open-consul/agent/consul/session_endpoint_test.go

897 lines
22 KiB
Go
Raw Normal View History

package consul
import (
"os"
"testing"
"time"
2014-12-12 23:43:34 +00:00
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/testrpc"
"github.com/hashicorp/net-rpc-msgpackrpc"
)
func TestSession_Apply(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Just add a node
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
Name: "my-session",
},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
id := out
// Verify
state := s1.fsm.State()
_, s, err := state.SessionGet(nil, out)
if err != nil {
t.Fatalf("err: %v", err)
}
if s == nil {
t.Fatalf("should not be nil")
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
if s.Name != "my-session" {
t.Fatalf("bad: %v", s)
}
// Do a delete
arg.Op = structs.SessionDestroy
arg.Session.ID = out
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Verify
_, s, err = state.SessionGet(nil, id)
if err != nil {
t.Fatalf("err: %v", err)
}
if s != nil {
t.Fatalf("bad: %v", s)
}
}
func TestSession_DeleteApply(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Just add a node
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
Name: "my-session",
Behavior: structs.SessionKeysDelete,
},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
id := out
// Verify
state := s1.fsm.State()
_, s, err := state.SessionGet(nil, out)
if err != nil {
t.Fatalf("err: %v", err)
}
if s == nil {
t.Fatalf("should not be nil")
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
if s.Name != "my-session" {
t.Fatalf("bad: %v", s)
}
if s.Behavior != structs.SessionKeysDelete {
t.Fatalf("bad: %v", s)
}
// Do a delete
arg.Op = structs.SessionDestroy
arg.Session.ID = out
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Verify
_, s, err = state.SessionGet(nil, id)
if err != nil {
t.Fatalf("err: %v", err)
}
if s != nil {
t.Fatalf("bad: %v", s)
}
}
func TestSession_Apply_ACLDeny(t *testing.T) {
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.ACLDatacenter = "dc1"
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
c.ACLsEnabled = true
c.ACLMasterToken = "root"
c.ACLDefaultPolicy = "deny"
c.ACLEnforceVersion8 = false
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Create the ACL.
req := structs.ACLRequest{
Datacenter: "dc1",
Op: structs.ACLSet,
ACL: structs.ACL{
Name: "User token",
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
Type: structs.ACLTokenTypeClient,
Rules: `
session "foo" {
policy = "write"
}
`,
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
var token string
if err := msgpackrpc.CallWithCodec(codec, "ACL.Apply", &req, &token); err != nil {
t.Fatalf("err: %v", err)
}
// Just add a node.
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
// Try to create without a token, which will go through since version 8
// enforcement isn't enabled.
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
Name: "my-session",
},
}
var id1 string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &id1); err != nil {
t.Fatalf("err: %v", err)
}
// Now turn on version 8 enforcement and try again, it should be denied.
var id2 string
s1.config.ACLEnforceVersion8 = true
err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &id2)
if !acl.IsErrPermissionDenied(err) {
t.Fatalf("err: %v", err)
}
// Now set a token and try again. This should go through.
arg.Token = token
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &id2); err != nil {
t.Fatalf("err: %v", err)
}
// Do a delete on the first session with version 8 enforcement off and
// no token. This should go through.
var out string
s1.config.ACLEnforceVersion8 = false
arg.Op = structs.SessionDestroy
arg.Token = ""
arg.Session.ID = id1
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Turn on version 8 enforcement and make sure the delete of the second
// session fails.
s1.config.ACLEnforceVersion8 = true
arg.Session.ID = id2
err = msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out)
if !acl.IsErrPermissionDenied(err) {
t.Fatalf("err: %v", err)
}
// Now set a token and try again. This should go through.
arg.Token = token
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
}
func TestSession_Get(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
2014-05-16 22:49:17 +00:00
getR := structs.SessionSpecificRequest{
Datacenter: "dc1",
Session: out,
}
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Get", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if sessions.Index == 0 {
t.Fatalf("Bad: %v", sessions)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("Bad: %v", sessions)
}
s := sessions.Sessions[0]
if s.ID != out {
t.Fatalf("bad: %v", s)
}
}
func TestSession_List(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
ids := []string{}
for i := 0; i < 5; i++ {
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
ids = append(ids, out)
}
getR := structs.DCSpecificRequest{
Datacenter: "dc1",
}
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if sessions.Index == 0 {
t.Fatalf("Bad: %v", sessions)
}
if len(sessions.Sessions) != 5 {
t.Fatalf("Bad: %v", sessions.Sessions)
}
for i := 0; i < len(sessions.Sessions); i++ {
s := sessions.Sessions[i]
if !lib.StrContains(ids, s.ID) {
t.Fatalf("bad: %v", s)
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
}
}
func TestSession_Get_List_NodeSessions_ACLFilter(t *testing.T) {
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.ACLDatacenter = "dc1"
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
c.ACLsEnabled = true
c.ACLMasterToken = "root"
c.ACLDefaultPolicy = "deny"
c.ACLEnforceVersion8 = false
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
// Create the ACL.
req := structs.ACLRequest{
Datacenter: "dc1",
Op: structs.ACLSet,
ACL: structs.ACL{
Name: "User token",
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
Type: structs.ACLTokenTypeClient,
Rules: `
session "foo" {
policy = "read"
}
`,
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
var token string
if err := msgpackrpc.CallWithCodec(codec, "ACL.Apply", &req, &token); err != nil {
t.Fatalf("err: %v", err)
}
// Create a node and a session.
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Perform all the read operations, which should go through since version
// 8 ACL enforcement isn't enabled.
getR := structs.SessionSpecificRequest{
Datacenter: "dc1",
Session: out,
}
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Get", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
listR := structs.DCSpecificRequest{
Datacenter: "dc1",
}
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &listR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
nodeR := structs.NodeSpecificRequest{
Datacenter: "dc1",
Node: "foo",
}
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.NodeSessions", &nodeR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
// Now turn on version 8 enforcement and make sure everything is empty.
s1.config.ACLEnforceVersion8 = true
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Get", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 0 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &listR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 0 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.NodeSessions", &nodeR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 0 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
// Finally, supply the token and make sure the reads are allowed.
getR.Token = token
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Get", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
listR.Token = token
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &listR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
nodeR.Token = token
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.NodeSessions", &nodeR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 1 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
// Try to get a session that doesn't exist to make sure that's handled
// correctly by the filter (it will get passed a nil slice).
getR.Session = "adf4238a-882b-9ddc-4a9d-5b6758e4159e"
{
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Get", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if len(sessions.Sessions) != 0 {
t.Fatalf("bad: %v", sessions.Sessions)
}
}
}
func TestSession_ApplyTimers(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
TTL: "10s",
},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Check the session map
if s1.sessionTimers.Get(out) == nil {
t.Fatalf("missing session timer")
}
// Destroy the session
arg.Op = structs.SessionDestroy
arg.Session.ID = out
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
// Check the session map
if s1.sessionTimers.Get(out) != nil {
t.Fatalf("session timer exists")
}
}
func TestSession_Renew(t *testing.T) {
// This method is timing sensitive, disable Parallel
//t.Parallel()
ttl := 1 * time.Second
2017-04-27 09:46:38 +00:00
TTL := ttl.String()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.SessionTTLMin = ttl
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
ids := []string{}
for i := 0; i < 5; i++ {
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
2014-12-10 21:43:15 +00:00
TTL: TTL,
},
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
ids = append(ids, out)
}
// Verify the timer map is setup
if s1.sessionTimers.Len() != 5 {
t.Fatalf("missing session timers")
}
getR := structs.DCSpecificRequest{
Datacenter: "dc1",
}
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if sessions.Index == 0 {
t.Fatalf("Bad: %v", sessions)
}
if len(sessions.Sessions) != 5 {
t.Fatalf("Bad: %v", sessions.Sessions)
}
for i := 0; i < len(sessions.Sessions); i++ {
s := sessions.Sessions[i]
if !lib.StrContains(ids, s.ID) {
t.Fatalf("bad: %v", s)
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
2014-12-10 21:43:15 +00:00
if s.TTL != TTL {
t.Fatalf("bad session TTL: %s %v", s.TTL, s)
}
2014-12-10 21:43:15 +00:00
t.Logf("Created session '%s'", s.ID)
}
// Sleep for time shorter than internal destroy ttl
time.Sleep(ttl * structs.SessionTTLMultiplier / 2)
// renew 3 out of 5 sessions
for i := 0; i < 3; i++ {
renewR := structs.SessionSpecificRequest{
Datacenter: "dc1",
Session: ids[i],
}
var session structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Renew", &renewR, &session); err != nil {
t.Fatalf("err: %v", err)
}
if session.Index == 0 {
t.Fatalf("Bad: %v", session)
}
if len(session.Sessions) != 1 {
t.Fatalf("Bad: %v", session.Sessions)
}
s := session.Sessions[0]
if !lib.StrContains(ids, s.ID) {
t.Fatalf("bad: %v", s)
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
2014-12-10 21:43:15 +00:00
t.Logf("Renewed session '%s'", s.ID)
}
// now sleep for 2/3 the internal destroy TTL time for renewed sessions
// which is more than the internal destroy TTL time for the non-renewed sessions
time.Sleep((ttl * structs.SessionTTLMultiplier) * 2.0 / 3.0)
var sessionsL1 structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &getR, &sessionsL1); err != nil {
t.Fatalf("err: %v", err)
}
if sessionsL1.Index == 0 {
t.Fatalf("Bad: %v", sessionsL1)
}
2014-12-10 21:43:15 +00:00
t.Logf("Expect 2 sessions to be destroyed")
for i := 0; i < len(sessionsL1.Sessions); i++ {
s := sessionsL1.Sessions[i]
if !lib.StrContains(ids, s.ID) {
t.Fatalf("bad: %v", s)
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
2014-12-10 21:43:15 +00:00
if s.TTL != TTL {
t.Fatalf("bad: %v", s)
}
2014-12-10 21:43:15 +00:00
if i > 2 {
t.Errorf("session '%s' should be destroyed", s.ID)
}
}
2014-12-12 23:43:34 +00:00
if len(sessionsL1.Sessions) != 3 {
t.Fatalf("Bad: %v", sessionsL1.Sessions)
}
// now sleep again for ttl*2 - no sessions should still be alive
time.Sleep(ttl * structs.SessionTTLMultiplier)
var sessionsL2 structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.List", &getR, &sessionsL2); err != nil {
t.Fatalf("err: %v", err)
}
if sessionsL2.Index == 0 {
t.Fatalf("Bad: %v", sessionsL2)
}
if len(sessionsL2.Sessions) != 0 {
for i := 0; i < len(sessionsL2.Sessions); i++ {
s := sessionsL2.Sessions[i]
if !lib.StrContains(ids, s.ID) {
2014-12-10 21:43:15 +00:00
t.Fatalf("bad: %v", s)
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
if s.TTL != TTL {
t.Fatalf("bad: %v", s)
}
t.Errorf("session '%s' should be destroyed", s.ID)
}
t.Fatalf("Bad: %v", sessionsL2.Sessions)
}
}
func TestSession_Renew_ACLDeny(t *testing.T) {
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.ACLDatacenter = "dc1"
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
c.ACLsEnabled = true
c.ACLMasterToken = "root"
c.ACLDefaultPolicy = "deny"
c.ACLEnforceVersion8 = false
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
// Create the ACL.
req := structs.ACLRequest{
Datacenter: "dc1",
Op: structs.ACLSet,
ACL: structs.ACL{
Name: "User token",
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 16:04:07 +00:00
Type: structs.ACLTokenTypeClient,
Rules: `
session "foo" {
policy = "write"
}
`,
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
var token string
if err := msgpackrpc.CallWithCodec(codec, "ACL.Apply", &req, &token); err != nil {
t.Fatalf("err: %v", err)
}
// Just add a node.
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
// Create a session. The token won't matter here since we don't have
// version 8 ACL enforcement on yet.
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
Name: "my-session",
},
}
var id string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &id); err != nil {
t.Fatalf("err: %v", err)
}
// Renew without a token should go through without version 8 ACL
// enforcement.
renewR := structs.SessionSpecificRequest{
Datacenter: "dc1",
Session: id,
}
var session structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.Renew", &renewR, &session); err != nil {
t.Fatalf("err: %v", err)
}
// Now turn on version 8 enforcement and the renew should be rejected.
s1.config.ACLEnforceVersion8 = true
err := msgpackrpc.CallWithCodec(codec, "Session.Renew", &renewR, &session)
if !acl.IsErrPermissionDenied(err) {
t.Fatalf("err: %v", err)
}
// Set the token and it should go through.
renewR.Token = token
if err := msgpackrpc.CallWithCodec(codec, "Session.Renew", &renewR, &session); err != nil {
t.Fatalf("err: %v", err)
}
}
func TestSession_NodeSessions(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "foo", Address: "127.0.0.1"})
s1.fsm.State().EnsureNode(1, &structs.Node{Node: "bar", Address: "127.0.0.1"})
ids := []string{}
for i := 0; i < 10; i++ {
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "bar",
},
}
if i < 5 {
arg.Session.Node = "foo"
}
var out string
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out); err != nil {
t.Fatalf("err: %v", err)
}
if i < 5 {
ids = append(ids, out)
}
}
getR := structs.NodeSpecificRequest{
Datacenter: "dc1",
Node: "foo",
}
var sessions structs.IndexedSessions
if err := msgpackrpc.CallWithCodec(codec, "Session.NodeSessions", &getR, &sessions); err != nil {
t.Fatalf("err: %v", err)
}
if sessions.Index == 0 {
t.Fatalf("Bad: %v", sessions)
}
if len(sessions.Sessions) != 5 {
t.Fatalf("Bad: %v", sessions.Sessions)
}
for i := 0; i < len(sessions.Sessions); i++ {
s := sessions.Sessions[i]
if !lib.StrContains(ids, s.ID) {
t.Fatalf("bad: %v", s)
}
if s.Node != "foo" {
t.Fatalf("bad: %v", s)
}
}
}
func TestSession_Apply_BadTTL(t *testing.T) {
t.Parallel()
dir1, s1 := testServer(t)
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
arg := structs.SessionRequest{
Datacenter: "dc1",
Op: structs.SessionCreate,
Session: structs.Session{
Node: "foo",
Name: "my-session",
},
}
// Session with illegal TTL
arg.Session.TTL = "10z"
var out string
err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out)
if err == nil {
t.Fatal("expected error")
}
2015-10-15 19:31:48 +00:00
if err.Error() != "Session TTL '10z' invalid: time: unknown unit z in duration 10z" {
t.Fatalf("incorrect error message: %s", err.Error())
}
// less than SessionTTLMin
arg.Session.TTL = "5s"
err = msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out)
if err == nil {
t.Fatal("expected error")
}
if err.Error() != "Invalid Session TTL '5000000000', must be between [10s=24h0m0s]" {
t.Fatalf("incorrect error message: %s", err.Error())
}
// more than SessionTTLMax
arg.Session.TTL = "100000s"
err = msgpackrpc.CallWithCodec(codec, "Session.Apply", &arg, &out)
if err == nil {
t.Fatal("expected error")
}
if err.Error() != "Invalid Session TTL '100000000000000', must be between [10s=24h0m0s]" {
t.Fatalf("incorrect error message: %s", err.Error())
}
}