snappy/snappy-test.cc
snappy.mirrorbot@gmail.com d9068ee301 Fix public issue r57: Fix most warnings with -Wall, mostly signed/unsigned
warnings. There are still some in the unit test, but the main .cc file should
be clean. We haven't enabled -Wall for the default build, since the unit test
is still not clean.

This also fixes a real bug in the open-source implementation of
ReadFileToStringOrDie(); it would not detect errors correctly.

I had to go through some pains to avoid performance loss as the types
were changed; I think there might still be some with 32-bit if and only if LFS
is enabled (ie., size_t is 64-bit), but for regular 32-bit and 64-bit I can't
see any losses, and I've diffed the generated GCC assembler between the old and
new code without seeing any significant choices. If anything, it's ever so
slightly faster.

This may or may not enable compression of very large blocks (>2^32 bytes)
when size_t is 64-bit, but I haven't checked, and it is still not a supported
case.


git-svn-id: https://snappy.googlecode.com/svn/trunk@56 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-01-04 13:10:46 +00:00

595 lines
19 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Various stubs for the unit tests for the open-source version of Snappy.
#include "snappy-test.h"
#ifdef HAVE_WINDOWS_H
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <algorithm>
DEFINE_bool(run_microbenchmarks, true,
"Run microbenchmarks before doing anything else.");
namespace snappy {
string ReadTestDataFile(const string& base) {
string contents;
const char* srcdir = getenv("srcdir"); // This is set by Automake.
if (srcdir) {
File::ReadFileToStringOrDie(
string(srcdir) + "/testdata/" + base, &contents);
} else {
File::ReadFileToStringOrDie("testdata/" + base, &contents);
}
return contents;
}
string StringPrintf(const char* format, ...) {
char buf[4096];
va_list ap;
va_start(ap, format);
vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
return buf;
}
bool benchmark_running = false;
int64 benchmark_real_time_us = 0;
int64 benchmark_cpu_time_us = 0;
string *benchmark_label = NULL;
int64 benchmark_bytes_processed = 0;
void ResetBenchmarkTiming() {
benchmark_real_time_us = 0;
benchmark_cpu_time_us = 0;
}
#ifdef WIN32
LARGE_INTEGER benchmark_start_real;
FILETIME benchmark_start_cpu;
#else // WIN32
struct timeval benchmark_start_real;
struct rusage benchmark_start_cpu;
#endif // WIN32
void StartBenchmarkTiming() {
#ifdef WIN32
QueryPerformanceCounter(&benchmark_start_real);
FILETIME dummy;
CHECK(GetProcessTimes(
GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_start_cpu));
#else
gettimeofday(&benchmark_start_real, NULL);
if (getrusage(RUSAGE_SELF, &benchmark_start_cpu) == -1) {
perror("getrusage(RUSAGE_SELF)");
exit(1);
}
#endif
benchmark_running = true;
}
void StopBenchmarkTiming() {
if (!benchmark_running) {
return;
}
#ifdef WIN32
LARGE_INTEGER benchmark_stop_real;
LARGE_INTEGER benchmark_frequency;
QueryPerformanceCounter(&benchmark_stop_real);
QueryPerformanceFrequency(&benchmark_frequency);
double elapsed_real = static_cast<double>(
benchmark_stop_real.QuadPart - benchmark_start_real.QuadPart) /
benchmark_frequency.QuadPart;
benchmark_real_time_us += elapsed_real * 1e6 + 0.5;
FILETIME benchmark_stop_cpu, dummy;
CHECK(GetProcessTimes(
GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_stop_cpu));
ULARGE_INTEGER start_ulargeint;
start_ulargeint.LowPart = benchmark_start_cpu.dwLowDateTime;
start_ulargeint.HighPart = benchmark_start_cpu.dwHighDateTime;
ULARGE_INTEGER stop_ulargeint;
stop_ulargeint.LowPart = benchmark_stop_cpu.dwLowDateTime;
stop_ulargeint.HighPart = benchmark_stop_cpu.dwHighDateTime;
benchmark_cpu_time_us +=
(stop_ulargeint.QuadPart - start_ulargeint.QuadPart + 5) / 10;
#else // WIN32
struct timeval benchmark_stop_real;
gettimeofday(&benchmark_stop_real, NULL);
benchmark_real_time_us +=
1000000 * (benchmark_stop_real.tv_sec - benchmark_start_real.tv_sec);
benchmark_real_time_us +=
(benchmark_stop_real.tv_usec - benchmark_start_real.tv_usec);
struct rusage benchmark_stop_cpu;
if (getrusage(RUSAGE_SELF, &benchmark_stop_cpu) == -1) {
perror("getrusage(RUSAGE_SELF)");
exit(1);
}
benchmark_cpu_time_us += 1000000 * (benchmark_stop_cpu.ru_utime.tv_sec -
benchmark_start_cpu.ru_utime.tv_sec);
benchmark_cpu_time_us += (benchmark_stop_cpu.ru_utime.tv_usec -
benchmark_start_cpu.ru_utime.tv_usec);
#endif // WIN32
benchmark_running = false;
}
void SetBenchmarkLabel(const string& str) {
if (benchmark_label) {
delete benchmark_label;
}
benchmark_label = new string(str);
}
void SetBenchmarkBytesProcessed(int64 bytes) {
benchmark_bytes_processed = bytes;
}
struct BenchmarkRun {
int64 real_time_us;
int64 cpu_time_us;
};
struct BenchmarkCompareCPUTime {
bool operator() (const BenchmarkRun& a, const BenchmarkRun& b) const {
return a.cpu_time_us < b.cpu_time_us;
}
};
void Benchmark::Run() {
for (int test_case_num = start_; test_case_num <= stop_; ++test_case_num) {
// Run a few iterations first to find out approximately how fast
// the benchmark is.
const int kCalibrateIterations = 100;
ResetBenchmarkTiming();
StartBenchmarkTiming();
(*function_)(kCalibrateIterations, test_case_num);
StopBenchmarkTiming();
// Let each test case run for about 200ms, but at least as many
// as we used to calibrate.
// Run five times and pick the median.
const int kNumRuns = 5;
const int kMedianPos = kNumRuns / 2;
int num_iterations = 0;
if (benchmark_real_time_us > 0) {
num_iterations = 200000 * kCalibrateIterations / benchmark_real_time_us;
}
num_iterations = max(num_iterations, kCalibrateIterations);
BenchmarkRun benchmark_runs[kNumRuns];
for (int run = 0; run < kNumRuns; ++run) {
ResetBenchmarkTiming();
StartBenchmarkTiming();
(*function_)(num_iterations, test_case_num);
StopBenchmarkTiming();
benchmark_runs[run].real_time_us = benchmark_real_time_us;
benchmark_runs[run].cpu_time_us = benchmark_cpu_time_us;
}
nth_element(benchmark_runs,
benchmark_runs + kMedianPos,
benchmark_runs + kNumRuns,
BenchmarkCompareCPUTime());
int64 real_time_us = benchmark_runs[kMedianPos].real_time_us;
int64 cpu_time_us = benchmark_runs[kMedianPos].cpu_time_us;
int64 bytes_per_second = benchmark_bytes_processed * 1000000 / cpu_time_us;
string heading = StringPrintf("%s/%d", name_.c_str(), test_case_num);
string human_readable_speed;
if (bytes_per_second < 1024) {
human_readable_speed = StringPrintf("%dB/s", bytes_per_second);
} else if (bytes_per_second < 1024 * 1024) {
human_readable_speed = StringPrintf(
"%.1fkB/s", bytes_per_second / 1024.0f);
} else if (bytes_per_second < 1024 * 1024 * 1024) {
human_readable_speed = StringPrintf(
"%.1fMB/s", bytes_per_second / (1024.0f * 1024.0f));
} else {
human_readable_speed = StringPrintf(
"%.1fGB/s", bytes_per_second / (1024.0f * 1024.0f * 1024.0f));
}
fprintf(stderr,
#ifdef WIN32
"%-18s %10I64d %10I64d %10d %s %s\n",
#else
"%-18s %10lld %10lld %10d %s %s\n",
#endif
heading.c_str(),
static_cast<long long>(real_time_us * 1000 / num_iterations),
static_cast<long long>(cpu_time_us * 1000 / num_iterations),
num_iterations,
human_readable_speed.c_str(),
benchmark_label->c_str());
}
}
#ifdef HAVE_LIBZ
ZLib::ZLib()
: comp_init_(false),
uncomp_init_(false) {
Reinit();
}
ZLib::~ZLib() {
if (comp_init_) { deflateEnd(&comp_stream_); }
if (uncomp_init_) { inflateEnd(&uncomp_stream_); }
}
void ZLib::Reinit() {
compression_level_ = Z_DEFAULT_COMPRESSION;
window_bits_ = MAX_WBITS;
mem_level_ = 8; // DEF_MEM_LEVEL
if (comp_init_) {
deflateEnd(&comp_stream_);
comp_init_ = false;
}
if (uncomp_init_) {
inflateEnd(&uncomp_stream_);
uncomp_init_ = false;
}
first_chunk_ = true;
}
void ZLib::Reset() {
first_chunk_ = true;
}
// --------- COMPRESS MODE
// Initialization method to be called if we hit an error while
// compressing. On hitting an error, call this method before returning
// the error.
void ZLib::CompressErrorInit() {
deflateEnd(&comp_stream_);
comp_init_ = false;
Reset();
}
int ZLib::DeflateInit() {
return deflateInit2(&comp_stream_,
compression_level_,
Z_DEFLATED,
window_bits_,
mem_level_,
Z_DEFAULT_STRATEGY);
}
int ZLib::CompressInit(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen) {
int err;
comp_stream_.next_in = (Bytef*)source;
comp_stream_.avail_in = (uInt)*sourceLen;
if ((uLong)comp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
comp_stream_.next_out = dest;
comp_stream_.avail_out = (uInt)*destLen;
if ((uLong)comp_stream_.avail_out != *destLen) return Z_BUF_ERROR;
if ( !first_chunk_ ) // only need to set up stream the first time through
return Z_OK;
if (comp_init_) { // we've already initted it
err = deflateReset(&comp_stream_);
if (err != Z_OK) {
LOG(WARNING) << "ERROR: Can't reset compress object; creating a new one";
deflateEnd(&comp_stream_);
comp_init_ = false;
}
}
if (!comp_init_) { // first use
comp_stream_.zalloc = (alloc_func)0;
comp_stream_.zfree = (free_func)0;
comp_stream_.opaque = (voidpf)0;
err = DeflateInit();
if (err != Z_OK) return err;
comp_init_ = true;
}
return Z_OK;
}
// In a perfect world we'd always have the full buffer to compress
// when the time came, and we could just call Compress(). Alas, we
// want to do chunked compression on our webserver. In this
// application, we compress the header, send it off, then compress the
// results, send them off, then compress the footer. Thus we need to
// use the chunked compression features of zlib.
int ZLib::CompressAtMostOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen,
int flush_mode) { // Z_FULL_FLUSH or Z_FINISH
int err;
if ( (err=CompressInit(dest, destLen, source, sourceLen)) != Z_OK )
return err;
// This is used to figure out how many bytes we wrote *this chunk*
int compressed_size = comp_stream_.total_out;
// Some setup happens only for the first chunk we compress in a run
if ( first_chunk_ ) {
first_chunk_ = false;
}
// flush_mode is Z_FINISH for all mode, Z_SYNC_FLUSH for incremental
// compression.
err = deflate(&comp_stream_, flush_mode);
*sourceLen = comp_stream_.avail_in;
if ((err == Z_STREAM_END || err == Z_OK)
&& comp_stream_.avail_in == 0
&& comp_stream_.avail_out != 0 ) {
// we processed everything ok and the output buffer was large enough.
;
} else if (err == Z_STREAM_END && comp_stream_.avail_in > 0) {
return Z_BUF_ERROR; // should never happen
} else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
// an error happened
CompressErrorInit();
return err;
} else if (comp_stream_.avail_out == 0) { // not enough space
err = Z_BUF_ERROR;
}
assert(err == Z_OK || err == Z_STREAM_END || err == Z_BUF_ERROR);
if (err == Z_STREAM_END)
err = Z_OK;
// update the crc and other metadata
compressed_size = comp_stream_.total_out - compressed_size; // delta
*destLen = compressed_size;
return err;
}
int ZLib::CompressChunkOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int flush_mode) { // Z_FULL_FLUSH or Z_FINISH
const int ret =
CompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
if (ret == Z_BUF_ERROR)
CompressErrorInit();
return ret;
}
// This routine only initializes the compression stream once. Thereafter, it
// just does a deflateReset on the stream, which should be faster.
int ZLib::Compress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen) {
int err;
if ( (err=CompressChunkOrAll(dest, destLen, source, sourceLen,
Z_FINISH)) != Z_OK )
return err;
Reset(); // reset for next call to Compress
return Z_OK;
}
// --------- UNCOMPRESS MODE
int ZLib::InflateInit() {
return inflateInit2(&uncomp_stream_, MAX_WBITS);
}
// Initialization method to be called if we hit an error while
// uncompressing. On hitting an error, call this method before
// returning the error.
void ZLib::UncompressErrorInit() {
inflateEnd(&uncomp_stream_);
uncomp_init_ = false;
Reset();
}
int ZLib::UncompressInit(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen) {
int err;
uncomp_stream_.next_in = (Bytef*)source;
uncomp_stream_.avail_in = (uInt)*sourceLen;
// Check for source > 64K on 16-bit machine:
if ((uLong)uncomp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
uncomp_stream_.next_out = dest;
uncomp_stream_.avail_out = (uInt)*destLen;
if ((uLong)uncomp_stream_.avail_out != *destLen) return Z_BUF_ERROR;
if ( !first_chunk_ ) // only need to set up stream the first time through
return Z_OK;
if (uncomp_init_) { // we've already initted it
err = inflateReset(&uncomp_stream_);
if (err != Z_OK) {
LOG(WARNING)
<< "ERROR: Can't reset uncompress object; creating a new one";
UncompressErrorInit();
}
}
if (!uncomp_init_) {
uncomp_stream_.zalloc = (alloc_func)0;
uncomp_stream_.zfree = (free_func)0;
uncomp_stream_.opaque = (voidpf)0;
err = InflateInit();
if (err != Z_OK) return err;
uncomp_init_ = true;
}
return Z_OK;
}
// If you compressed your data a chunk at a time, with CompressChunk,
// you can uncompress it a chunk at a time with UncompressChunk.
// Only difference bewteen chunked and unchunked uncompression
// is the flush mode we use: Z_SYNC_FLUSH (chunked) or Z_FINISH (unchunked).
int ZLib::UncompressAtMostOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen,
int flush_mode) { // Z_SYNC_FLUSH or Z_FINISH
int err = Z_OK;
if ( (err=UncompressInit(dest, destLen, source, sourceLen)) != Z_OK ) {
LOG(WARNING) << "UncompressInit: Error: " << err << " SourceLen: "
<< *sourceLen;
return err;
}
// This is used to figure out how many output bytes we wrote *this chunk*:
const uLong old_total_out = uncomp_stream_.total_out;
// This is used to figure out how many input bytes we read *this chunk*:
const uLong old_total_in = uncomp_stream_.total_in;
// Some setup happens only for the first chunk we compress in a run
if ( first_chunk_ ) {
first_chunk_ = false; // so we don't do this again
// For the first chunk *only* (to avoid infinite troubles), we let
// there be no actual data to uncompress. This sometimes triggers
// when the input is only the gzip header, say.
if ( *sourceLen == 0 ) {
*destLen = 0;
return Z_OK;
}
}
// We'll uncompress as much as we can. If we end OK great, otherwise
// if we get an error that seems to be the gzip footer, we store the
// gzip footer and return OK, otherwise we return the error.
// flush_mode is Z_SYNC_FLUSH for chunked mode, Z_FINISH for all mode.
err = inflate(&uncomp_stream_, flush_mode);
// Figure out how many bytes of the input zlib slurped up:
const uLong bytes_read = uncomp_stream_.total_in - old_total_in;
CHECK_LE(source + bytes_read, source + *sourceLen);
*sourceLen = uncomp_stream_.avail_in;
if ((err == Z_STREAM_END || err == Z_OK) // everything went ok
&& uncomp_stream_.avail_in == 0) { // and we read it all
;
} else if (err == Z_STREAM_END && uncomp_stream_.avail_in > 0) {
LOG(WARNING)
<< "UncompressChunkOrAll: Received some extra data, bytes total: "
<< uncomp_stream_.avail_in << " bytes: "
<< string(reinterpret_cast<const char *>(uncomp_stream_.next_in),
min(int(uncomp_stream_.avail_in), 20));
UncompressErrorInit();
return Z_DATA_ERROR; // what's the extra data for?
} else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
// an error happened
LOG(WARNING) << "UncompressChunkOrAll: Error: " << err
<< " avail_out: " << uncomp_stream_.avail_out;
UncompressErrorInit();
return err;
} else if (uncomp_stream_.avail_out == 0) {
err = Z_BUF_ERROR;
}
assert(err == Z_OK || err == Z_BUF_ERROR || err == Z_STREAM_END);
if (err == Z_STREAM_END)
err = Z_OK;
*destLen = uncomp_stream_.total_out - old_total_out; // size for this call
return err;
}
int ZLib::UncompressChunkOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int flush_mode) { // Z_SYNC_FLUSH or Z_FINISH
const int ret =
UncompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
if (ret == Z_BUF_ERROR)
UncompressErrorInit();
return ret;
}
int ZLib::UncompressAtMost(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen) {
return UncompressAtMostOrAll(dest, destLen, source, sourceLen, Z_SYNC_FLUSH);
}
// We make sure we've uncompressed everything, that is, the current
// uncompress stream is at a compressed-buffer-EOF boundary. In gzip
// mode, we also check the gzip footer to make sure we pass the gzip
// consistency checks. We RETURN true iff both types of checks pass.
bool ZLib::UncompressChunkDone() {
assert(!first_chunk_ && uncomp_init_);
// Make sure we're at the end-of-compressed-data point. This means
// if we call inflate with Z_FINISH we won't consume any input or
// write any output
Bytef dummyin, dummyout;
uLongf dummylen = 0;
if ( UncompressChunkOrAll(&dummyout, &dummylen, &dummyin, 0, Z_FINISH)
!= Z_OK ) {
return false;
}
// Make sure that when we exit, we can start a new round of chunks later
Reset();
return true;
}
// Uncompresses the source buffer into the destination buffer.
// The destination buffer must be long enough to hold the entire
// decompressed contents.
//
// We only initialize the uncomp_stream once. Thereafter, we use
// inflateReset, which should be faster.
//
// Returns Z_OK on success, otherwise, it returns a zlib error code.
int ZLib::Uncompress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen) {
int err;
if ( (err=UncompressChunkOrAll(dest, destLen, source, sourceLen,
Z_FINISH)) != Z_OK ) {
Reset(); // let us try to compress again
return err;
}
if ( !UncompressChunkDone() ) // calls Reset()
return Z_DATA_ERROR;
return Z_OK; // stream_end is ok
}
#endif // HAVE_LIBZ
} // namespace snappy