snappy/snappy-stubs-internal.h
atdt 8f469d97e2 Avoid store-forwarding stalls in Zippy's IncrementalCopy
NEW: Annotate `pattern` as initialized, for MSan.

Snappy's IncrementalCopy routine optimizes for speed by reading and writing
memory in blocks of eight or sixteen bytes. If the gap between the source
and destination pointers is smaller than eight bytes, snappy's strategy is
to expand the gap by issuing a series of partly-overlapping eight-byte
loads+stores. Because the range of each load partly overlaps that of the
store which preceded it, the store buffer cannot be forwarded to the load,
and the load stalls while it waits for the store to retire. This is called a
store-forwarding stall.

We can use fewer loads and avoid most of the stalls by loading the first
eight bytes into an 128-bit XMM register, then using PSHUFB to permute the
register's contents in-place into the desired repeating sequence of bytes.
When falling back to IncrementalCopySlow, use memset if the pattern size == 1.
This eliminates around 60% of the stalls.

name                       old time/op    new time/op    delta
BM_UFlat/0 [html]        48.6µs ± 0%    48.2µs ± 0%   -0.92%        (p=0.000 n=19+18)
BM_UFlat/1 [urls]         589µs ± 0%     576µs ± 0%   -2.17%        (p=0.000 n=19+18)
BM_UFlat/2 [jpg]         7.12µs ± 0%    7.10µs ± 0%     ~           (p=0.071 n=19+18)
BM_UFlat/3 [jpg_200]      162ns ± 0%     151ns ± 0%   -7.06%        (p=0.000 n=19+18)
BM_UFlat/4 [pdf]         8.25µs ± 0%    8.19µs ± 0%   -0.74%        (p=0.000 n=19+18)
BM_UFlat/5 [html4]        218µs ± 0%     218µs ± 0%   +0.09%        (p=0.000 n=17+18)
BM_UFlat/6 [txt1]         191µs ± 0%     189µs ± 0%   -1.12%        (p=0.000 n=19+18)
BM_UFlat/7 [txt2]         168µs ± 0%     167µs ± 0%   -1.01%        (p=0.000 n=19+18)
BM_UFlat/8 [txt3]         502µs ± 0%     499µs ± 0%   -0.52%        (p=0.000 n=19+18)
BM_UFlat/9 [txt4]         704µs ± 0%     695µs ± 0%   -1.26%        (p=0.000 n=19+18)
BM_UFlat/10 [pb]         45.6µs ± 0%    44.2µs ± 0%   -3.13%        (p=0.000 n=19+15)
BM_UFlat/11 [gaviota]     188µs ± 0%     194µs ± 0%   +3.06%        (p=0.000 n=15+18)
BM_UFlat/12 [cp]         15.1µs ± 2%    14.7µs ± 1%   -2.09%        (p=0.000 n=18+18)
BM_UFlat/13 [c]          7.38µs ± 0%    7.36µs ± 0%   -0.28%        (p=0.000 n=16+18)
BM_UFlat/14 [lsp]        2.31µs ± 0%    2.37µs ± 0%   +2.64%        (p=0.000 n=19+18)
BM_UFlat/15 [xls]         984µs ± 0%     909µs ± 0%   -7.59%        (p=0.000 n=19+18)
BM_UFlat/16 [xls_200]     215ns ± 0%     217ns ± 0%   +0.71%        (p=0.000 n=19+15)
BM_UFlat/17 [bin]         289µs ± 0%     287µs ± 0%   -0.71%        (p=0.000 n=19+18)
BM_UFlat/18 [bin_200]     161ns ± 0%     116ns ± 0%  -28.09%        (p=0.000 n=19+16)
BM_UFlat/19 [sum]        31.9µs ± 0%    29.2µs ± 0%   -8.37%        (p=0.000 n=19+18)
BM_UFlat/20 [man]        3.13µs ± 1%    3.07µs ± 0%   -1.79%        (p=0.000 n=19+18)

name                       old allocs/op  new allocs/op  delta
BM_UFlat/0 [html]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/1 [urls]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/2 [jpg]          0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/3 [jpg_200]      0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/4 [pdf]          0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/5 [html4]        0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/6 [txt1]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/7 [txt2]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/8 [txt3]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/9 [txt4]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/10 [pb]          0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/11 [gaviota]     0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/12 [cp]          0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/13 [c]           0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/14 [lsp]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/15 [xls]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/16 [xls_200]     0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/17 [bin]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/18 [bin_200]     0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/19 [sum]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)
BM_UFlat/20 [man]         0.00 ±NaN%     0.00 ±NaN%     ~     (all samples are equal)

name                       old speed      new speed      delta
BM_UFlat/0 [html]      2.11GB/s ± 0%  2.13GB/s ± 0%   +0.92%        (p=0.000 n=19+18)
BM_UFlat/1 [urls]      1.19GB/s ± 0%  1.22GB/s ± 0%   +2.22%        (p=0.000 n=16+17)
BM_UFlat/2 [jpg]       17.3GB/s ± 0%  17.3GB/s ± 0%     ~           (p=0.074 n=19+18)
BM_UFlat/3 [jpg_200]   1.23GB/s ± 0%  1.33GB/s ± 0%   +7.58%        (p=0.000 n=19+18)
BM_UFlat/4 [pdf]       12.4GB/s ± 0%  12.5GB/s ± 0%   +0.74%        (p=0.000 n=19+18)
BM_UFlat/5 [html4]     1.88GB/s ± 0%  1.88GB/s ± 0%   -0.09%        (p=0.000 n=18+18)
BM_UFlat/6 [txt1]       798MB/s ± 0%   807MB/s ± 0%   +1.13%        (p=0.000 n=19+18)
BM_UFlat/7 [txt2]       743MB/s ± 0%   751MB/s ± 0%   +1.02%        (p=0.000 n=19+18)
BM_UFlat/8 [txt3]       850MB/s ± 0%   855MB/s ± 0%   +0.52%        (p=0.000 n=19+18)
BM_UFlat/9 [txt4]       684MB/s ± 0%   693MB/s ± 0%   +1.28%        (p=0.000 n=19+18)
BM_UFlat/10 [pb]       2.60GB/s ± 0%  2.69GB/s ± 0%   +3.25%        (p=0.000 n=19+16)
BM_UFlat/11 [gaviota]   979MB/s ± 0%   950MB/s ± 0%   -2.97%        (p=0.000 n=15+18)
BM_UFlat/12 [cp]       1.63GB/s ± 2%  1.67GB/s ± 1%   +2.13%        (p=0.000 n=18+18)
BM_UFlat/13 [c]        1.51GB/s ± 0%  1.52GB/s ± 0%   +0.29%        (p=0.000 n=16+18)
BM_UFlat/14 [lsp]      1.61GB/s ± 1%  1.57GB/s ± 0%   -2.57%        (p=0.000 n=19+18)
BM_UFlat/15 [xls]      1.05GB/s ± 0%  1.13GB/s ± 0%   +8.22%        (p=0.000 n=19+18)
BM_UFlat/16 [xls_200]   928MB/s ± 0%   921MB/s ± 0%   -0.81%        (p=0.000 n=19+17)
BM_UFlat/17 [bin]      1.78GB/s ± 0%  1.79GB/s ± 0%   +0.71%        (p=0.000 n=19+18)
BM_UFlat/18 [bin_200]  1.24GB/s ± 0%  1.72GB/s ± 0%  +38.92%        (p=0.000 n=19+18)
BM_UFlat/19 [sum]      1.20GB/s ± 0%  1.31GB/s ± 0%   +9.15%        (p=0.000 n=19+18)
BM_UFlat/20 [man]      1.35GB/s ± 1%  1.38GB/s ± 0%   +1.84%        (p=0.000 n=19+18)
2018-08-04 18:51:07 -07:00

574 lines
17 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Various stubs for the open-source version of Snappy.
#ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
#define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#if defined(_MSC_VER)
#include <intrin.h>
#endif // defined(_MSC_VER)
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \
__msan_unpoison((address), (size))
#else
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */
#endif // __has_feature(memory_sanitizer)
#include "snappy-stubs-public.h"
#if defined(__x86_64__)
// Enable 64-bit optimized versions of some routines.
#define ARCH_K8 1
#elif defined(__ppc64__)
#define ARCH_PPC 1
#elif defined(__aarch64__)
#define ARCH_ARM 1
#endif
// Needed by OS X, among others.
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
// The size of an array, if known at compile-time.
// Will give unexpected results if used on a pointer.
// We undefine it first, since some compilers already have a definition.
#ifdef ARRAYSIZE
#undef ARRAYSIZE
#endif
#define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a)))
// Static prediction hints.
#ifdef HAVE_BUILTIN_EXPECT
#define SNAPPY_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define SNAPPY_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define SNAPPY_PREDICT_FALSE(x) x
#define SNAPPY_PREDICT_TRUE(x) x
#endif
// This is only used for recomputing the tag byte table used during
// decompression; for simplicity we just remove it from the open-source
// version (anyone who wants to regenerate it can just do the call
// themselves within main()).
#define DEFINE_bool(flag_name, default_value, description) \
bool FLAGS_ ## flag_name = default_value
#define DECLARE_bool(flag_name) \
extern bool FLAGS_ ## flag_name
namespace snappy {
static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF);
static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL);
// Potentially unaligned loads and stores.
// x86, PowerPC, and ARM64 can simply do these loads and stores native.
#if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || \
defined(__aarch64__)
#define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p))
#define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p))
#define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p))
#define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val))
#define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val))
#define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val))
// ARMv7 and newer support native unaligned accesses, but only of 16-bit
// and 32-bit values (not 64-bit); older versions either raise a fatal signal,
// do an unaligned read and rotate the words around a bit, or do the reads very
// slowly (trip through kernel mode). There's no simple #define that says just
// “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6
// sub-architectures.
//
// This is a mess, but there's not much we can do about it.
//
// To further complicate matters, only LDR instructions (single reads) are
// allowed to be unaligned, not LDRD (two reads) or LDM (many reads). Unless we
// explicitly tell the compiler that these accesses can be unaligned, it can and
// will combine accesses. On armcc, the way to signal this is done by accessing
// through the type (uint32 __packed *), but GCC has no such attribute
// (it ignores __attribute__((packed)) on individual variables). However,
// we can tell it that a _struct_ is unaligned, which has the same effect,
// so we do that.
#elif defined(__arm__) && \
!defined(__ARM_ARCH_4__) && \
!defined(__ARM_ARCH_4T__) && \
!defined(__ARM_ARCH_5__) && \
!defined(__ARM_ARCH_5T__) && \
!defined(__ARM_ARCH_5TE__) && \
!defined(__ARM_ARCH_5TEJ__) && \
!defined(__ARM_ARCH_6__) && \
!defined(__ARM_ARCH_6J__) && \
!defined(__ARM_ARCH_6K__) && \
!defined(__ARM_ARCH_6Z__) && \
!defined(__ARM_ARCH_6ZK__) && \
!defined(__ARM_ARCH_6T2__)
#if __GNUC__
#define ATTRIBUTE_PACKED __attribute__((__packed__))
#else
#define ATTRIBUTE_PACKED
#endif
namespace base {
namespace internal {
struct Unaligned16Struct {
uint16 value;
uint8 dummy; // To make the size non-power-of-two.
} ATTRIBUTE_PACKED;
struct Unaligned32Struct {
uint32 value;
uint8 dummy; // To make the size non-power-of-two.
} ATTRIBUTE_PACKED;
} // namespace internal
} // namespace base
#define UNALIGNED_LOAD16(_p) \
((reinterpret_cast<const ::snappy::base::internal::Unaligned16Struct *>(_p))->value)
#define UNALIGNED_LOAD32(_p) \
((reinterpret_cast<const ::snappy::base::internal::Unaligned32Struct *>(_p))->value)
#define UNALIGNED_STORE16(_p, _val) \
((reinterpret_cast< ::snappy::base::internal::Unaligned16Struct *>(_p))->value = \
(_val))
#define UNALIGNED_STORE32(_p, _val) \
((reinterpret_cast< ::snappy::base::internal::Unaligned32Struct *>(_p))->value = \
(_val))
// TODO(user): NEON supports unaligned 64-bit loads and stores.
// See if that would be more efficient on platforms supporting it,
// at least for copies.
inline uint64 UNALIGNED_LOAD64(const void *p) {
uint64 t;
memcpy(&t, p, sizeof t);
return t;
}
inline void UNALIGNED_STORE64(void *p, uint64 v) {
memcpy(p, &v, sizeof v);
}
#else
// These functions are provided for architectures that don't support
// unaligned loads and stores.
inline uint16 UNALIGNED_LOAD16(const void *p) {
uint16 t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint32 UNALIGNED_LOAD32(const void *p) {
uint32 t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint64 UNALIGNED_LOAD64(const void *p) {
uint64 t;
memcpy(&t, p, sizeof t);
return t;
}
inline void UNALIGNED_STORE16(void *p, uint16 v) {
memcpy(p, &v, sizeof v);
}
inline void UNALIGNED_STORE32(void *p, uint32 v) {
memcpy(p, &v, sizeof v);
}
inline void UNALIGNED_STORE64(void *p, uint64 v) {
memcpy(p, &v, sizeof v);
}
#endif
// The following guarantees declaration of the byte swap functions.
#if defined(SNAPPY_IS_BIG_ENDIAN)
#ifdef HAVE_SYS_BYTEORDER_H
#include <sys/byteorder.h>
#endif
#ifdef HAVE_SYS_ENDIAN_H
#include <sys/endian.h>
#endif
#ifdef _MSC_VER
#include <stdlib.h>
#define bswap_16(x) _byteswap_ushort(x)
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)
#elif defined(__APPLE__)
// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#elif defined(HAVE_BYTESWAP_H)
#include <byteswap.h>
#elif defined(bswap32)
// FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included).
#define bswap_16(x) bswap16(x)
#define bswap_32(x) bswap32(x)
#define bswap_64(x) bswap64(x)
#elif defined(BSWAP_64)
// Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included).
#define bswap_16(x) BSWAP_16(x)
#define bswap_32(x) BSWAP_32(x)
#define bswap_64(x) BSWAP_64(x)
#else
inline uint16 bswap_16(uint16 x) {
return (x << 8) | (x >> 8);
}
inline uint32 bswap_32(uint32 x) {
x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8);
return (x >> 16) | (x << 16);
}
inline uint64 bswap_64(uint64 x) {
x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8);
x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16);
return (x >> 32) | (x << 32);
}
#endif
#endif // defined(SNAPPY_IS_BIG_ENDIAN)
// Convert to little-endian storage, opposite of network format.
// Convert x from host to little endian: x = LittleEndian.FromHost(x);
// convert x from little endian to host: x = LittleEndian.ToHost(x);
//
// Store values into unaligned memory converting to little endian order:
// LittleEndian.Store16(p, x);
//
// Load unaligned values stored in little endian converting to host order:
// x = LittleEndian.Load16(p);
class LittleEndian {
public:
// Conversion functions.
#if defined(SNAPPY_IS_BIG_ENDIAN)
static uint16 FromHost16(uint16 x) { return bswap_16(x); }
static uint16 ToHost16(uint16 x) { return bswap_16(x); }
static uint32 FromHost32(uint32 x) { return bswap_32(x); }
static uint32 ToHost32(uint32 x) { return bswap_32(x); }
static bool IsLittleEndian() { return false; }
#else // !defined(SNAPPY_IS_BIG_ENDIAN)
static uint16 FromHost16(uint16 x) { return x; }
static uint16 ToHost16(uint16 x) { return x; }
static uint32 FromHost32(uint32 x) { return x; }
static uint32 ToHost32(uint32 x) { return x; }
static bool IsLittleEndian() { return true; }
#endif // !defined(SNAPPY_IS_BIG_ENDIAN)
// Functions to do unaligned loads and stores in little-endian order.
static uint16 Load16(const void *p) {
return ToHost16(UNALIGNED_LOAD16(p));
}
static void Store16(void *p, uint16 v) {
UNALIGNED_STORE16(p, FromHost16(v));
}
static uint32 Load32(const void *p) {
return ToHost32(UNALIGNED_LOAD32(p));
}
static void Store32(void *p, uint32 v) {
UNALIGNED_STORE32(p, FromHost32(v));
}
};
// Some bit-manipulation functions.
class Bits {
public:
// Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0.
static int Log2Floor(uint32 n);
// Return the first set least / most significant bit, 0-indexed. Returns an
// undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except
// that it's 0-indexed.
static int FindLSBSetNonZero(uint32 n);
#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
static int FindLSBSetNonZero64(uint64 n);
#endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
private:
// No copying
Bits(const Bits&);
void operator=(const Bits&);
};
#ifdef HAVE_BUILTIN_CTZ
inline int Bits::Log2Floor(uint32 n) {
return n == 0 ? -1 : 31 ^ __builtin_clz(n);
}
inline int Bits::FindLSBSetNonZero(uint32 n) {
return __builtin_ctz(n);
}
#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
inline int Bits::FindLSBSetNonZero64(uint64 n) {
return __builtin_ctzll(n);
}
#endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
#elif defined(_MSC_VER)
inline int Bits::Log2Floor(uint32 n) {
unsigned long where;
if (_BitScanReverse(&where, n)) {
return where;
} else {
return -1;
}
}
inline int Bits::FindLSBSetNonZero(uint32 n) {
unsigned long where;
if (_BitScanForward(&where, n)) return static_cast<int>(where);
return 32;
}
#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
inline int Bits::FindLSBSetNonZero64(uint64 n) {
unsigned long where;
if (_BitScanForward64(&where, n)) return static_cast<int>(where);
return 64;
}
#endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
#else // Portable versions.
inline int Bits::Log2Floor(uint32 n) {
if (n == 0)
return -1;
int log = 0;
uint32 value = n;
for (int i = 4; i >= 0; --i) {
int shift = (1 << i);
uint32 x = value >> shift;
if (x != 0) {
value = x;
log += shift;
}
}
assert(value == 1);
return log;
}
inline int Bits::FindLSBSetNonZero(uint32 n) {
int rc = 31;
for (int i = 4, shift = 1 << 4; i >= 0; --i) {
const uint32 x = n << shift;
if (x != 0) {
n = x;
rc -= shift;
}
shift >>= 1;
}
return rc;
}
#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
// FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero().
inline int Bits::FindLSBSetNonZero64(uint64 n) {
const uint32 bottombits = static_cast<uint32>(n);
if (bottombits == 0) {
// Bottom bits are zero, so scan in top bits
return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32));
} else {
return FindLSBSetNonZero(bottombits);
}
}
#endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
#endif // End portable versions.
// Variable-length integer encoding.
class Varint {
public:
// Maximum lengths of varint encoding of uint32.
static const int kMax32 = 5;
// Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
// Never reads a character at or beyond limit. If a valid/terminated varint32
// was found in the range, stores it in *OUTPUT and returns a pointer just
// past the last byte of the varint32. Else returns NULL. On success,
// "result <= limit".
static const char* Parse32WithLimit(const char* ptr, const char* limit,
uint32* OUTPUT);
// REQUIRES "ptr" points to a buffer of length sufficient to hold "v".
// EFFECTS Encodes "v" into "ptr" and returns a pointer to the
// byte just past the last encoded byte.
static char* Encode32(char* ptr, uint32 v);
// EFFECTS Appends the varint representation of "value" to "*s".
static void Append32(string* s, uint32 value);
};
inline const char* Varint::Parse32WithLimit(const char* p,
const char* l,
uint32* OUTPUT) {
const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p);
const unsigned char* limit = reinterpret_cast<const unsigned char*>(l);
uint32 b, result;
if (ptr >= limit) return NULL;
b = *(ptr++); result = b & 127; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done;
return NULL; // Value is too long to be a varint32
done:
*OUTPUT = result;
return reinterpret_cast<const char*>(ptr);
}
inline char* Varint::Encode32(char* sptr, uint32 v) {
// Operate on characters as unsigneds
unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr);
static const int B = 128;
if (v < (1<<7)) {
*(ptr++) = v;
} else if (v < (1<<14)) {
*(ptr++) = v | B;
*(ptr++) = v>>7;
} else if (v < (1<<21)) {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = v>>14;
} else if (v < (1<<28)) {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = (v>>14) | B;
*(ptr++) = v>>21;
} else {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = (v>>14) | B;
*(ptr++) = (v>>21) | B;
*(ptr++) = v>>28;
}
return reinterpret_cast<char*>(ptr);
}
// If you know the internal layout of the std::string in use, you can
// replace this function with one that resizes the string without
// filling the new space with zeros (if applicable) --
// it will be non-portable but faster.
inline void STLStringResizeUninitialized(string* s, size_t new_size) {
s->resize(new_size);
}
// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530)
// proposes this as the method. It will officially be part of the standard
// for C++0x. This should already work on all current implementations.
inline char* string_as_array(string* str) {
return str->empty() ? NULL : &*str->begin();
}
} // namespace snappy
#endif // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_