open-consul/agent/xds/endpoints.go

284 lines
8.2 KiB
Go
Raw Normal View History

package xds
import (
"errors"
"fmt"
envoy "github.com/envoyproxy/go-control-plane/envoy/api/v2"
envoycore "github.com/envoyproxy/go-control-plane/envoy/api/v2/core"
envoyendpoint "github.com/envoyproxy/go-control-plane/envoy/api/v2/endpoint"
"github.com/gogo/protobuf/proto"
"github.com/hashicorp/consul/agent/proxycfg"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/api"
bexpr "github.com/hashicorp/go-bexpr"
)
// endpointsFromSnapshot returns the xDS API representation of the "endpoints"
func (s *Server) endpointsFromSnapshot(cfgSnap *proxycfg.ConfigSnapshot, token string) ([]proto.Message, error) {
if cfgSnap == nil {
return nil, errors.New("nil config given")
}
switch cfgSnap.Kind {
case structs.ServiceKindConnectProxy:
return s.endpointsFromSnapshotConnectProxy(cfgSnap, token)
case structs.ServiceKindMeshGateway:
return s.endpointsFromSnapshotMeshGateway(cfgSnap, token)
default:
return nil, fmt.Errorf("Invalid service kind: %v", cfgSnap.Kind)
}
}
// endpointsFromSnapshotConnectProxy returns the xDS API representation of the "endpoints"
// (upstream instances) in the snapshot.
func (s *Server) endpointsFromSnapshotConnectProxy(cfgSnap *proxycfg.ConfigSnapshot, token string) ([]proto.Message, error) {
// TODO(rb): this sizing is a low bound.
resources := make([]proto.Message, 0, len(cfgSnap.ConnectProxy.UpstreamEndpoints))
// TODO(rb): should naming from 1.5 -> 1.6 for clusters remain unchanged?
for _, u := range cfgSnap.Proxy.Upstreams {
id := u.Identifier()
var chain *structs.CompiledDiscoveryChain
if u.DestinationType != structs.UpstreamDestTypePreparedQuery {
chain = cfgSnap.ConnectProxy.DiscoveryChain[id]
}
if chain == nil {
// We ONLY want this branch for prepared queries.
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
2019-08-02 03:03:34 +00:00
clusterName := UpstreamSNI(&u, "", cfgSnap)
endpoints, ok := cfgSnap.ConnectProxy.UpstreamEndpoints[id]
if ok {
la := makeLoadAssignment(
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
2019-08-02 03:03:34 +00:00
clusterName,
[]loadAssignmentEndpointGroup{
{Endpoints: endpoints},
},
cfgSnap.Datacenter,
)
resources = append(resources, la)
}
} else {
// Newfangled discovery chain plumbing.
chainEndpointMap, ok := cfgSnap.ConnectProxy.WatchedUpstreamEndpoints[id]
if !ok {
continue // skip the upstream (should not happen)
}
// Find all resolver nodes.
for _, node := range chain.Nodes {
if node.Type != structs.DiscoveryGraphNodeTypeResolver {
continue
}
failover := node.Resolver.Failover
targetID := node.Resolver.Target
target := chain.Targets[targetID]
endpoints, ok := chainEndpointMap[targetID]
if !ok {
continue // skip the cluster (should not happen)
}
var endpointGroups []loadAssignmentEndpointGroup
primaryGroup := loadAssignmentEndpointGroup{
Endpoints: endpoints,
OnlyPassing: target.Subset.OnlyPassing,
}
if failover != nil && len(failover.Targets) > 0 {
endpointGroups = make([]loadAssignmentEndpointGroup, 0, len(failover.Targets)+1)
endpointGroups = append(endpointGroups, primaryGroup)
for _, failTargetID := range failover.Targets {
failEndpoints, ok := chainEndpointMap[failTargetID]
if !ok {
continue // skip the failover target (should not happen)
}
failTarget := chain.Targets[failTargetID]
endpointGroups = append(endpointGroups, loadAssignmentEndpointGroup{
Endpoints: failEndpoints,
OnlyPassing: failTarget.Subset.OnlyPassing,
})
}
} else {
endpointGroups = append(endpointGroups, primaryGroup)
}
sni := TargetSNI(target, cfgSnap)
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
2019-08-02 03:03:34 +00:00
clusterName := CustomizeClusterName(sni, chain)
la := makeLoadAssignment(
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
2019-08-02 03:03:34 +00:00
clusterName,
endpointGroups,
cfgSnap.Datacenter,
)
resources = append(resources, la)
}
}
}
return resources, nil
}
func (s *Server) endpointsFromSnapshotMeshGateway(cfgSnap *proxycfg.ConfigSnapshot, token string) ([]proto.Message, error) {
resources := make([]proto.Message, 0, len(cfgSnap.MeshGateway.GatewayGroups)+len(cfgSnap.MeshGateway.ServiceGroups))
// generate the endpoints for the gateways in the remote datacenters
for dc, endpoints := range cfgSnap.MeshGateway.GatewayGroups {
clusterName := DatacenterSNI(dc, cfgSnap)
la := makeLoadAssignment(
clusterName,
[]loadAssignmentEndpointGroup{
{Endpoints: endpoints},
},
cfgSnap.Datacenter,
)
resources = append(resources, la)
}
// generate the endpoints for the local service groups
for svc, endpoints := range cfgSnap.MeshGateway.ServiceGroups {
clusterName := ServiceSNI(svc, "", "default", cfgSnap.Datacenter, cfgSnap)
la := makeLoadAssignment(
clusterName,
[]loadAssignmentEndpointGroup{
{Endpoints: endpoints},
},
cfgSnap.Datacenter,
)
resources = append(resources, la)
}
// generate the endpoints for the service subsets
for svc, resolver := range cfgSnap.MeshGateway.ServiceResolvers {
for subsetName, subset := range resolver.Subsets {
clusterName := ServiceSNI(svc, subsetName, "default", cfgSnap.Datacenter, cfgSnap)
endpoints := cfgSnap.MeshGateway.ServiceGroups[svc]
// locally execute the subsets filter
if subset.Filter != "" {
filter, err := bexpr.CreateFilter(subset.Filter, nil, endpoints)
if err != nil {
return nil, err
}
raw, err := filter.Execute(endpoints)
if err != nil {
return nil, err
}
endpoints = raw.(structs.CheckServiceNodes)
}
la := makeLoadAssignment(
clusterName,
[]loadAssignmentEndpointGroup{
{
Endpoints: endpoints,
OnlyPassing: subset.OnlyPassing,
},
},
cfgSnap.Datacenter,
)
resources = append(resources, la)
}
}
return resources, nil
}
func makeEndpoint(clusterName, host string, port int) envoyendpoint.LbEndpoint {
return envoyendpoint.LbEndpoint{
HostIdentifier: &envoyendpoint.LbEndpoint_Endpoint{
Endpoint: &envoyendpoint.Endpoint{
Address: makeAddressPtr(host, port),
},
},
}
}
type loadAssignmentEndpointGroup struct {
Endpoints structs.CheckServiceNodes
OnlyPassing bool
}
func makeLoadAssignment(clusterName string, endpointGroups []loadAssignmentEndpointGroup, localDatacenter string) *envoy.ClusterLoadAssignment {
cla := &envoy.ClusterLoadAssignment{
ClusterName: clusterName,
Endpoints: make([]envoyendpoint.LocalityLbEndpoints, 0, len(endpointGroups)),
}
if len(endpointGroups) > 1 {
cla.Policy = &envoy.ClusterLoadAssignment_Policy{
// We choose such a large value here that the failover math should
// in effect not happen until zero instances are healthy.
OverprovisioningFactor: makeUint32Value(100000),
}
}
for priority, endpointGroup := range endpointGroups {
endpoints := endpointGroup.Endpoints
es := make([]envoyendpoint.LbEndpoint, 0, len(endpoints))
for _, ep := range endpoints {
// TODO (mesh-gateway) - should we respect the translate_wan_addrs configuration here or just always use the wan for cross-dc?
addr, port := ep.BestAddress(localDatacenter != ep.Node.Datacenter)
healthStatus := envoycore.HealthStatus_HEALTHY
weight := 1
if ep.Service.Weights != nil {
weight = ep.Service.Weights.Passing
}
for _, chk := range ep.Checks {
if chk.Status == api.HealthCritical {
healthStatus = envoycore.HealthStatus_UNHEALTHY
}
if endpointGroup.OnlyPassing && chk.Status != api.HealthPassing {
healthStatus = envoycore.HealthStatus_UNHEALTHY
}
if chk.Status == api.HealthWarning && ep.Service.Weights != nil {
weight = ep.Service.Weights.Warning
}
}
// Make weights fit Envoy's limits. A zero weight means that either Warning
// (likely) or Passing (weirdly) weight has been set to 0 effectively making
// this instance unhealthy and should not be sent traffic.
if weight < 1 {
healthStatus = envoycore.HealthStatus_UNHEALTHY
weight = 1
}
if weight > 128 {
weight = 128
}
es = append(es, envoyendpoint.LbEndpoint{
HostIdentifier: &envoyendpoint.LbEndpoint_Endpoint{
Endpoint: &envoyendpoint.Endpoint{
Address: makeAddressPtr(addr, port),
},
},
HealthStatus: healthStatus,
LoadBalancingWeight: makeUint32Value(weight),
})
}
cla.Endpoints = append(cla.Endpoints, envoyendpoint.LocalityLbEndpoints{
Priority: uint32(priority),
LbEndpoints: es,
})
}
return cla
}