a root - defers initialization until the primary has been upgraded.
state2 := s2.fsm.State()
_, roots2, err := state2.CARoots(nil)
require.NoError(t, err)
require.Empty(t, roots2)
// Update the version on the fly so s2 kicks off the secondary DC transition.
tags := s1.config.SerfWANConfig.Tags
tags["build"] = "1.6.0"
s1.serfWAN.SetTags(tags)
// Wait for the secondary transition to happen and then verify the secondary DC
// has both roots present.
retry.Run(t, func(r *retry.R) {
state1 := s1.fsm.State()
_, roots1, err := state1.CARoots(nil)
require.NoError(r, err)
require.Len(r, roots1, 1)
state2 := s2.fsm.State()
_, roots2, err := state2.CARoots(nil)
require.NoError(r, err)
require.Len(r, roots2, 1)
// ensure the roots are the same
require.Equal(r, roots1[0].ID, roots2[0].ID)
require.Equal(r, roots1[0].RootCert, roots2[0].RootCert)
secondaryProvider, _ := getCAProviderWithLock(s2)
inter, err := secondaryProvider.ActiveIntermediate()
require.NoError(r, err)
require.NotEmpty(r, inter, "should have valid intermediate")
})
secondaryProvider, _ := getCAProviderWithLock(s2)
intermediatePEM, err := secondaryProvider.ActiveIntermediate()
require.NoError(t, err)
_, caRoot := getCAProviderWithLock(s1)
// Have dc2 sign a leaf cert and make sure the chain is correct.
spiffeService := &connect.SpiffeIDService{
Host: "node1",
Namespace: "default",
Datacenter: "dc1",
Service: "foo",
}
2019-08-27 21:45:58 +00:00
raw, _ := connect.TestCSR(t, spiffeService)
leafCsr, err := connect.ParseCSR(raw)
require.NoError(t, err)
leafPEM, err := secondaryProvider.Sign(leafCsr)
require.NoError(t, err)
cert, err := connect.ParseCert(leafPEM)
require.NoError(t, err)
// Check that the leaf signed by the new cert can be verified using the
// returned cert chain (signed intermediate + remote root).
intermediatePool := x509.NewCertPool()
intermediatePool.AppendCertsFromPEM([]byte(intermediatePEM))
rootPool := x509.NewCertPool()
rootPool.AppendCertsFromPEM([]byte(caRoot.RootCert))
_, err = cert.Verify(x509.VerifyOptions{
Intermediates: intermediatePool,
Roots: rootPool,
})
require.NoError(t, err)
}
func getTestRoots(s *Server, datacenter string) (*structs.IndexedCARoots, *structs.CARoot, error) {
rootReq := &structs.DCSpecificRequest{
Datacenter: datacenter,
}
var rootList structs.IndexedCARoots
if err := s.RPC("ConnectCA.Roots", rootReq, &rootList); err != nil {
return nil, nil, err
}
active := rootList.Active()
return &rootList, active, nil
}
func TestLeader_CARootPruning(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
2020-12-22 23:27:18 +00:00
// Can not use t.Parallel(), because this modifies a global.
origPruneInterval := caRootPruneInterval
caRootPruneInterval = 200 * time.Millisecond
t.Cleanup(func() {
// Reset the value of the global prune interval so that it doesn't affect other tests
caRootPruneInterval = origPruneInterval
})
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
// Get the current root
rootReq := &structs.DCSpecificRequest{
Datacenter: "dc1",
}
var rootList structs.IndexedCARoots
require.Nil(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.Roots", rootReq, &rootList))
require.Len(t, rootList.Roots, 1)
oldRoot := rootList.Roots[0]
// Update the provider config to use a new private key, which should
// cause a rotation.
_, newKey, err := connect.GeneratePrivateKey()
require.NoError(t, err)
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"LeafCertTTL": "500ms",
"PrivateKey": newKey,
"RootCert": "",
"SkipValidate": true,
},
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.ConfigurationSet", args, &reply))
}
// Should have 2 roots now.
_, roots, err := s1.fsm.State().CARoots(nil)
require.NoError(t, err)
require.Len(t, roots, 2)
time.Sleep(2 * time.Second)
// Now the old root should be pruned.
_, roots, err = s1.fsm.State().CARoots(nil)
require.NoError(t, err)
require.Len(t, roots, 1)
require.True(t, roots[0].Active)
require.NotEqual(t, roots[0].ID, oldRoot.ID)
}
func TestConnectCA_ConfigurationSet_PersistsRoots(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
dir2, s2 := testServerDCBootstrap(t, "dc1", false)
defer os.RemoveAll(dir2)
defer s2.Shutdown()
dir3, s3 := testServerDCBootstrap(t, "dc1", false)
defer os.RemoveAll(dir3)
defer s3.Shutdown()
joinLAN(t, s2, s1)
joinLAN(t, s3, s1)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Get the current root
rootReq := &structs.DCSpecificRequest{
Datacenter: "dc1",
}
var rootList structs.IndexedCARoots
require.Nil(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.Roots", rootReq, &rootList))
require.Len(t, rootList.Roots, 1)
// Update the provider config to use a new private key, which should
// cause a rotation.
_, newKey, err := connect.GeneratePrivateKey()
require.NoError(t, err)
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"PrivateKey": newKey,
"RootCert": "",
},
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.ConfigurationSet", args, &reply))
}
// Get the active root before leader change.
_, root := getCAProviderWithLock(s1)
require.Len(t, root.IntermediateCerts, 1)
// Force a leader change and make sure the root CA values are preserved.
s1.Leave()
s1.Shutdown()
retry.Run(t, func(r *retry.R) {
var leader *Server
for _, s := range []*Server{s2, s3} {
if s.IsLeader() {
leader = s
break
}
}
if leader == nil {
r.Fatal("no leader")
}
_, newLeaderRoot := getCAProviderWithLock(leader)
if !reflect.DeepEqual(newLeaderRoot, root) {
r.Fatalf("got %v, want %v", newLeaderRoot, root)
}
})
}
func TestParseCARoot(t *testing.T) {
type test struct {
name string
pem string
wantSerial uint64
wantSigningKeyID string
wantKeyType string
wantKeyBits int
wantErr bool
}
// Test certs generated with
// go run connect/certgen/certgen.go -out-dir /tmp/connect-certs -key-type ec -key-bits 384
// for various key types. This does limit the exposure to formats that might
// exist in external certificates which can be used as Connect CAs.
// Specifically many other certs will have serial numbers that don't fit into
// 64 bits but for reasons we truncate down to 64 bits which means our
// `SerialNumber` will not match the one reported by openssl. We should
// probably fix that at some point as it seems like a big footgun but it would
// be a breaking API change to change the type to not be a JSON number and
// JSON numbers don't even support the full range of a uint64...
tests := []test{
{"no cert", "", 0, "", "", 0, true},
{
name: "default cert",
// Watchout for indentations they will break PEM format
pem: readTestData(t, "cert-with-ec-256-key.pem"),
// Based on `openssl x509 -noout -text` report from the cert
wantSerial: 8341954965092507701,
wantSigningKeyID: "97:4D:17:81:64:F8:B4:AF:05:E8:6C:79:C5:40:3B:0E:3E:8B:C0:AE:38:51:54:8A:2F:05:DB:E3:E8:E4:24:EC",
wantKeyType: "ec",
wantKeyBits: 256,
wantErr: false,
},
{
name: "ec 384 cert",
// Watchout for indentations they will break PEM format
pem: readTestData(t, "cert-with-ec-384-key.pem"),
// Based on `openssl x509 -noout -text` report from the cert
wantSerial: 2935109425518279965,
wantSigningKeyID: "0B:A0:88:9B:DC:95:31:51:2E:3D:D4:F9:42:D0:6A:A0:62:46:82:D2:7C:22:E7:29:A9:AA:E8:A5:8C:CF:C7:42",
wantKeyType: "ec",
wantKeyBits: 384,
wantErr: false,
},
{
name: "rsa 4096 cert",
// Watchout for indentations they will break PEM format
pem: readTestData(t, "cert-with-rsa-4096-key.pem"),
// Based on `openssl x509 -noout -text` report from the cert
wantSerial: 5186695743100577491,
wantSigningKeyID: "92:FA:CC:97:57:1E:31:84:A2:33:DD:9B:6A:A8:7C:FC:BE:E2:94:CA:AC:B3:33:17:39:3B:B8:67:9B:DC:C1:08",
wantKeyType: "rsa",
wantKeyBits: 4096,
wantErr: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
root, err := parseCARoot(tt.pem, "consul", "cluster")
if tt.wantErr {
require.Error(t, err)
return
}
require.NoError(t, err)
require.Equal(t, tt.wantSerial, root.SerialNumber)
require.Equal(t, strings.ToLower(tt.wantSigningKeyID), root.SigningKeyID)
require.Equal(t, tt.wantKeyType, root.PrivateKeyType)
require.Equal(t, tt.wantKeyBits, root.PrivateKeyBits)
})
}
}
func readTestData(t *testing.T, name string) string {
t.Helper()
path := filepath.Join("testdata", name)
bs, err := ioutil.ReadFile(path)
if err != nil {
t.Fatalf("failed reading fixture file %s: %s", name, err)
}
return string(bs)
}
func TestLessThanHalfTimePassed(t *testing.T) {
now := time.Now()
require.False(t, lessThanHalfTimePassed(now, now.Add(-10*time.Second), now.Add(-5*time.Second)))
require.False(t, lessThanHalfTimePassed(now, now.Add(-10*time.Second), now))
require.False(t, lessThanHalfTimePassed(now, now.Add(-10*time.Second), now.Add(5*time.Second)))
require.False(t, lessThanHalfTimePassed(now, now.Add(-10*time.Second), now.Add(10*time.Second)))
require.True(t, lessThanHalfTimePassed(now, now.Add(-10*time.Second), now.Add(20*time.Second)))
}
func TestRetryLoopBackoffHandleSuccess(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
type test struct {
desc string
loopFn func() error
abort bool
timedOut bool
}
success := func() error {
return nil
}
failure := func() error {
return fmt.Errorf("test error")
}
tests := []test{
{"loop without error and no abortOnSuccess keeps running", success, false, true},
{"loop with error and no abortOnSuccess keeps running", failure, false, true},
{"loop without error and abortOnSuccess is stopped", success, true, false},
{"loop with error and abortOnSuccess keeps running", failure, true, true},
}
for _, tc := range tests {
tc := tc
t.Run(tc.desc, func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 50*time.Millisecond)
defer cancel()
retryLoopBackoffHandleSuccess(ctx, tc.loopFn, func(_ error) {}, tc.abort)
select {
case <-ctx.Done():
if !tc.timedOut {
t.Fatal("should not have timed out")
}
default:
if tc.timedOut {
t.Fatal("should have timed out")
}
}
})
}
}
func TestCAManager_Initialize_Vault_BadCAConfigDoesNotPreventLeaderEstablishment(t *testing.T) {
ca.SkipIfVaultNotPresent(t)
testVault := ca.NewTestVaultServer(t)
defer testVault.Stop()
_, s1 := testServerWithConfig(t, func(c *Config) {
c.Build = "1.9.1"
c.PrimaryDatacenter = "dc1"
c.CAConfig = &structs.CAConfiguration{
Provider: "vault",
Config: map[string]interface{}{
"Address": testVault.Addr,
"Token": "not-the-root",
"RootPKIPath": "pki-root/",
"IntermediatePKIPath": "pki-intermediate/",
},
}
})
defer s1.Shutdown()
waitForLeaderEstablishment(t, s1)
rootsList, activeRoot, err := getTestRoots(s1, "dc1")
require.NoError(t, err)
require.Empty(t, rootsList.Roots)
require.Nil(t, activeRoot)
// Now that the leader is up and we have verified that there are no roots / CA init failed,
// verify that we can reconfigure away from the bad configuration.
newConfig := &structs.CAConfiguration{
Provider: "vault",
Config: map[string]interface{}{
"Address": testVault.Addr,
"Token": testVault.RootToken,
"RootPKIPath": "pki-root/",
"IntermediatePKIPath": "pki-intermediate/",
},
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
retry.Run(t, func(r *retry.R) {
require.NoError(r, s1.RPC("ConnectCA.ConfigurationSet", args, &reply))
})
}
rootsList, activeRoot, err = getTestRoots(s1, "dc1")
require.NoError(t, err)
require.NotEmpty(t, rootsList.Roots)
require.NotNil(t, activeRoot)
}
func TestCAManager_Initialize_BadCAConfigDoesNotPreventLeaderEstablishment(t *testing.T) {
ca.SkipIfVaultNotPresent(t)
_, s1 := testServerWithConfig(t, func(c *Config) {
c.Build = "1.9.1"
c.PrimaryDatacenter = "dc1"
c.CAConfig = &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"RootCert": "garbage",
},
}
})
defer s1.Shutdown()
waitForLeaderEstablishment(t, s1)
rootsList, activeRoot, err := getTestRoots(s1, "dc1")
require.NoError(t, err)
require.Empty(t, rootsList.Roots)
require.Nil(t, activeRoot)
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{},
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
retry.Run(t, func(r *retry.R) {
require.NoError(r, s1.RPC("ConnectCA.ConfigurationSet", args, &reply))
})
}
rootsList, activeRoot, err = getTestRoots(s1, "dc1")
require.NoError(t, err)
require.NotEmpty(t, rootsList.Roots)
require.NotNil(t, activeRoot)
}
func TestConnectCA_ConfigurationSet_ForceWithoutCrossSigning(t *testing.T) {
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
waitForLeaderEstablishment(t, s1)
// Get the current root
rootReq := &structs.DCSpecificRequest{
Datacenter: "dc1",
}
var rootList structs.IndexedCARoots
require.Nil(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.Roots", rootReq, &rootList))
require.Len(t, rootList.Roots, 1)
oldRoot := rootList.Roots[0]
// Update the provider config to use a new private key, which should
// cause a rotation.
_, newKey, err := connect.GeneratePrivateKey()
require.NoError(t, err)
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"LeafCertTTL": "500ms",
"PrivateKey": newKey,
"RootCert": "",
"SkipValidate": true,
},
ForceWithoutCrossSigning: true,
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.ConfigurationSet", args, &reply))
}
// Old root should no longer be active.
_, roots, err := s1.fsm.State().CARoots(nil)
require.NoError(t, err)
require.Len(t, roots, 2)
for _, r := range roots {
if r.ID == oldRoot.ID {
require.False(t, r.Active)
} else {
require.True(t, r.Active)
}
}
}
func TestConnectCA_ConfigurationSet_Vault_ForceWithoutCrossSigning(t *testing.T) {
ca.SkipIfVaultNotPresent(t)
testVault := ca.NewTestVaultServer(t)
defer testVault.Stop()
_, s1 := testServerWithConfig(t, func(c *Config) {
c.Build = "1.9.1"
c.PrimaryDatacenter = "dc1"
c.CAConfig = &structs.CAConfiguration{
Provider: "vault",
Config: map[string]interface{}{
"Address": testVault.Addr,
"Token": testVault.RootToken,
"RootPKIPath": "pki-root/",
"IntermediatePKIPath": "pki-intermediate/",
},
}
})
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
waitForLeaderEstablishment(t, s1)
// Get the current root
rootReq := &structs.DCSpecificRequest{
Datacenter: "dc1",
}
var rootList structs.IndexedCARoots
require.Nil(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.Roots", rootReq, &rootList))
require.Len(t, rootList.Roots, 1)
oldRoot := rootList.Roots[0]
// Update the provider config to use a new PKI path, which should
// cause a rotation.
newConfig := &structs.CAConfiguration{
Provider: "vault",
Config: map[string]interface{}{
"Address": testVault.Addr,
"Token": testVault.RootToken,
"RootPKIPath": "pki-root-2/",
"IntermediatePKIPath": "pki-intermediate/",
},
ForceWithoutCrossSigning: true,
}
{
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
require.NoError(t, msgpackrpc.CallWithCodec(codec, "ConnectCA.ConfigurationSet", args, &reply))
}
// Old root should no longer be active.
_, roots, err := s1.fsm.State().CARoots(nil)
require.NoError(t, err)
require.Len(t, roots, 2)
for _, r := range roots {
if r.ID == oldRoot.ID {
require.False(t, r.Active)
} else {
require.True(t, r.Active)
}
}
}