mirror of https://github.com/google/snappy.git
1631 lines
56 KiB
C++
1631 lines
56 KiB
C++
// Copyright 2005 Google Inc. All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "snappy.h"
|
|
#include "snappy-internal.h"
|
|
#include "snappy-sinksource.h"
|
|
|
|
#if !defined(SNAPPY_HAVE_SSSE3)
|
|
// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD
|
|
// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and
|
|
// defines __AVX__ when AVX support is available.
|
|
#if defined(__SSSE3__) || defined(__AVX__)
|
|
#define SNAPPY_HAVE_SSSE3 1
|
|
#else
|
|
#define SNAPPY_HAVE_SSSE3 0
|
|
#endif
|
|
#endif // !defined(SNAPPY_HAVE_SSSE3)
|
|
|
|
#if SNAPPY_HAVE_SSSE3
|
|
// Please do not replace with <x86intrin.h>. or with headers that assume more
|
|
// advanced SSE versions without checking with all the OWNERS.
|
|
#include <tmmintrin.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
|
|
namespace snappy {
|
|
|
|
using internal::COPY_1_BYTE_OFFSET;
|
|
using internal::COPY_2_BYTE_OFFSET;
|
|
using internal::LITERAL;
|
|
using internal::char_table;
|
|
using internal::kMaximumTagLength;
|
|
|
|
// Any hash function will produce a valid compressed bitstream, but a good
|
|
// hash function reduces the number of collisions and thus yields better
|
|
// compression for compressible input, and more speed for incompressible
|
|
// input. Of course, it doesn't hurt if the hash function is reasonably fast
|
|
// either, as it gets called a lot.
|
|
static inline uint32 HashBytes(uint32 bytes, int shift) {
|
|
uint32 kMul = 0x1e35a7bd;
|
|
return (bytes * kMul) >> shift;
|
|
}
|
|
static inline uint32 Hash(const char* p, int shift) {
|
|
return HashBytes(UNALIGNED_LOAD32(p), shift);
|
|
}
|
|
|
|
size_t MaxCompressedLength(size_t source_len) {
|
|
// Compressed data can be defined as:
|
|
// compressed := item* literal*
|
|
// item := literal* copy
|
|
//
|
|
// The trailing literal sequence has a space blowup of at most 62/60
|
|
// since a literal of length 60 needs one tag byte + one extra byte
|
|
// for length information.
|
|
//
|
|
// Item blowup is trickier to measure. Suppose the "copy" op copies
|
|
// 4 bytes of data. Because of a special check in the encoding code,
|
|
// we produce a 4-byte copy only if the offset is < 65536. Therefore
|
|
// the copy op takes 3 bytes to encode, and this type of item leads
|
|
// to at most the 62/60 blowup for representing literals.
|
|
//
|
|
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
|
|
// enough, it will take 5 bytes to encode the copy op. Therefore the
|
|
// worst case here is a one-byte literal followed by a five-byte copy.
|
|
// I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
|
|
//
|
|
// This last factor dominates the blowup, so the final estimate is:
|
|
return 32 + source_len + source_len/6;
|
|
}
|
|
|
|
namespace {
|
|
|
|
void UnalignedCopy64(const void* src, void* dst) {
|
|
char tmp[8];
|
|
memcpy(tmp, src, 8);
|
|
memcpy(dst, tmp, 8);
|
|
}
|
|
|
|
void UnalignedCopy128(const void* src, void* dst) {
|
|
// memcpy gets vectorized when the appropriate compiler options are used.
|
|
// For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load
|
|
// and store.
|
|
char tmp[16];
|
|
memcpy(tmp, src, 16);
|
|
memcpy(dst, tmp, 16);
|
|
}
|
|
|
|
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
|
|
// for handling COPY operations where the input and output regions may overlap.
|
|
// For example, suppose:
|
|
// src == "ab"
|
|
// op == src + 2
|
|
// op_limit == op + 20
|
|
// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
|
|
// copies of "ab"
|
|
// ababababababababababab
|
|
// Note that this does not match the semantics of either memcpy() or memmove().
|
|
inline char* IncrementalCopySlow(const char* src, char* op,
|
|
char* const op_limit) {
|
|
// TODO: Remove pragma when LLVM is aware this function is only called in
|
|
// cold regions and when cold regions don't get vectorized or unrolled.
|
|
#ifdef __clang__
|
|
#pragma clang loop unroll(disable)
|
|
#endif
|
|
while (op < op_limit) {
|
|
*op++ = *src++;
|
|
}
|
|
return op_limit;
|
|
}
|
|
|
|
#if SNAPPY_HAVE_SSSE3
|
|
|
|
// This is a table of shuffle control masks that can be used as the source
|
|
// operand for PSHUFB to permute the contents of the destination XMM register
|
|
// into a repeating byte pattern.
|
|
alignas(16) const char pshufb_fill_patterns[7][16] = {
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
|
|
{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
|
|
{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
|
|
{0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
|
|
{0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
|
|
{0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
|
|
};
|
|
|
|
#endif // SNAPPY_HAVE_SSSE3
|
|
|
|
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than
|
|
// IncrementalCopySlow. buf_limit is the address past the end of the writable
|
|
// region of the buffer.
|
|
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
|
|
char* const buf_limit) {
|
|
// Terminology:
|
|
//
|
|
// slop = buf_limit - op
|
|
// pat = op - src
|
|
// len = limit - op
|
|
assert(src < op);
|
|
assert(op <= op_limit);
|
|
assert(op_limit <= buf_limit);
|
|
// NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that
|
|
// to optimize this function but we have to also handle other cases in case
|
|
// the input does not satisfy these conditions.
|
|
|
|
size_t pattern_size = op - src;
|
|
// The cases are split into different branches to allow the branch predictor,
|
|
// FDO, and static prediction hints to work better. For each input we list the
|
|
// ratio of invocations that match each condition.
|
|
//
|
|
// input slop < 16 pat < 8 len > 16
|
|
// ------------------------------------------
|
|
// html|html4|cp 0% 1.01% 27.73%
|
|
// urls 0% 0.88% 14.79%
|
|
// jpg 0% 64.29% 7.14%
|
|
// pdf 0% 2.56% 58.06%
|
|
// txt[1-4] 0% 0.23% 0.97%
|
|
// pb 0% 0.96% 13.88%
|
|
// bin 0.01% 22.27% 41.17%
|
|
//
|
|
// It is very rare that we don't have enough slop for doing block copies. It
|
|
// is also rare that we need to expand a pattern. Small patterns are common
|
|
// for incompressible formats and for those we are plenty fast already.
|
|
// Lengths are normally not greater than 16 but they vary depending on the
|
|
// input. In general if we always predict len <= 16 it would be an ok
|
|
// prediction.
|
|
//
|
|
// In order to be fast we want a pattern >= 8 bytes and an unrolled loop
|
|
// copying 2x 8 bytes at a time.
|
|
|
|
// Handle the uncommon case where pattern is less than 8 bytes.
|
|
if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
|
|
#if SNAPPY_HAVE_SSSE3
|
|
// Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
|
|
// to permute the register's contents in-place into a repeating sequence of
|
|
// the first "pattern_size" bytes.
|
|
// For example, suppose:
|
|
// src == "abc"
|
|
// op == op + 3
|
|
// After _mm_shuffle_epi8(), "pattern" will have five copies of "abc"
|
|
// followed by one byte of slop: abcabcabcabcabca.
|
|
//
|
|
// The non-SSE fallback implementation suffers from store-forwarding stalls
|
|
// because its loads and stores partly overlap. By expanding the pattern
|
|
// in-place, we avoid the penalty.
|
|
if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
|
|
const __m128i shuffle_mask = _mm_load_si128(
|
|
reinterpret_cast<const __m128i*>(pshufb_fill_patterns)
|
|
+ pattern_size - 1);
|
|
const __m128i pattern = _mm_shuffle_epi8(
|
|
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
|
|
// Uninitialized bytes are masked out by the shuffle mask.
|
|
SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
|
|
pattern_size *= 16 / pattern_size;
|
|
char* op_end = std::min(op_limit, buf_limit - 15);
|
|
while (op < op_end) {
|
|
_mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
|
|
op += pattern_size;
|
|
}
|
|
if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
|
|
}
|
|
return IncrementalCopySlow(src, op, op_limit);
|
|
#else // !SNAPPY_HAVE_SSSE3
|
|
// If plenty of buffer space remains, expand the pattern to at least 8
|
|
// bytes. The way the following loop is written, we need 8 bytes of buffer
|
|
// space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
|
|
// bytes if pattern_size is 2. Precisely encoding that is probably not
|
|
// worthwhile; instead, invoke the slow path if we cannot write 11 bytes
|
|
// (because 11 are required in the worst case).
|
|
if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
|
|
while (pattern_size < 8) {
|
|
UnalignedCopy64(src, op);
|
|
op += pattern_size;
|
|
pattern_size *= 2;
|
|
}
|
|
if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
|
|
} else {
|
|
return IncrementalCopySlow(src, op, op_limit);
|
|
}
|
|
#endif // SNAPPY_HAVE_SSSE3
|
|
}
|
|
assert(pattern_size >= 8);
|
|
|
|
// Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
|
|
// UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
|
|
// because expanding the pattern to at least 8 bytes guarantees that
|
|
// op - src >= 8.
|
|
//
|
|
// Typically, the op_limit is the gating factor so try to simplify the loop
|
|
// based on that.
|
|
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
|
|
// Factor the displacement from op to the source into a variable. This helps
|
|
// simplify the loop below by only varying the op pointer which we need to
|
|
// test for the end. Note that this was done after carefully examining the
|
|
// generated code to allow the addressing modes in the loop below to
|
|
// maximize micro-op fusion where possible on modern Intel processors. The
|
|
// generated code should be checked carefully for new processors or with
|
|
// major changes to the compiler.
|
|
// TODO: Simplify this code when the compiler reliably produces the correct
|
|
// x86 instruction sequence.
|
|
ptrdiff_t op_to_src = src - op;
|
|
|
|
// The trip count of this loop is not large and so unrolling will only hurt
|
|
// code size without helping performance.
|
|
//
|
|
// TODO: Replace with loop trip count hint.
|
|
#ifdef __clang__
|
|
#pragma clang loop unroll(disable)
|
|
#endif
|
|
do {
|
|
UnalignedCopy64(op + op_to_src, op);
|
|
UnalignedCopy64(op + op_to_src + 8, op + 8);
|
|
op += 16;
|
|
} while (op < op_limit);
|
|
return op_limit;
|
|
}
|
|
|
|
// Fall back to doing as much as we can with the available slop in the
|
|
// buffer. This code path is relatively cold however so we save code size by
|
|
// avoiding unrolling and vectorizing.
|
|
//
|
|
// TODO: Remove pragma when when cold regions don't get vectorized or
|
|
// unrolled.
|
|
#ifdef __clang__
|
|
#pragma clang loop unroll(disable)
|
|
#endif
|
|
for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
|
|
UnalignedCopy64(src, op);
|
|
UnalignedCopy64(src + 8, op + 8);
|
|
}
|
|
if (op >= op_limit)
|
|
return op_limit;
|
|
|
|
// We only take this branch if we didn't have enough slop and we can do a
|
|
// single 8 byte copy.
|
|
if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
|
|
UnalignedCopy64(src, op);
|
|
src += 8;
|
|
op += 8;
|
|
}
|
|
return IncrementalCopySlow(src, op, op_limit);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
static inline char* EmitLiteral(char* op,
|
|
const char* literal,
|
|
int len,
|
|
bool allow_fast_path) {
|
|
// The vast majority of copies are below 16 bytes, for which a
|
|
// call to memcpy is overkill. This fast path can sometimes
|
|
// copy up to 15 bytes too much, but that is okay in the
|
|
// main loop, since we have a bit to go on for both sides:
|
|
//
|
|
// - The input will always have kInputMarginBytes = 15 extra
|
|
// available bytes, as long as we're in the main loop, and
|
|
// if not, allow_fast_path = false.
|
|
// - The output will always have 32 spare bytes (see
|
|
// MaxCompressedLength).
|
|
assert(len > 0); // Zero-length literals are disallowed
|
|
int n = len - 1;
|
|
if (allow_fast_path && len <= 16) {
|
|
// Fits in tag byte
|
|
*op++ = LITERAL | (n << 2);
|
|
|
|
UnalignedCopy128(literal, op);
|
|
return op + len;
|
|
}
|
|
|
|
if (n < 60) {
|
|
// Fits in tag byte
|
|
*op++ = LITERAL | (n << 2);
|
|
} else {
|
|
// Encode in upcoming bytes
|
|
char* base = op;
|
|
int count = 0;
|
|
op++;
|
|
while (n > 0) {
|
|
*op++ = n & 0xff;
|
|
n >>= 8;
|
|
count++;
|
|
}
|
|
assert(count >= 1);
|
|
assert(count <= 4);
|
|
*base = LITERAL | ((59+count) << 2);
|
|
}
|
|
memcpy(op, literal, len);
|
|
return op + len;
|
|
}
|
|
|
|
static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len,
|
|
bool len_less_than_12) {
|
|
assert(len <= 64);
|
|
assert(len >= 4);
|
|
assert(offset < 65536);
|
|
assert(len_less_than_12 == (len < 12));
|
|
|
|
if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) {
|
|
// offset fits in 11 bits. The 3 highest go in the top of the first byte,
|
|
// and the rest go in the second byte.
|
|
*op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0);
|
|
*op++ = offset & 0xff;
|
|
} else {
|
|
// Write 4 bytes, though we only care about 3 of them. The output buffer
|
|
// is required to have some slack, so the extra byte won't overrun it.
|
|
uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
|
|
LittleEndian::Store32(op, u);
|
|
op += 3;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
static inline char* EmitCopy(char* op, size_t offset, size_t len,
|
|
bool len_less_than_12) {
|
|
assert(len_less_than_12 == (len < 12));
|
|
if (len_less_than_12) {
|
|
return EmitCopyAtMost64(op, offset, len, true);
|
|
} else {
|
|
// A special case for len <= 64 might help, but so far measurements suggest
|
|
// it's in the noise.
|
|
|
|
// Emit 64 byte copies but make sure to keep at least four bytes reserved.
|
|
while (SNAPPY_PREDICT_FALSE(len >= 68)) {
|
|
op = EmitCopyAtMost64(op, offset, 64, false);
|
|
len -= 64;
|
|
}
|
|
|
|
// One or two copies will now finish the job.
|
|
if (len > 64) {
|
|
op = EmitCopyAtMost64(op, offset, 60, false);
|
|
len -= 60;
|
|
}
|
|
|
|
// Emit remainder.
|
|
op = EmitCopyAtMost64(op, offset, len, len < 12);
|
|
return op;
|
|
}
|
|
}
|
|
|
|
bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
|
|
uint32 v = 0;
|
|
const char* limit = start + n;
|
|
if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
|
|
*result = v;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
namespace internal {
|
|
uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
|
|
// Use smaller hash table when input.size() is smaller, since we
|
|
// fill the table, incurring O(hash table size) overhead for
|
|
// compression, and if the input is short, we won't need that
|
|
// many hash table entries anyway.
|
|
assert(kMaxHashTableSize >= 256);
|
|
size_t htsize = 256;
|
|
while (htsize < kMaxHashTableSize && htsize < input_size) {
|
|
htsize <<= 1;
|
|
}
|
|
|
|
uint16* table;
|
|
if (htsize <= ARRAYSIZE(small_table_)) {
|
|
table = small_table_;
|
|
} else {
|
|
if (large_table_ == NULL) {
|
|
large_table_ = new uint16[kMaxHashTableSize];
|
|
}
|
|
table = large_table_;
|
|
}
|
|
|
|
*table_size = htsize;
|
|
memset(table, 0, htsize * sizeof(*table));
|
|
return table;
|
|
}
|
|
} // end namespace internal
|
|
|
|
// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
|
|
// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
|
|
// empirically found that overlapping loads such as
|
|
// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
|
|
// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
|
|
//
|
|
// We have different versions for 64- and 32-bit; ideally we would avoid the
|
|
// two functions and just inline the UNALIGNED_LOAD64 call into
|
|
// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
|
|
// enough to avoid loading the value multiple times then. For 64-bit, the load
|
|
// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
|
|
// done at GetUint32AtOffset() time.
|
|
|
|
#ifdef ARCH_K8
|
|
|
|
typedef uint64 EightBytesReference;
|
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) {
|
|
return UNALIGNED_LOAD64(ptr);
|
|
}
|
|
|
|
static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
|
|
assert(offset >= 0);
|
|
assert(offset <= 4);
|
|
return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
|
|
}
|
|
|
|
#else
|
|
|
|
typedef const char* EightBytesReference;
|
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
static inline uint32 GetUint32AtOffset(const char* v, int offset) {
|
|
assert(offset >= 0);
|
|
assert(offset <= 4);
|
|
return UNALIGNED_LOAD32(v + offset);
|
|
}
|
|
|
|
#endif
|
|
|
|
// Flat array compression that does not emit the "uncompressed length"
|
|
// prefix. Compresses "input" string to the "*op" buffer.
|
|
//
|
|
// REQUIRES: "input" is at most "kBlockSize" bytes long.
|
|
// REQUIRES: "op" points to an array of memory that is at least
|
|
// "MaxCompressedLength(input.size())" in size.
|
|
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
|
|
// REQUIRES: "table_size" is a power of two
|
|
//
|
|
// Returns an "end" pointer into "op" buffer.
|
|
// "end - op" is the compressed size of "input".
|
|
namespace internal {
|
|
char* CompressFragment(const char* input,
|
|
size_t input_size,
|
|
char* op,
|
|
uint16* table,
|
|
const int table_size) {
|
|
// "ip" is the input pointer, and "op" is the output pointer.
|
|
const char* ip = input;
|
|
assert(input_size <= kBlockSize);
|
|
assert((table_size & (table_size - 1)) == 0); // table must be power of two
|
|
const int shift = 32 - Bits::Log2Floor(table_size);
|
|
assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
|
|
const char* ip_end = input + input_size;
|
|
const char* base_ip = ip;
|
|
// Bytes in [next_emit, ip) will be emitted as literal bytes. Or
|
|
// [next_emit, ip_end) after the main loop.
|
|
const char* next_emit = ip;
|
|
|
|
const size_t kInputMarginBytes = 15;
|
|
if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
|
|
const char* ip_limit = input + input_size - kInputMarginBytes;
|
|
|
|
for (uint32 next_hash = Hash(++ip, shift); ; ) {
|
|
assert(next_emit < ip);
|
|
// The body of this loop calls EmitLiteral once and then EmitCopy one or
|
|
// more times. (The exception is that when we're close to exhausting
|
|
// the input we goto emit_remainder.)
|
|
//
|
|
// In the first iteration of this loop we're just starting, so
|
|
// there's nothing to copy, so calling EmitLiteral once is
|
|
// necessary. And we only start a new iteration when the
|
|
// current iteration has determined that a call to EmitLiteral will
|
|
// precede the next call to EmitCopy (if any).
|
|
//
|
|
// Step 1: Scan forward in the input looking for a 4-byte-long match.
|
|
// If we get close to exhausting the input then goto emit_remainder.
|
|
//
|
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
|
// found, start looking only at every other byte. If 32 more bytes are
|
|
// scanned (or skipped), look at every third byte, etc.. When a match is
|
|
// found, immediately go back to looking at every byte. This is a small
|
|
// loss (~5% performance, ~0.1% density) for compressible data due to more
|
|
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge
|
|
// win since the compressor quickly "realizes" the data is incompressible
|
|
// and doesn't bother looking for matches everywhere.
|
|
//
|
|
// The "skip" variable keeps track of how many bytes there are since the
|
|
// last match; dividing it by 32 (ie. right-shifting by five) gives the
|
|
// number of bytes to move ahead for each iteration.
|
|
uint32 skip = 32;
|
|
|
|
const char* next_ip = ip;
|
|
const char* candidate;
|
|
do {
|
|
ip = next_ip;
|
|
uint32 hash = next_hash;
|
|
assert(hash == Hash(ip, shift));
|
|
uint32 bytes_between_hash_lookups = skip >> 5;
|
|
skip += bytes_between_hash_lookups;
|
|
next_ip = ip + bytes_between_hash_lookups;
|
|
if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
next_hash = Hash(next_ip, shift);
|
|
candidate = base_ip + table[hash];
|
|
assert(candidate >= base_ip);
|
|
assert(candidate < ip);
|
|
|
|
table[hash] = ip - base_ip;
|
|
} while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
|
|
UNALIGNED_LOAD32(candidate)));
|
|
|
|
// Step 2: A 4-byte match has been found. We'll later see if more
|
|
// than 4 bytes match. But, prior to the match, input
|
|
// bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
|
|
assert(next_emit + 16 <= ip_end);
|
|
op = EmitLiteral(op, next_emit, ip - next_emit, true);
|
|
|
|
// Step 3: Call EmitCopy, and then see if another EmitCopy could
|
|
// be our next move. Repeat until we find no match for the
|
|
// input immediately after what was consumed by the last EmitCopy call.
|
|
//
|
|
// If we exit this loop normally then we need to call EmitLiteral next,
|
|
// though we don't yet know how big the literal will be. We handle that
|
|
// by proceeding to the next iteration of the main loop. We also can exit
|
|
// this loop via goto if we get close to exhausting the input.
|
|
EightBytesReference input_bytes;
|
|
uint32 candidate_bytes = 0;
|
|
|
|
do {
|
|
// We have a 4-byte match at ip, and no need to emit any
|
|
// "literal bytes" prior to ip.
|
|
const char* base = ip;
|
|
std::pair<size_t, bool> p =
|
|
FindMatchLength(candidate + 4, ip + 4, ip_end);
|
|
size_t matched = 4 + p.first;
|
|
ip += matched;
|
|
size_t offset = base - candidate;
|
|
assert(0 == memcmp(base, candidate, matched));
|
|
op = EmitCopy(op, offset, matched, p.second);
|
|
next_emit = ip;
|
|
if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
// We are now looking for a 4-byte match again. We read
|
|
// table[Hash(ip, shift)] for that. To improve compression,
|
|
// we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)].
|
|
input_bytes = GetEightBytesAt(ip - 1);
|
|
uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
|
|
table[prev_hash] = ip - base_ip - 1;
|
|
uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
|
|
candidate = base_ip + table[cur_hash];
|
|
candidate_bytes = UNALIGNED_LOAD32(candidate);
|
|
table[cur_hash] = ip - base_ip;
|
|
} while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
|
|
|
|
next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
|
|
++ip;
|
|
}
|
|
}
|
|
|
|
emit_remainder:
|
|
// Emit the remaining bytes as a literal
|
|
if (next_emit < ip_end) {
|
|
op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
|
|
}
|
|
|
|
return op;
|
|
}
|
|
} // end namespace internal
|
|
|
|
// Called back at avery compression call to trace parameters and sizes.
|
|
static inline void Report(const char *algorithm, size_t compressed_size,
|
|
size_t uncompressed_size) {}
|
|
|
|
// Signature of output types needed by decompression code.
|
|
// The decompression code is templatized on a type that obeys this
|
|
// signature so that we do not pay virtual function call overhead in
|
|
// the middle of a tight decompression loop.
|
|
//
|
|
// class DecompressionWriter {
|
|
// public:
|
|
// // Called before decompression
|
|
// void SetExpectedLength(size_t length);
|
|
//
|
|
// // Called after decompression
|
|
// bool CheckLength() const;
|
|
//
|
|
// // Called repeatedly during decompression
|
|
// bool Append(const char* ip, size_t length);
|
|
// bool AppendFromSelf(uint32 offset, size_t length);
|
|
//
|
|
// // The rules for how TryFastAppend differs from Append are somewhat
|
|
// // convoluted:
|
|
// //
|
|
// // - TryFastAppend is allowed to decline (return false) at any
|
|
// // time, for any reason -- just "return false" would be
|
|
// // a perfectly legal implementation of TryFastAppend.
|
|
// // The intention is for TryFastAppend to allow a fast path
|
|
// // in the common case of a small append.
|
|
// // - TryFastAppend is allowed to read up to <available> bytes
|
|
// // from the input buffer, whereas Append is allowed to read
|
|
// // <length>. However, if it returns true, it must leave
|
|
// // at least five (kMaximumTagLength) bytes in the input buffer
|
|
// // afterwards, so that there is always enough space to read the
|
|
// // next tag without checking for a refill.
|
|
// // - TryFastAppend must always return decline (return false)
|
|
// // if <length> is 61 or more, as in this case the literal length is not
|
|
// // decoded fully. In practice, this should not be a big problem,
|
|
// // as it is unlikely that one would implement a fast path accepting
|
|
// // this much data.
|
|
// //
|
|
// bool TryFastAppend(const char* ip, size_t available, size_t length);
|
|
// };
|
|
|
|
// Mapping from n in range [0,4] to a mask to extract the bottom 8*n bits.
|
|
static inline uint32 WordMask(int n) {
|
|
DCHECK_GE(n, 0);
|
|
DCHECK_LE(n, 4);
|
|
// This needs to be wider than uint32 otherwise `mask << 32` will be
|
|
// undefined.
|
|
uint64 mask = 0xffffffff;
|
|
return ~(mask << (8 * n));
|
|
}
|
|
|
|
// Helper class for decompression
|
|
class SnappyDecompressor {
|
|
private:
|
|
Source* reader_; // Underlying source of bytes to decompress
|
|
const char* ip_; // Points to next buffered byte
|
|
const char* ip_limit_; // Points just past buffered bytes
|
|
uint32 peeked_; // Bytes peeked from reader (need to skip)
|
|
bool eof_; // Hit end of input without an error?
|
|
char scratch_[kMaximumTagLength]; // See RefillTag().
|
|
|
|
// Ensure that all of the tag metadata for the next tag is available
|
|
// in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
|
|
// if (ip_limit_ - ip_ < 5).
|
|
//
|
|
// Returns true on success, false on error or end of input.
|
|
bool RefillTag();
|
|
|
|
public:
|
|
explicit SnappyDecompressor(Source* reader)
|
|
: reader_(reader),
|
|
ip_(NULL),
|
|
ip_limit_(NULL),
|
|
peeked_(0),
|
|
eof_(false) {
|
|
}
|
|
|
|
~SnappyDecompressor() {
|
|
// Advance past any bytes we peeked at from the reader
|
|
reader_->Skip(peeked_);
|
|
}
|
|
|
|
// Returns true iff we have hit the end of the input without an error.
|
|
bool eof() const {
|
|
return eof_;
|
|
}
|
|
|
|
// Read the uncompressed length stored at the start of the compressed data.
|
|
// On success, stores the length in *result and returns true.
|
|
// On failure, returns false.
|
|
bool ReadUncompressedLength(uint32* result) {
|
|
assert(ip_ == NULL); // Must not have read anything yet
|
|
// Length is encoded in 1..5 bytes
|
|
*result = 0;
|
|
uint32 shift = 0;
|
|
while (true) {
|
|
if (shift >= 32) return false;
|
|
size_t n;
|
|
const char* ip = reader_->Peek(&n);
|
|
if (n == 0) return false;
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
|
|
reader_->Skip(1);
|
|
uint32 val = c & 0x7f;
|
|
if (((val << shift) >> shift) != val) return false;
|
|
*result |= val << shift;
|
|
if (c < 128) {
|
|
break;
|
|
}
|
|
shift += 7;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Process the next item found in the input.
|
|
// Returns true if successful, false on error or end of input.
|
|
template <class Writer>
|
|
#if defined(__GNUC__) && defined(__x86_64__)
|
|
__attribute__((aligned(32)))
|
|
#endif
|
|
void DecompressAllTags(Writer* writer) {
|
|
// In x86, pad the function body to start 16 bytes later. This function has
|
|
// a couple of hotspots that are highly sensitive to alignment: we have
|
|
// observed regressions by more than 20% in some metrics just by moving the
|
|
// exact same code to a different position in the benchmark binary.
|
|
//
|
|
// Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit
|
|
// the "lucky" case consistently. Unfortunately, this is a very brittle
|
|
// workaround, and future differences in code generation may reintroduce
|
|
// this regression. If you experience a big, difficult to explain, benchmark
|
|
// performance regression here, first try removing this hack.
|
|
#if defined(__GNUC__) && defined(__x86_64__)
|
|
// Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions.
|
|
asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
|
|
asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
|
|
#endif
|
|
|
|
const char* ip = ip_;
|
|
// We could have put this refill fragment only at the beginning of the loop.
|
|
// However, duplicating it at the end of each branch gives the compiler more
|
|
// scope to optimize the <ip_limit_ - ip> expression based on the local
|
|
// context, which overall increases speed.
|
|
#define MAYBE_REFILL() \
|
|
if (ip_limit_ - ip < kMaximumTagLength) { \
|
|
ip_ = ip; \
|
|
if (!RefillTag()) return; \
|
|
ip = ip_; \
|
|
}
|
|
|
|
MAYBE_REFILL();
|
|
for ( ;; ) {
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
|
|
|
|
// Ratio of iterations that have LITERAL vs non-LITERAL for different
|
|
// inputs.
|
|
//
|
|
// input LITERAL NON_LITERAL
|
|
// -----------------------------------
|
|
// html|html4|cp 23% 77%
|
|
// urls 36% 64%
|
|
// jpg 47% 53%
|
|
// pdf 19% 81%
|
|
// txt[1-4] 25% 75%
|
|
// pb 24% 76%
|
|
// bin 24% 76%
|
|
if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
|
|
size_t literal_length = (c >> 2) + 1u;
|
|
if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
|
|
assert(literal_length < 61);
|
|
ip += literal_length;
|
|
// NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend()
|
|
// will not return true unless there's already at least five spare
|
|
// bytes in addition to the literal.
|
|
continue;
|
|
}
|
|
if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
|
|
// Long literal.
|
|
const size_t literal_length_length = literal_length - 60;
|
|
literal_length =
|
|
(LittleEndian::Load32(ip) & WordMask(literal_length_length)) + 1;
|
|
ip += literal_length_length;
|
|
}
|
|
|
|
size_t avail = ip_limit_ - ip;
|
|
while (avail < literal_length) {
|
|
if (!writer->Append(ip, avail)) return;
|
|
literal_length -= avail;
|
|
reader_->Skip(peeked_);
|
|
size_t n;
|
|
ip = reader_->Peek(&n);
|
|
avail = n;
|
|
peeked_ = avail;
|
|
if (avail == 0) return; // Premature end of input
|
|
ip_limit_ = ip + avail;
|
|
}
|
|
if (!writer->Append(ip, literal_length)) {
|
|
return;
|
|
}
|
|
ip += literal_length;
|
|
MAYBE_REFILL();
|
|
} else {
|
|
const size_t entry = char_table[c];
|
|
const size_t trailer = LittleEndian::Load32(ip) & WordMask(entry >> 11);
|
|
const size_t length = entry & 0xff;
|
|
ip += entry >> 11;
|
|
|
|
// copy_offset/256 is encoded in bits 8..10. By just fetching
|
|
// those bits, we get copy_offset (since the bit-field starts at
|
|
// bit 8).
|
|
const size_t copy_offset = entry & 0x700;
|
|
if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
|
|
return;
|
|
}
|
|
MAYBE_REFILL();
|
|
}
|
|
}
|
|
|
|
#undef MAYBE_REFILL
|
|
}
|
|
};
|
|
|
|
bool SnappyDecompressor::RefillTag() {
|
|
const char* ip = ip_;
|
|
if (ip == ip_limit_) {
|
|
// Fetch a new fragment from the reader
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
size_t n;
|
|
ip = reader_->Peek(&n);
|
|
peeked_ = n;
|
|
eof_ = (n == 0);
|
|
if (eof_) return false;
|
|
ip_limit_ = ip + n;
|
|
}
|
|
|
|
// Read the tag character
|
|
assert(ip < ip_limit_);
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
|
|
const uint32 entry = char_table[c];
|
|
const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
|
|
assert(needed <= sizeof(scratch_));
|
|
|
|
// Read more bytes from reader if needed
|
|
uint32 nbuf = ip_limit_ - ip;
|
|
if (nbuf < needed) {
|
|
// Stitch together bytes from ip and reader to form the word
|
|
// contents. We store the needed bytes in "scratch_". They
|
|
// will be consumed immediately by the caller since we do not
|
|
// read more than we need.
|
|
memmove(scratch_, ip, nbuf);
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
peeked_ = 0;
|
|
while (nbuf < needed) {
|
|
size_t length;
|
|
const char* src = reader_->Peek(&length);
|
|
if (length == 0) return false;
|
|
uint32 to_add = std::min<uint32>(needed - nbuf, length);
|
|
memcpy(scratch_ + nbuf, src, to_add);
|
|
nbuf += to_add;
|
|
reader_->Skip(to_add);
|
|
}
|
|
assert(nbuf == needed);
|
|
ip_ = scratch_;
|
|
ip_limit_ = scratch_ + needed;
|
|
} else if (nbuf < kMaximumTagLength) {
|
|
// Have enough bytes, but move into scratch_ so that we do not
|
|
// read past end of input
|
|
memmove(scratch_, ip, nbuf);
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
peeked_ = 0;
|
|
ip_ = scratch_;
|
|
ip_limit_ = scratch_ + nbuf;
|
|
} else {
|
|
// Pass pointer to buffer returned by reader_.
|
|
ip_ = ip;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Writer>
|
|
static bool InternalUncompress(Source* r, Writer* writer) {
|
|
// Read the uncompressed length from the front of the compressed input
|
|
SnappyDecompressor decompressor(r);
|
|
uint32 uncompressed_len = 0;
|
|
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
|
|
|
|
return InternalUncompressAllTags(&decompressor, writer, r->Available(),
|
|
uncompressed_len);
|
|
}
|
|
|
|
template <typename Writer>
|
|
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
|
|
Writer* writer,
|
|
uint32 compressed_len,
|
|
uint32 uncompressed_len) {
|
|
Report("snappy_uncompress", compressed_len, uncompressed_len);
|
|
|
|
writer->SetExpectedLength(uncompressed_len);
|
|
|
|
// Process the entire input
|
|
decompressor->DecompressAllTags(writer);
|
|
writer->Flush();
|
|
return (decompressor->eof() && writer->CheckLength());
|
|
}
|
|
|
|
bool GetUncompressedLength(Source* source, uint32* result) {
|
|
SnappyDecompressor decompressor(source);
|
|
return decompressor.ReadUncompressedLength(result);
|
|
}
|
|
|
|
struct Deleter {
|
|
Deleter() : size_(0) {}
|
|
explicit Deleter(size_t size) : size_(size) {}
|
|
|
|
void operator()(char* ptr) const {
|
|
std::allocator<char>().deallocate(ptr, size_);
|
|
}
|
|
|
|
size_t size_;
|
|
};
|
|
|
|
size_t Compress(Source* reader, Sink* writer) {
|
|
size_t written = 0;
|
|
size_t N = reader->Available();
|
|
const size_t uncompressed_size = N;
|
|
char ulength[Varint::kMax32];
|
|
char* p = Varint::Encode32(ulength, N);
|
|
writer->Append(ulength, p-ulength);
|
|
written += (p - ulength);
|
|
|
|
internal::WorkingMemory wmem;
|
|
std::unique_ptr<char, Deleter> scratch;
|
|
std::unique_ptr<char, Deleter> scratch_output;
|
|
|
|
while (N > 0) {
|
|
// Get next block to compress (without copying if possible)
|
|
size_t fragment_size;
|
|
const char* fragment = reader->Peek(&fragment_size);
|
|
assert(fragment_size != 0); // premature end of input
|
|
const size_t num_to_read = std::min(N, kBlockSize);
|
|
size_t bytes_read = fragment_size;
|
|
|
|
size_t pending_advance = 0;
|
|
if (bytes_read >= num_to_read) {
|
|
// Buffer returned by reader is large enough
|
|
pending_advance = num_to_read;
|
|
fragment_size = num_to_read;
|
|
} else {
|
|
// Read into scratch buffer
|
|
if (scratch == NULL) {
|
|
// If this is the last iteration, we want to allocate N bytes
|
|
// of space, otherwise the max possible kBlockSize space.
|
|
// num_to_read contains exactly the correct value
|
|
scratch = {
|
|
std::allocator<char>().allocate(num_to_read), Deleter(num_to_read)};
|
|
}
|
|
memcpy(scratch.get(), fragment, bytes_read);
|
|
reader->Skip(bytes_read);
|
|
|
|
while (bytes_read < num_to_read) {
|
|
fragment = reader->Peek(&fragment_size);
|
|
size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
|
|
memcpy(scratch.get() + bytes_read, fragment, n);
|
|
bytes_read += n;
|
|
reader->Skip(n);
|
|
}
|
|
assert(bytes_read == num_to_read);
|
|
fragment = scratch.get();
|
|
fragment_size = num_to_read;
|
|
}
|
|
assert(fragment_size == num_to_read);
|
|
|
|
// Get encoding table for compression
|
|
int table_size;
|
|
uint16* table = wmem.GetHashTable(num_to_read, &table_size);
|
|
|
|
// Compress input_fragment and append to dest
|
|
const int max_output = MaxCompressedLength(num_to_read);
|
|
|
|
// Need a scratch buffer for the output, in case the byte sink doesn't
|
|
// have room for us directly.
|
|
if (scratch_output == NULL) {
|
|
scratch_output =
|
|
{std::allocator<char>().allocate(max_output), Deleter(max_output)};
|
|
} else {
|
|
// Since we encode kBlockSize regions followed by a region
|
|
// which is <= kBlockSize in length, a previously allocated
|
|
// scratch_output[] region is big enough for this iteration.
|
|
}
|
|
char* dest = writer->GetAppendBuffer(max_output, scratch_output.get());
|
|
char* end = internal::CompressFragment(fragment, fragment_size,
|
|
dest, table, table_size);
|
|
writer->Append(dest, end - dest);
|
|
written += (end - dest);
|
|
|
|
N -= num_to_read;
|
|
reader->Skip(pending_advance);
|
|
}
|
|
|
|
Report("snappy_compress", written, uncompressed_size);
|
|
|
|
return written;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// IOVec interfaces
|
|
// -----------------------------------------------------------------------
|
|
|
|
// A type that writes to an iovec.
|
|
// Note that this is not a "ByteSink", but a type that matches the
|
|
// Writer template argument to SnappyDecompressor::DecompressAllTags().
|
|
class SnappyIOVecWriter {
|
|
private:
|
|
// output_iov_end_ is set to iov + count and used to determine when
|
|
// the end of the iovs is reached.
|
|
const struct iovec* output_iov_end_;
|
|
|
|
#if !defined(NDEBUG)
|
|
const struct iovec* output_iov_;
|
|
#endif // !defined(NDEBUG)
|
|
|
|
// Current iov that is being written into.
|
|
const struct iovec* curr_iov_;
|
|
|
|
// Pointer to current iov's write location.
|
|
char* curr_iov_output_;
|
|
|
|
// Remaining bytes to write into curr_iov_output.
|
|
size_t curr_iov_remaining_;
|
|
|
|
// Total bytes decompressed into output_iov_ so far.
|
|
size_t total_written_;
|
|
|
|
// Maximum number of bytes that will be decompressed into output_iov_.
|
|
size_t output_limit_;
|
|
|
|
static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
|
|
return reinterpret_cast<char*>(iov->iov_base) + offset;
|
|
}
|
|
|
|
public:
|
|
// Does not take ownership of iov. iov must be valid during the
|
|
// entire lifetime of the SnappyIOVecWriter.
|
|
inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
|
|
: output_iov_end_(iov + iov_count),
|
|
#if !defined(NDEBUG)
|
|
output_iov_(iov),
|
|
#endif // !defined(NDEBUG)
|
|
curr_iov_(iov),
|
|
curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
|
|
: nullptr),
|
|
curr_iov_remaining_(iov_count ? iov->iov_len : 0),
|
|
total_written_(0),
|
|
output_limit_(-1) {}
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
output_limit_ = len;
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
return total_written_ == output_limit_;
|
|
}
|
|
|
|
inline bool Append(const char* ip, size_t len) {
|
|
if (total_written_ + len > output_limit_) {
|
|
return false;
|
|
}
|
|
|
|
return AppendNoCheck(ip, len);
|
|
}
|
|
|
|
inline bool AppendNoCheck(const char* ip, size_t len) {
|
|
while (len > 0) {
|
|
if (curr_iov_remaining_ == 0) {
|
|
// This iovec is full. Go to the next one.
|
|
if (curr_iov_ + 1 >= output_iov_end_) {
|
|
return false;
|
|
}
|
|
++curr_iov_;
|
|
curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
|
|
curr_iov_remaining_ = curr_iov_->iov_len;
|
|
}
|
|
|
|
const size_t to_write = std::min(len, curr_iov_remaining_);
|
|
memcpy(curr_iov_output_, ip, to_write);
|
|
curr_iov_output_ += to_write;
|
|
curr_iov_remaining_ -= to_write;
|
|
total_written_ += to_write;
|
|
ip += to_write;
|
|
len -= to_write;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
|
|
const size_t space_left = output_limit_ - total_written_;
|
|
if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
|
|
curr_iov_remaining_ >= 16) {
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
|
UnalignedCopy128(ip, curr_iov_output_);
|
|
curr_iov_output_ += len;
|
|
curr_iov_remaining_ -= len;
|
|
total_written_ += len;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
if (offset - 1u >= total_written_) {
|
|
return false;
|
|
}
|
|
const size_t space_left = output_limit_ - total_written_;
|
|
if (len > space_left) {
|
|
return false;
|
|
}
|
|
|
|
// Locate the iovec from which we need to start the copy.
|
|
const iovec* from_iov = curr_iov_;
|
|
size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
|
|
while (offset > 0) {
|
|
if (from_iov_offset >= offset) {
|
|
from_iov_offset -= offset;
|
|
break;
|
|
}
|
|
|
|
offset -= from_iov_offset;
|
|
--from_iov;
|
|
#if !defined(NDEBUG)
|
|
assert(from_iov >= output_iov_);
|
|
#endif // !defined(NDEBUG)
|
|
from_iov_offset = from_iov->iov_len;
|
|
}
|
|
|
|
// Copy <len> bytes starting from the iovec pointed to by from_iov_index to
|
|
// the current iovec.
|
|
while (len > 0) {
|
|
assert(from_iov <= curr_iov_);
|
|
if (from_iov != curr_iov_) {
|
|
const size_t to_copy =
|
|
std::min(from_iov->iov_len - from_iov_offset, len);
|
|
AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
|
|
len -= to_copy;
|
|
if (len > 0) {
|
|
++from_iov;
|
|
from_iov_offset = 0;
|
|
}
|
|
} else {
|
|
size_t to_copy = curr_iov_remaining_;
|
|
if (to_copy == 0) {
|
|
// This iovec is full. Go to the next one.
|
|
if (curr_iov_ + 1 >= output_iov_end_) {
|
|
return false;
|
|
}
|
|
++curr_iov_;
|
|
curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
|
|
curr_iov_remaining_ = curr_iov_->iov_len;
|
|
continue;
|
|
}
|
|
if (to_copy > len) {
|
|
to_copy = len;
|
|
}
|
|
|
|
IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
|
|
curr_iov_output_, curr_iov_output_ + to_copy,
|
|
curr_iov_output_ + curr_iov_remaining_);
|
|
curr_iov_output_ += to_copy;
|
|
curr_iov_remaining_ -= to_copy;
|
|
from_iov_offset += to_copy;
|
|
total_written_ += to_copy;
|
|
len -= to_copy;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline void Flush() {}
|
|
};
|
|
|
|
bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
|
|
const struct iovec* iov, size_t iov_cnt) {
|
|
ByteArraySource reader(compressed, compressed_length);
|
|
return RawUncompressToIOVec(&reader, iov, iov_cnt);
|
|
}
|
|
|
|
bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
|
|
size_t iov_cnt) {
|
|
SnappyIOVecWriter output(iov, iov_cnt);
|
|
return InternalUncompress(compressed, &output);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Flat array interfaces
|
|
// -----------------------------------------------------------------------
|
|
|
|
// A type that writes to a flat array.
|
|
// Note that this is not a "ByteSink", but a type that matches the
|
|
// Writer template argument to SnappyDecompressor::DecompressAllTags().
|
|
class SnappyArrayWriter {
|
|
private:
|
|
char* base_;
|
|
char* op_;
|
|
char* op_limit_;
|
|
|
|
public:
|
|
inline explicit SnappyArrayWriter(char* dst)
|
|
: base_(dst),
|
|
op_(dst),
|
|
op_limit_(dst) {
|
|
}
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
op_limit_ = op_ + len;
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
return op_ == op_limit_;
|
|
}
|
|
|
|
inline bool Append(const char* ip, size_t len) {
|
|
char* op = op_;
|
|
const size_t space_left = op_limit_ - op;
|
|
if (space_left < len) {
|
|
return false;
|
|
}
|
|
memcpy(op, ip, len);
|
|
op_ = op + len;
|
|
return true;
|
|
}
|
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
|
|
char* op = op_;
|
|
const size_t space_left = op_limit_ - op;
|
|
if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
|
UnalignedCopy128(ip, op);
|
|
op_ = op + len;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
char* const op_end = op_ + len;
|
|
|
|
// Check if we try to append from before the start of the buffer.
|
|
// Normally this would just be a check for "produced < offset",
|
|
// but "produced <= offset - 1u" is equivalent for every case
|
|
// except the one where offset==0, where the right side will wrap around
|
|
// to a very big number. This is convenient, as offset==0 is another
|
|
// invalid case that we also want to catch, so that we do not go
|
|
// into an infinite loop.
|
|
if (Produced() <= offset - 1u || op_end > op_limit_) return false;
|
|
op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_);
|
|
|
|
return true;
|
|
}
|
|
inline size_t Produced() const {
|
|
assert(op_ >= base_);
|
|
return op_ - base_;
|
|
}
|
|
inline void Flush() {}
|
|
};
|
|
|
|
bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
|
|
ByteArraySource reader(compressed, n);
|
|
return RawUncompress(&reader, uncompressed);
|
|
}
|
|
|
|
bool RawUncompress(Source* compressed, char* uncompressed) {
|
|
SnappyArrayWriter output(uncompressed);
|
|
return InternalUncompress(compressed, &output);
|
|
}
|
|
|
|
bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
|
|
size_t ulength;
|
|
if (!GetUncompressedLength(compressed, n, &ulength)) {
|
|
return false;
|
|
}
|
|
// On 32-bit builds: max_size() < kuint32max. Check for that instead
|
|
// of crashing (e.g., consider externally specified compressed data).
|
|
if (ulength > uncompressed->max_size()) {
|
|
return false;
|
|
}
|
|
STLStringResizeUninitialized(uncompressed, ulength);
|
|
return RawUncompress(compressed, n, string_as_array(uncompressed));
|
|
}
|
|
|
|
// A Writer that drops everything on the floor and just does validation
|
|
class SnappyDecompressionValidator {
|
|
private:
|
|
size_t expected_;
|
|
size_t produced_;
|
|
|
|
public:
|
|
inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
|
|
inline void SetExpectedLength(size_t len) {
|
|
expected_ = len;
|
|
}
|
|
inline bool CheckLength() const {
|
|
return expected_ == produced_;
|
|
}
|
|
inline bool Append(const char* ip, size_t len) {
|
|
produced_ += len;
|
|
return produced_ <= expected_;
|
|
}
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
|
|
return false;
|
|
}
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
if (produced_ <= offset - 1u) return false;
|
|
produced_ += len;
|
|
return produced_ <= expected_;
|
|
}
|
|
inline void Flush() {}
|
|
};
|
|
|
|
bool IsValidCompressedBuffer(const char* compressed, size_t n) {
|
|
ByteArraySource reader(compressed, n);
|
|
SnappyDecompressionValidator writer;
|
|
return InternalUncompress(&reader, &writer);
|
|
}
|
|
|
|
bool IsValidCompressed(Source* compressed) {
|
|
SnappyDecompressionValidator writer;
|
|
return InternalUncompress(compressed, &writer);
|
|
}
|
|
|
|
void RawCompress(const char* input,
|
|
size_t input_length,
|
|
char* compressed,
|
|
size_t* compressed_length) {
|
|
ByteArraySource reader(input, input_length);
|
|
UncheckedByteArraySink writer(compressed);
|
|
Compress(&reader, &writer);
|
|
|
|
// Compute how many bytes were added
|
|
*compressed_length = (writer.CurrentDestination() - compressed);
|
|
}
|
|
|
|
size_t Compress(const char* input, size_t input_length, string* compressed) {
|
|
// Pre-grow the buffer to the max length of the compressed output
|
|
STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
|
|
|
|
size_t compressed_length;
|
|
RawCompress(input, input_length, string_as_array(compressed),
|
|
&compressed_length);
|
|
compressed->resize(compressed_length);
|
|
return compressed_length;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Sink interface
|
|
// -----------------------------------------------------------------------
|
|
|
|
// A type that decompresses into a Sink. The template parameter
|
|
// Allocator must export one method "char* Allocate(int size);", which
|
|
// allocates a buffer of "size" and appends that to the destination.
|
|
template <typename Allocator>
|
|
class SnappyScatteredWriter {
|
|
Allocator allocator_;
|
|
|
|
// We need random access into the data generated so far. Therefore
|
|
// we keep track of all of the generated data as an array of blocks.
|
|
// All of the blocks except the last have length kBlockSize.
|
|
std::vector<char*> blocks_;
|
|
size_t expected_;
|
|
|
|
// Total size of all fully generated blocks so far
|
|
size_t full_size_;
|
|
|
|
// Pointer into current output block
|
|
char* op_base_; // Base of output block
|
|
char* op_ptr_; // Pointer to next unfilled byte in block
|
|
char* op_limit_; // Pointer just past block
|
|
|
|
inline size_t Size() const {
|
|
return full_size_ + (op_ptr_ - op_base_);
|
|
}
|
|
|
|
bool SlowAppend(const char* ip, size_t len);
|
|
bool SlowAppendFromSelf(size_t offset, size_t len);
|
|
|
|
public:
|
|
inline explicit SnappyScatteredWriter(const Allocator& allocator)
|
|
: allocator_(allocator),
|
|
full_size_(0),
|
|
op_base_(NULL),
|
|
op_ptr_(NULL),
|
|
op_limit_(NULL) {
|
|
}
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
assert(blocks_.empty());
|
|
expected_ = len;
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
return Size() == expected_;
|
|
}
|
|
|
|
// Return the number of bytes actually uncompressed so far
|
|
inline size_t Produced() const {
|
|
return Size();
|
|
}
|
|
|
|
inline bool Append(const char* ip, size_t len) {
|
|
size_t avail = op_limit_ - op_ptr_;
|
|
if (len <= avail) {
|
|
// Fast path
|
|
memcpy(op_ptr_, ip, len);
|
|
op_ptr_ += len;
|
|
return true;
|
|
} else {
|
|
return SlowAppend(ip, len);
|
|
}
|
|
}
|
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
|
|
char* op = op_ptr_;
|
|
const int space_left = op_limit_ - op;
|
|
if (length <= 16 && available >= 16 + kMaximumTagLength &&
|
|
space_left >= 16) {
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
|
UnalignedCopy128(ip, op);
|
|
op_ptr_ = op + length;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
char* const op_end = op_ptr_ + len;
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ &&
|
|
op_end <= op_limit_)) {
|
|
// Fast path: src and dst in current block.
|
|
op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_);
|
|
return true;
|
|
}
|
|
return SlowAppendFromSelf(offset, len);
|
|
}
|
|
|
|
// Called at the end of the decompress. We ask the allocator
|
|
// write all blocks to the sink.
|
|
inline void Flush() { allocator_.Flush(Produced()); }
|
|
};
|
|
|
|
template<typename Allocator>
|
|
bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
|
|
size_t avail = op_limit_ - op_ptr_;
|
|
while (len > avail) {
|
|
// Completely fill this block
|
|
memcpy(op_ptr_, ip, avail);
|
|
op_ptr_ += avail;
|
|
assert(op_limit_ - op_ptr_ == 0);
|
|
full_size_ += (op_ptr_ - op_base_);
|
|
len -= avail;
|
|
ip += avail;
|
|
|
|
// Bounds check
|
|
if (full_size_ + len > expected_) {
|
|
return false;
|
|
}
|
|
|
|
// Make new block
|
|
size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
|
|
op_base_ = allocator_.Allocate(bsize);
|
|
op_ptr_ = op_base_;
|
|
op_limit_ = op_base_ + bsize;
|
|
blocks_.push_back(op_base_);
|
|
avail = bsize;
|
|
}
|
|
|
|
memcpy(op_ptr_, ip, len);
|
|
op_ptr_ += len;
|
|
return true;
|
|
}
|
|
|
|
template<typename Allocator>
|
|
bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
|
|
size_t len) {
|
|
// Overflow check
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
const size_t cur = Size();
|
|
if (offset - 1u >= cur) return false;
|
|
if (expected_ - cur < len) return false;
|
|
|
|
// Currently we shouldn't ever hit this path because Compress() chops the
|
|
// input into blocks and does not create cross-block copies. However, it is
|
|
// nice if we do not rely on that, since we can get better compression if we
|
|
// allow cross-block copies and thus might want to change the compressor in
|
|
// the future.
|
|
size_t src = cur - offset;
|
|
while (len-- > 0) {
|
|
char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
|
|
Append(&c, 1);
|
|
src++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class SnappySinkAllocator {
|
|
public:
|
|
explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
|
|
~SnappySinkAllocator() {}
|
|
|
|
char* Allocate(int size) {
|
|
Datablock block(new char[size], size);
|
|
blocks_.push_back(block);
|
|
return block.data;
|
|
}
|
|
|
|
// We flush only at the end, because the writer wants
|
|
// random access to the blocks and once we hand the
|
|
// block over to the sink, we can't access it anymore.
|
|
// Also we don't write more than has been actually written
|
|
// to the blocks.
|
|
void Flush(size_t size) {
|
|
size_t size_written = 0;
|
|
size_t block_size;
|
|
for (int i = 0; i < blocks_.size(); ++i) {
|
|
block_size = std::min<size_t>(blocks_[i].size, size - size_written);
|
|
dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
|
|
&SnappySinkAllocator::Deleter, NULL);
|
|
size_written += block_size;
|
|
}
|
|
blocks_.clear();
|
|
}
|
|
|
|
private:
|
|
struct Datablock {
|
|
char* data;
|
|
size_t size;
|
|
Datablock(char* p, size_t s) : data(p), size(s) {}
|
|
};
|
|
|
|
static void Deleter(void* arg, const char* bytes, size_t size) {
|
|
delete[] bytes;
|
|
}
|
|
|
|
Sink* dest_;
|
|
std::vector<Datablock> blocks_;
|
|
|
|
// Note: copying this object is allowed
|
|
};
|
|
|
|
size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
|
|
SnappySinkAllocator allocator(uncompressed);
|
|
SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
|
|
InternalUncompress(compressed, &writer);
|
|
return writer.Produced();
|
|
}
|
|
|
|
bool Uncompress(Source* compressed, Sink* uncompressed) {
|
|
// Read the uncompressed length from the front of the compressed input
|
|
SnappyDecompressor decompressor(compressed);
|
|
uint32 uncompressed_len = 0;
|
|
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
|
|
return false;
|
|
}
|
|
|
|
char c;
|
|
size_t allocated_size;
|
|
char* buf = uncompressed->GetAppendBufferVariable(
|
|
1, uncompressed_len, &c, 1, &allocated_size);
|
|
|
|
const size_t compressed_len = compressed->Available();
|
|
// If we can get a flat buffer, then use it, otherwise do block by block
|
|
// uncompression
|
|
if (allocated_size >= uncompressed_len) {
|
|
SnappyArrayWriter writer(buf);
|
|
bool result = InternalUncompressAllTags(&decompressor, &writer,
|
|
compressed_len, uncompressed_len);
|
|
uncompressed->Append(buf, writer.Produced());
|
|
return result;
|
|
} else {
|
|
SnappySinkAllocator allocator(uncompressed);
|
|
SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
|
|
return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
|
|
uncompressed_len);
|
|
}
|
|
}
|
|
|
|
} // namespace snappy
|