snappy/snappy_benchmark.cc
Matt Callanan 974fcc49e8 Fix compilation errors under C++11.
`std::string::data()` is const-only until C++17.

PiperOrigin-RevId: 479708109
2022-10-08 08:41:35 +02:00

379 lines
13 KiB
C++

// Copyright 2020 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstddef>
#include <cstdint>
#include <string>
#include <vector>
#include "snappy-test.h"
#include "benchmark/benchmark.h"
#include "snappy-internal.h"
#include "snappy-sinksource.h"
#include "snappy.h"
#include "snappy_test_data.h"
namespace snappy {
namespace {
void BM_UFlat(benchmark::State& state) {
// Pick file to process based on state.range(0).
int file_index = state.range(0);
CHECK_GE(file_index, 0);
CHECK_LT(file_index, ARRAYSIZE(kTestDataFiles));
std::string contents =
ReadTestDataFile(kTestDataFiles[file_index].filename,
kTestDataFiles[file_index].size_limit);
std::string zcontents;
snappy::Compress(contents.data(), contents.size(), &zcontents);
char* dst = new char[contents.size()];
for (auto s : state) {
CHECK(snappy::RawUncompress(zcontents.data(), zcontents.size(), dst));
benchmark::DoNotOptimize(dst);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(contents.size()));
state.SetLabel(kTestDataFiles[file_index].label);
delete[] dst;
}
BENCHMARK(BM_UFlat)->DenseRange(0, ARRAYSIZE(kTestDataFiles) - 1);
struct SourceFiles {
SourceFiles() {
for (int i = 0; i < kFiles; i++) {
std::string contents = ReadTestDataFile(kTestDataFiles[i].filename,
kTestDataFiles[i].size_limit);
max_size = std::max(max_size, contents.size());
sizes[i] = contents.size();
snappy::Compress(contents.data(), contents.size(), &zcontents[i]);
}
}
static constexpr int kFiles = ARRAYSIZE(kTestDataFiles);
std::string zcontents[kFiles];
size_t sizes[kFiles];
size_t max_size = 0;
};
void BM_UFlatMedley(benchmark::State& state) {
static const SourceFiles* const source = new SourceFiles();
std::vector<char> dst(source->max_size);
for (auto s : state) {
for (int i = 0; i < SourceFiles::kFiles; i++) {
CHECK(snappy::RawUncompress(source->zcontents[i].data(),
source->zcontents[i].size(), dst.data()));
benchmark::DoNotOptimize(dst);
}
}
int64_t source_sizes = 0;
for (int i = 0; i < SourceFiles::kFiles; i++) {
source_sizes += static_cast<int64_t>(source->sizes[i]);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
source_sizes);
}
BENCHMARK(BM_UFlatMedley);
void BM_UValidate(benchmark::State& state) {
// Pick file to process based on state.range(0).
int file_index = state.range(0);
CHECK_GE(file_index, 0);
CHECK_LT(file_index, ARRAYSIZE(kTestDataFiles));
std::string contents =
ReadTestDataFile(kTestDataFiles[file_index].filename,
kTestDataFiles[file_index].size_limit);
std::string zcontents;
snappy::Compress(contents.data(), contents.size(), &zcontents);
for (auto s : state) {
CHECK(snappy::IsValidCompressedBuffer(zcontents.data(), zcontents.size()));
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(contents.size()));
state.SetLabel(kTestDataFiles[file_index].label);
}
BENCHMARK(BM_UValidate)->DenseRange(0, ARRAYSIZE(kTestDataFiles) - 1);
void BM_UValidateMedley(benchmark::State& state) {
static const SourceFiles* const source = new SourceFiles();
for (auto s : state) {
for (int i = 0; i < SourceFiles::kFiles; i++) {
CHECK(snappy::IsValidCompressedBuffer(source->zcontents[i].data(),
source->zcontents[i].size()));
}
}
int64_t source_sizes = 0;
for (int i = 0; i < SourceFiles::kFiles; i++) {
source_sizes += static_cast<int64_t>(source->sizes[i]);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
source_sizes);
}
BENCHMARK(BM_UValidateMedley);
void BM_UIOVecSource(benchmark::State& state) {
// Pick file to process based on state.range(0).
int file_index = state.range(0);
CHECK_GE(file_index, 0);
CHECK_LT(file_index, ARRAYSIZE(kTestDataFiles));
std::string contents =
ReadTestDataFile(kTestDataFiles[file_index].filename,
kTestDataFiles[file_index].size_limit);
// Create `iovec`s of the `contents`.
const int kNumEntries = 10;
struct iovec iov[kNumEntries];
size_t used_so_far = 0;
for (int i = 0; i < kNumEntries; ++i) {
iov[i].iov_base = const_cast<char*>(contents.data()) + used_so_far;
if (used_so_far == contents.size()) {
iov[i].iov_len = 0;
continue;
}
if (i == kNumEntries - 1) {
iov[i].iov_len = contents.size() - used_so_far;
} else {
iov[i].iov_len = contents.size() / kNumEntries;
}
used_so_far += iov[i].iov_len;
}
char* dst = new char[snappy::MaxCompressedLength(contents.size())];
size_t zsize = 0;
for (auto s : state) {
snappy::RawCompressFromIOVec(iov, contents.size(), dst, &zsize);
benchmark::DoNotOptimize(iov);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(contents.size()));
const double compression_ratio =
static_cast<double>(zsize) / std::max<size_t>(1, contents.size());
state.SetLabel(StrFormat("%s (%.2f %%)", kTestDataFiles[file_index].label,
100.0 * compression_ratio));
VLOG(0) << StrFormat("compression for %s: %d -> %d bytes",
kTestDataFiles[file_index].label, contents.size(),
zsize);
delete[] dst;
}
BENCHMARK(BM_UIOVecSource)->DenseRange(0, ARRAYSIZE(kTestDataFiles) - 1);
void BM_UIOVecSink(benchmark::State& state) {
// Pick file to process based on state.range(0).
int file_index = state.range(0);
CHECK_GE(file_index, 0);
CHECK_LT(file_index, ARRAYSIZE(kTestDataFiles));
std::string contents =
ReadTestDataFile(kTestDataFiles[file_index].filename,
kTestDataFiles[file_index].size_limit);
std::string zcontents;
snappy::Compress(contents.data(), contents.size(), &zcontents);
// Uncompress into an iovec containing ten entries.
const int kNumEntries = 10;
struct iovec iov[kNumEntries];
char *dst = new char[contents.size()];
size_t used_so_far = 0;
for (int i = 0; i < kNumEntries; ++i) {
iov[i].iov_base = dst + used_so_far;
if (used_so_far == contents.size()) {
iov[i].iov_len = 0;
continue;
}
if (i == kNumEntries - 1) {
iov[i].iov_len = contents.size() - used_so_far;
} else {
iov[i].iov_len = contents.size() / kNumEntries;
}
used_so_far += iov[i].iov_len;
}
for (auto s : state) {
CHECK(snappy::RawUncompressToIOVec(zcontents.data(), zcontents.size(), iov,
kNumEntries));
benchmark::DoNotOptimize(iov);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(contents.size()));
state.SetLabel(kTestDataFiles[file_index].label);
delete[] dst;
}
BENCHMARK(BM_UIOVecSink)->DenseRange(0, 4);
void BM_UFlatSink(benchmark::State& state) {
// Pick file to process based on state.range(0).
int file_index = state.range(0);
CHECK_GE(file_index, 0);
CHECK_LT(file_index, ARRAYSIZE(kTestDataFiles));
std::string contents =
ReadTestDataFile(kTestDataFiles[file_index].filename,
kTestDataFiles[file_index].size_limit);
std::string zcontents;
snappy::Compress(contents.data(), contents.size(), &zcontents);
char* dst = new char[contents.size()];
for (auto s : state) {
snappy::ByteArraySource source(zcontents.data(), zcontents.size());
snappy::UncheckedByteArraySink sink(dst);
CHECK(snappy::Uncompress(&source, &sink));
benchmark::DoNotOptimize(sink);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(contents.size()));
state.SetLabel(kTestDataFiles[file_index].label);
std::string s(dst, contents.size());
CHECK_EQ(contents, s);
delete[] dst;
}
BENCHMARK(BM_UFlatSink)->DenseRange(0, ARRAYSIZE(kTestDataFiles) - 1);
void BM_ZFlat(benchmark::State& state) {
// Pick file to process based on state.range(0).
int file_index = state.range(0);
CHECK_GE(file_index, 0);
CHECK_LT(file_index, ARRAYSIZE(kTestDataFiles));
std::string contents =
ReadTestDataFile(kTestDataFiles[file_index].filename,
kTestDataFiles[file_index].size_limit);
char* dst = new char[snappy::MaxCompressedLength(contents.size())];
size_t zsize = 0;
for (auto s : state) {
snappy::RawCompress(contents.data(), contents.size(), dst, &zsize);
benchmark::DoNotOptimize(dst);
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(contents.size()));
const double compression_ratio =
static_cast<double>(zsize) / std::max<size_t>(1, contents.size());
state.SetLabel(StrFormat("%s (%.2f %%)", kTestDataFiles[file_index].label,
100.0 * compression_ratio));
VLOG(0) << StrFormat("compression for %s: %d -> %d bytes",
kTestDataFiles[file_index].label, contents.size(),
zsize);
delete[] dst;
}
BENCHMARK(BM_ZFlat)->DenseRange(0, ARRAYSIZE(kTestDataFiles) - 1);
void BM_ZFlatAll(benchmark::State& state) {
const int num_files = ARRAYSIZE(kTestDataFiles);
std::vector<std::string> contents(num_files);
std::vector<char*> dst(num_files);
int64_t total_contents_size = 0;
for (int i = 0; i < num_files; ++i) {
contents[i] = ReadTestDataFile(kTestDataFiles[i].filename,
kTestDataFiles[i].size_limit);
dst[i] = new char[snappy::MaxCompressedLength(contents[i].size())];
total_contents_size += contents[i].size();
}
size_t zsize = 0;
for (auto s : state) {
for (int i = 0; i < num_files; ++i) {
snappy::RawCompress(contents[i].data(), contents[i].size(), dst[i],
&zsize);
benchmark::DoNotOptimize(dst);
}
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
total_contents_size);
for (char* dst_item : dst) {
delete[] dst_item;
}
state.SetLabel(StrFormat("%d kTestDataFiles", num_files));
}
BENCHMARK(BM_ZFlatAll);
void BM_ZFlatIncreasingTableSize(benchmark::State& state) {
CHECK_GT(ARRAYSIZE(kTestDataFiles), 0);
const std::string base_content = ReadTestDataFile(
kTestDataFiles[0].filename, kTestDataFiles[0].size_limit);
std::vector<std::string> contents;
std::vector<char*> dst;
int64_t total_contents_size = 0;
for (int table_bits = kMinHashTableBits; table_bits <= kMaxHashTableBits;
++table_bits) {
std::string content = base_content;
content.resize(1 << table_bits);
dst.push_back(new char[snappy::MaxCompressedLength(content.size())]);
total_contents_size += content.size();
contents.push_back(std::move(content));
}
size_t zsize = 0;
for (auto s : state) {
for (size_t i = 0; i < contents.size(); ++i) {
snappy::RawCompress(contents[i].data(), contents[i].size(), dst[i],
&zsize);
benchmark::DoNotOptimize(dst);
}
}
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) *
total_contents_size);
for (char* dst_item : dst) {
delete[] dst_item;
}
state.SetLabel(StrFormat("%d tables", contents.size()));
}
BENCHMARK(BM_ZFlatIncreasingTableSize);
} // namespace
} // namespace snappy