snappy/snappy-test.cc

597 lines
20 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Various stubs for the unit tests for the open-source version of Snappy.
#include "snappy-test.h"
#ifdef HAVE_WINDOWS_H
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <algorithm>
DEFINE_bool(run_microbenchmarks, true,
"Run microbenchmarks before doing anything else.");
namespace snappy {
string ReadTestDataFile(const string& base) {
string contents;
const char* srcdir = getenv("srcdir"); // This is set by Automake.
if (srcdir) {
File::ReadFileToStringOrDie(
string(srcdir) + "/testdata/" + base, &contents);
} else {
File::ReadFileToStringOrDie("testdata/" + base, &contents);
}
return contents;
}
string StringPrintf(const char* format, ...) {
char buf[4096];
va_list ap;
va_start(ap, format);
vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
return buf;
}
bool benchmark_running = false;
int64 benchmark_real_time_us = 0;
int64 benchmark_cpu_time_us = 0;
string *benchmark_label = NULL;
int64 benchmark_bytes_processed = 0;
void ResetBenchmarkTiming() {
benchmark_real_time_us = 0;
benchmark_cpu_time_us = 0;
}
#ifdef WIN32
LARGE_INTEGER benchmark_start_real;
FILETIME benchmark_start_cpu;
#else // WIN32
struct timeval benchmark_start_real;
struct rusage benchmark_start_cpu;
#endif // WIN32
void StartBenchmarkTiming() {
#ifdef WIN32
QueryPerformanceCounter(&benchmark_start_real);
FILETIME dummy;
CHECK(GetProcessTimes(
GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_start_cpu));
#else
gettimeofday(&benchmark_start_real, NULL);
if (getrusage(RUSAGE_SELF, &benchmark_start_cpu) == -1) {
perror("getrusage(RUSAGE_SELF)");
exit(1);
}
#endif
benchmark_running = true;
}
void StopBenchmarkTiming() {
if (!benchmark_running) {
return;
}
#ifdef WIN32
LARGE_INTEGER benchmark_stop_real;
LARGE_INTEGER benchmark_frequency;
QueryPerformanceCounter(&benchmark_stop_real);
QueryPerformanceFrequency(&benchmark_frequency);
double elapsed_real = static_cast<double>(
benchmark_stop_real.QuadPart - benchmark_start_real.QuadPart) /
benchmark_frequency.QuadPart;
benchmark_real_time_us += elapsed_real * 1e6 + 0.5;
FILETIME benchmark_stop_cpu, dummy;
CHECK(GetProcessTimes(
GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_stop_cpu));
ULARGE_INTEGER start_ulargeint;
start_ulargeint.LowPart = benchmark_start_cpu.dwLowDateTime;
start_ulargeint.HighPart = benchmark_start_cpu.dwHighDateTime;
ULARGE_INTEGER stop_ulargeint;
stop_ulargeint.LowPart = benchmark_stop_cpu.dwLowDateTime;
stop_ulargeint.HighPart = benchmark_stop_cpu.dwHighDateTime;
benchmark_cpu_time_us +=
(stop_ulargeint.QuadPart - start_ulargeint.QuadPart + 5) / 10;
#else // WIN32
struct timeval benchmark_stop_real;
gettimeofday(&benchmark_stop_real, NULL);
benchmark_real_time_us +=
1000000 * (benchmark_stop_real.tv_sec - benchmark_start_real.tv_sec);
benchmark_real_time_us +=
(benchmark_stop_real.tv_usec - benchmark_start_real.tv_usec);
struct rusage benchmark_stop_cpu;
if (getrusage(RUSAGE_SELF, &benchmark_stop_cpu) == -1) {
perror("getrusage(RUSAGE_SELF)");
exit(1);
}
benchmark_cpu_time_us += 1000000 * (benchmark_stop_cpu.ru_utime.tv_sec -
benchmark_start_cpu.ru_utime.tv_sec);
benchmark_cpu_time_us += (benchmark_stop_cpu.ru_utime.tv_usec -
benchmark_start_cpu.ru_utime.tv_usec);
#endif // WIN32
benchmark_running = false;
}
void SetBenchmarkLabel(const string& str) {
if (benchmark_label) {
delete benchmark_label;
}
benchmark_label = new string(str);
}
void SetBenchmarkBytesProcessed(int64 bytes) {
benchmark_bytes_processed = bytes;
}
struct BenchmarkRun {
int64 real_time_us;
int64 cpu_time_us;
};
struct BenchmarkCompareCPUTime {
bool operator() (const BenchmarkRun& a, const BenchmarkRun& b) const {
return a.cpu_time_us < b.cpu_time_us;
}
};
void Benchmark::Run() {
for (int test_case_num = start_; test_case_num <= stop_; ++test_case_num) {
// Run a few iterations first to find out approximately how fast
// the benchmark is.
const int kCalibrateIterations = 100;
ResetBenchmarkTiming();
StartBenchmarkTiming();
(*function_)(kCalibrateIterations, test_case_num);
StopBenchmarkTiming();
// Let each test case run for about 200ms, but at least as many
// as we used to calibrate.
// Run five times and pick the median.
const int kNumRuns = 5;
const int kMedianPos = kNumRuns / 2;
int num_iterations = 0;
if (benchmark_real_time_us > 0) {
num_iterations = 200000 * kCalibrateIterations / benchmark_real_time_us;
}
num_iterations = max(num_iterations, kCalibrateIterations);
BenchmarkRun benchmark_runs[kNumRuns];
for (int run = 0; run < kNumRuns; ++run) {
ResetBenchmarkTiming();
StartBenchmarkTiming();
(*function_)(num_iterations, test_case_num);
StopBenchmarkTiming();
benchmark_runs[run].real_time_us = benchmark_real_time_us;
benchmark_runs[run].cpu_time_us = benchmark_cpu_time_us;
}
nth_element(benchmark_runs,
benchmark_runs + kMedianPos,
benchmark_runs + kNumRuns,
BenchmarkCompareCPUTime());
int64 real_time_us = benchmark_runs[kMedianPos].real_time_us;
int64 cpu_time_us = benchmark_runs[kMedianPos].cpu_time_us;
int64 bytes_per_second = benchmark_bytes_processed * 1000000 / cpu_time_us;
string heading = StringPrintf("%s/%d", name_.c_str(), test_case_num);
string human_readable_speed;
if (bytes_per_second < 1024) {
human_readable_speed = StringPrintf("%dB/s", bytes_per_second);
} else if (bytes_per_second < 1024 * 1024) {
human_readable_speed = StringPrintf(
"%.1fkB/s", bytes_per_second / 1024.0f);
} else if (bytes_per_second < 1024 * 1024 * 1024) {
human_readable_speed = StringPrintf(
"%.1fMB/s", bytes_per_second / (1024.0f * 1024.0f));
} else {
human_readable_speed = StringPrintf(
"%.1fGB/s", bytes_per_second / (1024.0f * 1024.0f * 1024.0f));
}
fprintf(stderr,
#ifdef WIN32
"%-18s %10I64d %10I64d %10d %s %s\n",
#else
"%-18s %10lld %10lld %10d %s %s\n",
#endif
heading.c_str(),
static_cast<long long>(real_time_us * 1000 / num_iterations),
static_cast<long long>(cpu_time_us * 1000 / num_iterations),
num_iterations,
human_readable_speed.c_str(),
benchmark_label->c_str());
}
}
#ifdef HAVE_LIBZ
ZLib::ZLib()
: comp_init_(false),
uncomp_init_(false) {
Reinit();
}
ZLib::~ZLib() {
if (comp_init_) { deflateEnd(&comp_stream_); }
if (uncomp_init_) { inflateEnd(&uncomp_stream_); }
}
void ZLib::Reinit() {
compression_level_ = Z_DEFAULT_COMPRESSION;
window_bits_ = MAX_WBITS;
mem_level_ = 8; // DEF_MEM_LEVEL
if (comp_init_) {
deflateEnd(&comp_stream_);
comp_init_ = false;
}
if (uncomp_init_) {
inflateEnd(&uncomp_stream_);
uncomp_init_ = false;
}
first_chunk_ = true;
}
void ZLib::Reset() {
first_chunk_ = true;
}
// --------- COMPRESS MODE
// Initialization method to be called if we hit an error while
// compressing. On hitting an error, call this method before returning
// the error.
void ZLib::CompressErrorInit() {
deflateEnd(&comp_stream_);
comp_init_ = false;
Reset();
}
int ZLib::DeflateInit() {
return deflateInit2(&comp_stream_,
compression_level_,
Z_DEFLATED,
window_bits_,
mem_level_,
Z_DEFAULT_STRATEGY);
}
int ZLib::CompressInit(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen) {
int err;
comp_stream_.next_in = (Bytef*)source;
comp_stream_.avail_in = (uInt)*sourceLen;
if ((uLong)comp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
comp_stream_.next_out = dest;
comp_stream_.avail_out = (uInt)*destLen;
if ((uLong)comp_stream_.avail_out != *destLen) return Z_BUF_ERROR;
if ( !first_chunk_ ) // only need to set up stream the first time through
return Z_OK;
if (comp_init_) { // we've already initted it
err = deflateReset(&comp_stream_);
if (err != Z_OK) {
LOG(WARNING) << "ERROR: Can't reset compress object; creating a new one";
deflateEnd(&comp_stream_);
comp_init_ = false;
}
}
if (!comp_init_) { // first use
comp_stream_.zalloc = (alloc_func)0;
comp_stream_.zfree = (free_func)0;
comp_stream_.opaque = (voidpf)0;
err = DeflateInit();
if (err != Z_OK) return err;
comp_init_ = true;
}
return Z_OK;
}
// In a perfect world we'd always have the full buffer to compress
// when the time came, and we could just call Compress(). Alas, we
// want to do chunked compression on our webserver. In this
// application, we compress the header, send it off, then compress the
// results, send them off, then compress the footer. Thus we need to
// use the chunked compression features of zlib.
int ZLib::CompressAtMostOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen,
int flush_mode) { // Z_FULL_FLUSH or Z_FINISH
int err;
if ( (err=CompressInit(dest, destLen, source, sourceLen)) != Z_OK )
return err;
// This is used to figure out how many bytes we wrote *this chunk*
int compressed_size = comp_stream_.total_out;
// Some setup happens only for the first chunk we compress in a run
if ( first_chunk_ ) {
first_chunk_ = false;
}
// flush_mode is Z_FINISH for all mode, Z_SYNC_FLUSH for incremental
// compression.
err = deflate(&comp_stream_, flush_mode);
const uLong source_bytes_consumed = *sourceLen - comp_stream_.avail_in;
*sourceLen = comp_stream_.avail_in;
if ((err == Z_STREAM_END || err == Z_OK)
&& comp_stream_.avail_in == 0
&& comp_stream_.avail_out != 0 ) {
// we processed everything ok and the output buffer was large enough.
;
} else if (err == Z_STREAM_END && comp_stream_.avail_in > 0) {
return Z_BUF_ERROR; // should never happen
} else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
// an error happened
CompressErrorInit();
return err;
} else if (comp_stream_.avail_out == 0) { // not enough space
err = Z_BUF_ERROR;
}
assert(err == Z_OK || err == Z_STREAM_END || err == Z_BUF_ERROR);
if (err == Z_STREAM_END)
err = Z_OK;
// update the crc and other metadata
compressed_size = comp_stream_.total_out - compressed_size; // delta
*destLen = compressed_size;
return err;
}
int ZLib::CompressChunkOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int flush_mode) { // Z_FULL_FLUSH or Z_FINISH
const int ret =
CompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
if (ret == Z_BUF_ERROR)
CompressErrorInit();
return ret;
}
// This routine only initializes the compression stream once. Thereafter, it
// just does a deflateReset on the stream, which should be faster.
int ZLib::Compress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen) {
int err;
const uLongf orig_destLen = *destLen;
if ( (err=CompressChunkOrAll(dest, destLen, source, sourceLen,
Z_FINISH)) != Z_OK )
return err;
Reset(); // reset for next call to Compress
return Z_OK;
}
// --------- UNCOMPRESS MODE
int ZLib::InflateInit() {
return inflateInit2(&uncomp_stream_, MAX_WBITS);
}
// Initialization method to be called if we hit an error while
// uncompressing. On hitting an error, call this method before
// returning the error.
void ZLib::UncompressErrorInit() {
inflateEnd(&uncomp_stream_);
uncomp_init_ = false;
Reset();
}
int ZLib::UncompressInit(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen) {
int err;
uncomp_stream_.next_in = (Bytef*)source;
uncomp_stream_.avail_in = (uInt)*sourceLen;
// Check for source > 64K on 16-bit machine:
if ((uLong)uncomp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
uncomp_stream_.next_out = dest;
uncomp_stream_.avail_out = (uInt)*destLen;
if ((uLong)uncomp_stream_.avail_out != *destLen) return Z_BUF_ERROR;
if ( !first_chunk_ ) // only need to set up stream the first time through
return Z_OK;
if (uncomp_init_) { // we've already initted it
err = inflateReset(&uncomp_stream_);
if (err != Z_OK) {
LOG(WARNING)
<< "ERROR: Can't reset uncompress object; creating a new one";
UncompressErrorInit();
}
}
if (!uncomp_init_) {
uncomp_stream_.zalloc = (alloc_func)0;
uncomp_stream_.zfree = (free_func)0;
uncomp_stream_.opaque = (voidpf)0;
err = InflateInit();
if (err != Z_OK) return err;
uncomp_init_ = true;
}
return Z_OK;
}
// If you compressed your data a chunk at a time, with CompressChunk,
// you can uncompress it a chunk at a time with UncompressChunk.
// Only difference bewteen chunked and unchunked uncompression
// is the flush mode we use: Z_SYNC_FLUSH (chunked) or Z_FINISH (unchunked).
int ZLib::UncompressAtMostOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen,
int flush_mode) { // Z_SYNC_FLUSH or Z_FINISH
int err = Z_OK;
if ( (err=UncompressInit(dest, destLen, source, sourceLen)) != Z_OK ) {
LOG(WARNING) << "UncompressInit: Error: " << err << " SourceLen: "
<< *sourceLen;
return err;
}
// This is used to figure out how many output bytes we wrote *this chunk*:
const uLong old_total_out = uncomp_stream_.total_out;
// This is used to figure out how many input bytes we read *this chunk*:
const uLong old_total_in = uncomp_stream_.total_in;
// Some setup happens only for the first chunk we compress in a run
if ( first_chunk_ ) {
first_chunk_ = false; // so we don't do this again
// For the first chunk *only* (to avoid infinite troubles), we let
// there be no actual data to uncompress. This sometimes triggers
// when the input is only the gzip header, say.
if ( *sourceLen == 0 ) {
*destLen = 0;
return Z_OK;
}
}
// We'll uncompress as much as we can. If we end OK great, otherwise
// if we get an error that seems to be the gzip footer, we store the
// gzip footer and return OK, otherwise we return the error.
// flush_mode is Z_SYNC_FLUSH for chunked mode, Z_FINISH for all mode.
err = inflate(&uncomp_stream_, flush_mode);
// Figure out how many bytes of the input zlib slurped up:
const uLong bytes_read = uncomp_stream_.total_in - old_total_in;
CHECK_LE(source + bytes_read, source + *sourceLen);
*sourceLen = uncomp_stream_.avail_in;
if ((err == Z_STREAM_END || err == Z_OK) // everything went ok
&& uncomp_stream_.avail_in == 0) { // and we read it all
;
} else if (err == Z_STREAM_END && uncomp_stream_.avail_in > 0) {
LOG(WARNING)
<< "UncompressChunkOrAll: Received some extra data, bytes total: "
<< uncomp_stream_.avail_in << " bytes: "
<< string(reinterpret_cast<const char *>(uncomp_stream_.next_in),
min(int(uncomp_stream_.avail_in), 20));
UncompressErrorInit();
return Z_DATA_ERROR; // what's the extra data for?
} else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
// an error happened
LOG(WARNING) << "UncompressChunkOrAll: Error: " << err
<< " avail_out: " << uncomp_stream_.avail_out;
UncompressErrorInit();
return err;
} else if (uncomp_stream_.avail_out == 0) {
err = Z_BUF_ERROR;
}
assert(err == Z_OK || err == Z_BUF_ERROR || err == Z_STREAM_END);
if (err == Z_STREAM_END)
err = Z_OK;
*destLen = uncomp_stream_.total_out - old_total_out; // size for this call
return err;
}
int ZLib::UncompressChunkOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int flush_mode) { // Z_SYNC_FLUSH or Z_FINISH
const int ret =
UncompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
if (ret == Z_BUF_ERROR)
UncompressErrorInit();
return ret;
}
int ZLib::UncompressAtMost(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen) {
return UncompressAtMostOrAll(dest, destLen, source, sourceLen, Z_SYNC_FLUSH);
}
// We make sure we've uncompressed everything, that is, the current
// uncompress stream is at a compressed-buffer-EOF boundary. In gzip
// mode, we also check the gzip footer to make sure we pass the gzip
// consistency checks. We RETURN true iff both types of checks pass.
bool ZLib::UncompressChunkDone() {
assert(!first_chunk_ && uncomp_init_);
// Make sure we're at the end-of-compressed-data point. This means
// if we call inflate with Z_FINISH we won't consume any input or
// write any output
Bytef dummyin, dummyout;
uLongf dummylen = 0;
if ( UncompressChunkOrAll(&dummyout, &dummylen, &dummyin, 0, Z_FINISH)
!= Z_OK ) {
return false;
}
// Make sure that when we exit, we can start a new round of chunks later
Reset();
return true;
}
// Uncompresses the source buffer into the destination buffer.
// The destination buffer must be long enough to hold the entire
// decompressed contents.
//
// We only initialize the uncomp_stream once. Thereafter, we use
// inflateReset, which should be faster.
//
// Returns Z_OK on success, otherwise, it returns a zlib error code.
int ZLib::Uncompress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen) {
int err;
if ( (err=UncompressChunkOrAll(dest, destLen, source, sourceLen,
Z_FINISH)) != Z_OK ) {
Reset(); // let us try to compress again
return err;
}
if ( !UncompressChunkDone() ) // calls Reset()
return Z_DATA_ERROR;
return Z_OK; // stream_end is ok
}
#endif // HAVE_LIBZ
} // namespace snappy