mirror of
https://github.com/google/snappy.git
synced 2024-11-30 22:42:07 +00:00
6c6e890ef9
The existing code uses a series of 8bit loads with shifts and ors to emulate an (unaligned) load of a larger type. These are then expected to become single loads in the compiler, producing optimal assembly. Whilst this is true it happens very late in the compiler, meaning that throughout most of the pipeline it is treated (and cost-modelled) as multiple loads, shifts and ors. This can make the compiler make poor decisions (such as not unrolling loops that should be), or to break up the pattern before it is turned into a single load. For example the loops in CompressFragment do not get unrolled as expected due to a higher cost than the unroll threshold in clang. Instead this patch uses a more conventional methods of loading unaligned data, using a memcpy directly which the compiler will be able to deal with much more straight forwardly, modelling it as a single unaligned load. The old code is left as-is for big-endian systems. This helps improve the performance of the BM_ZFlat benchmarks by up to 10-15% on an Arm Neoverse N1. Change-Id: I986f845ebd0a0806d052d2be3e4dbcbee91713d7
517 lines
16 KiB
C++
517 lines
16 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Various stubs for the open-source version of Snappy.
|
|
|
|
#ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
|
|
#define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
|
|
|
|
#if HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <cassert>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
#if HAVE_SYS_MMAN_H
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#if HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
#endif // defined(_MSC_VER)
|
|
|
|
#ifndef __has_feature
|
|
#define __has_feature(x) 0
|
|
#endif
|
|
|
|
#if __has_feature(memory_sanitizer)
|
|
#include <sanitizer/msan_interface.h>
|
|
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \
|
|
__msan_unpoison((address), (size))
|
|
#else
|
|
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */
|
|
#endif // __has_feature(memory_sanitizer)
|
|
|
|
#include "snappy-stubs-public.h"
|
|
|
|
// Used to enable 64-bit optimized versions of some routines.
|
|
#if defined(__PPC64__) || defined(__powerpc64__)
|
|
#define ARCH_PPC 1
|
|
#elif defined(__aarch64__) || defined(_M_ARM64)
|
|
#define ARCH_ARM 1
|
|
#endif
|
|
|
|
// Needed by OS X, among others.
|
|
#ifndef MAP_ANONYMOUS
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
// The size of an array, if known at compile-time.
|
|
// Will give unexpected results if used on a pointer.
|
|
// We undefine it first, since some compilers already have a definition.
|
|
#ifdef ARRAYSIZE
|
|
#undef ARRAYSIZE
|
|
#endif
|
|
#define ARRAYSIZE(a) int{sizeof(a) / sizeof(*(a))}
|
|
|
|
// Static prediction hints.
|
|
#if HAVE_BUILTIN_EXPECT
|
|
#define SNAPPY_PREDICT_FALSE(x) (__builtin_expect(x, 0))
|
|
#define SNAPPY_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
|
|
#else
|
|
#define SNAPPY_PREDICT_FALSE(x) x
|
|
#define SNAPPY_PREDICT_TRUE(x) x
|
|
#endif // HAVE_BUILTIN_EXPECT
|
|
|
|
// Inlining hints.
|
|
#if HAVE_ATTRIBUTE_ALWAYS_INLINE
|
|
#define SNAPPY_ATTRIBUTE_ALWAYS_INLINE __attribute__((always_inline))
|
|
#else
|
|
#define SNAPPY_ATTRIBUTE_ALWAYS_INLINE
|
|
#endif // HAVE_ATTRIBUTE_ALWAYS_INLINE
|
|
|
|
// Stubbed version of ABSL_FLAG.
|
|
//
|
|
// In the open source version, flags can only be changed at compile time.
|
|
#define SNAPPY_FLAG(flag_type, flag_name, default_value, help) \
|
|
flag_type FLAGS_ ## flag_name = default_value
|
|
|
|
namespace snappy {
|
|
|
|
// Stubbed version of absl::GetFlag().
|
|
template <typename T>
|
|
inline T GetFlag(T flag) { return flag; }
|
|
|
|
static const uint32_t kuint32max = std::numeric_limits<uint32_t>::max();
|
|
static const int64_t kint64max = std::numeric_limits<int64_t>::max();
|
|
|
|
// Potentially unaligned loads and stores.
|
|
|
|
inline uint16_t UNALIGNED_LOAD16(const void *p) {
|
|
// Compiles to a single movzx/ldrh on clang/gcc/msvc.
|
|
uint16_t v;
|
|
std::memcpy(&v, p, sizeof(v));
|
|
return v;
|
|
}
|
|
|
|
inline uint32_t UNALIGNED_LOAD32(const void *p) {
|
|
// Compiles to a single mov/ldr on clang/gcc/msvc.
|
|
uint32_t v;
|
|
std::memcpy(&v, p, sizeof(v));
|
|
return v;
|
|
}
|
|
|
|
inline uint64_t UNALIGNED_LOAD64(const void *p) {
|
|
// Compiles to a single mov/ldr on clang/gcc/msvc.
|
|
uint64_t v;
|
|
std::memcpy(&v, p, sizeof(v));
|
|
return v;
|
|
}
|
|
|
|
inline void UNALIGNED_STORE16(void *p, uint16_t v) {
|
|
// Compiles to a single mov/strh on clang/gcc/msvc.
|
|
std::memcpy(p, &v, sizeof(v));
|
|
}
|
|
|
|
inline void UNALIGNED_STORE32(void *p, uint32_t v) {
|
|
// Compiles to a single mov/str on clang/gcc/msvc.
|
|
std::memcpy(p, &v, sizeof(v));
|
|
}
|
|
|
|
inline void UNALIGNED_STORE64(void *p, uint64_t v) {
|
|
// Compiles to a single mov/str on clang/gcc/msvc.
|
|
std::memcpy(p, &v, sizeof(v));
|
|
}
|
|
|
|
// Convert to little-endian storage, opposite of network format.
|
|
// Convert x from host to little endian: x = LittleEndian.FromHost(x);
|
|
// convert x from little endian to host: x = LittleEndian.ToHost(x);
|
|
//
|
|
// Store values into unaligned memory converting to little endian order:
|
|
// LittleEndian.Store16(p, x);
|
|
//
|
|
// Load unaligned values stored in little endian converting to host order:
|
|
// x = LittleEndian.Load16(p);
|
|
class LittleEndian {
|
|
public:
|
|
// Functions to do unaligned loads and stores in little-endian order.
|
|
static inline uint16_t Load16(const void *ptr) {
|
|
// Compiles to a single mov/str on recent clang and gcc.
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr);
|
|
return (static_cast<uint16_t>(buffer[0])) |
|
|
(static_cast<uint16_t>(buffer[1]) << 8);
|
|
#else
|
|
uint16_t x;
|
|
memcpy(&x, ptr, 2);
|
|
return x;
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t Load32(const void *ptr) {
|
|
// Compiles to a single mov/str on recent clang and gcc.
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr);
|
|
return (static_cast<uint32_t>(buffer[0])) |
|
|
(static_cast<uint32_t>(buffer[1]) << 8) |
|
|
(static_cast<uint32_t>(buffer[2]) << 16) |
|
|
(static_cast<uint32_t>(buffer[3]) << 24);
|
|
#else
|
|
uint32_t x;
|
|
memcpy(&x, ptr, 4);
|
|
return x;
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t Load64(const void *ptr) {
|
|
// Compiles to a single mov/str on recent clang and gcc.
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr);
|
|
return (static_cast<uint64_t>(buffer[0])) |
|
|
(static_cast<uint64_t>(buffer[1]) << 8) |
|
|
(static_cast<uint64_t>(buffer[2]) << 16) |
|
|
(static_cast<uint64_t>(buffer[3]) << 24) |
|
|
(static_cast<uint64_t>(buffer[4]) << 32) |
|
|
(static_cast<uint64_t>(buffer[5]) << 40) |
|
|
(static_cast<uint64_t>(buffer[6]) << 48) |
|
|
(static_cast<uint64_t>(buffer[7]) << 56);
|
|
#else
|
|
uint64_t x;
|
|
memcpy(&x, ptr, 8);
|
|
return x;
|
|
#endif
|
|
}
|
|
|
|
static inline void Store16(void *dst, uint16_t value) {
|
|
// Compiles to a single mov/str on recent clang and gcc.
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst);
|
|
buffer[0] = static_cast<uint8_t>(value);
|
|
buffer[1] = static_cast<uint8_t>(value >> 8);
|
|
#else
|
|
memcpy(dst, &value, 2);
|
|
#endif
|
|
}
|
|
|
|
static void Store32(void *dst, uint32_t value) {
|
|
// Compiles to a single mov/str on recent clang and gcc.
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst);
|
|
buffer[0] = static_cast<uint8_t>(value);
|
|
buffer[1] = static_cast<uint8_t>(value >> 8);
|
|
buffer[2] = static_cast<uint8_t>(value >> 16);
|
|
buffer[3] = static_cast<uint8_t>(value >> 24);
|
|
#else
|
|
memcpy(dst, &value, 4);
|
|
#endif
|
|
}
|
|
|
|
static void Store64(void* dst, uint64_t value) {
|
|
// Compiles to a single mov/str on recent clang and gcc.
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst);
|
|
buffer[0] = static_cast<uint8_t>(value);
|
|
buffer[1] = static_cast<uint8_t>(value >> 8);
|
|
buffer[2] = static_cast<uint8_t>(value >> 16);
|
|
buffer[3] = static_cast<uint8_t>(value >> 24);
|
|
buffer[4] = static_cast<uint8_t>(value >> 32);
|
|
buffer[5] = static_cast<uint8_t>(value >> 40);
|
|
buffer[6] = static_cast<uint8_t>(value >> 48);
|
|
buffer[7] = static_cast<uint8_t>(value >> 56);
|
|
#else
|
|
memcpy(dst, &value, 8);
|
|
#endif
|
|
}
|
|
|
|
static inline constexpr bool IsLittleEndian() {
|
|
#if SNAPPY_IS_BIG_ENDIAN
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif // SNAPPY_IS_BIG_ENDIAN
|
|
}
|
|
};
|
|
|
|
// Some bit-manipulation functions.
|
|
class Bits {
|
|
public:
|
|
// Return floor(log2(n)) for positive integer n.
|
|
static int Log2FloorNonZero(uint32_t n);
|
|
|
|
// Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0.
|
|
static int Log2Floor(uint32_t n);
|
|
|
|
// Return the first set least / most significant bit, 0-indexed. Returns an
|
|
// undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except
|
|
// that it's 0-indexed.
|
|
static int FindLSBSetNonZero(uint32_t n);
|
|
|
|
static int FindLSBSetNonZero64(uint64_t n);
|
|
|
|
private:
|
|
// No copying
|
|
Bits(const Bits&);
|
|
void operator=(const Bits&);
|
|
};
|
|
|
|
#if HAVE_BUILTIN_CTZ
|
|
|
|
inline int Bits::Log2FloorNonZero(uint32_t n) {
|
|
assert(n != 0);
|
|
// (31 ^ x) is equivalent to (31 - x) for x in [0, 31]. An easy proof
|
|
// represents subtraction in base 2 and observes that there's no carry.
|
|
//
|
|
// GCC and Clang represent __builtin_clz on x86 as 31 ^ _bit_scan_reverse(x).
|
|
// Using "31 ^" here instead of "31 -" allows the optimizer to strip the
|
|
// function body down to _bit_scan_reverse(x).
|
|
return 31 ^ __builtin_clz(n);
|
|
}
|
|
|
|
inline int Bits::Log2Floor(uint32_t n) {
|
|
return (n == 0) ? -1 : Bits::Log2FloorNonZero(n);
|
|
}
|
|
|
|
inline int Bits::FindLSBSetNonZero(uint32_t n) {
|
|
assert(n != 0);
|
|
return __builtin_ctz(n);
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
inline int Bits::Log2FloorNonZero(uint32_t n) {
|
|
assert(n != 0);
|
|
// NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
|
|
unsigned long where;
|
|
_BitScanReverse(&where, n);
|
|
return static_cast<int>(where);
|
|
}
|
|
|
|
inline int Bits::Log2Floor(uint32_t n) {
|
|
// NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
|
|
unsigned long where;
|
|
if (_BitScanReverse(&where, n))
|
|
return static_cast<int>(where);
|
|
return -1;
|
|
}
|
|
|
|
inline int Bits::FindLSBSetNonZero(uint32_t n) {
|
|
assert(n != 0);
|
|
// NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
|
|
unsigned long where;
|
|
if (_BitScanForward(&where, n))
|
|
return static_cast<int>(where);
|
|
return 32;
|
|
}
|
|
|
|
#else // Portable versions.
|
|
|
|
inline int Bits::Log2FloorNonZero(uint32_t n) {
|
|
assert(n != 0);
|
|
|
|
int log = 0;
|
|
uint32_t value = n;
|
|
for (int i = 4; i >= 0; --i) {
|
|
int shift = (1 << i);
|
|
uint32_t x = value >> shift;
|
|
if (x != 0) {
|
|
value = x;
|
|
log += shift;
|
|
}
|
|
}
|
|
assert(value == 1);
|
|
return log;
|
|
}
|
|
|
|
inline int Bits::Log2Floor(uint32_t n) {
|
|
return (n == 0) ? -1 : Bits::Log2FloorNonZero(n);
|
|
}
|
|
|
|
inline int Bits::FindLSBSetNonZero(uint32_t n) {
|
|
assert(n != 0);
|
|
|
|
int rc = 31;
|
|
for (int i = 4, shift = 1 << 4; i >= 0; --i) {
|
|
const uint32_t x = n << shift;
|
|
if (x != 0) {
|
|
n = x;
|
|
rc -= shift;
|
|
}
|
|
shift >>= 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#endif // End portable versions.
|
|
|
|
#if HAVE_BUILTIN_CTZ
|
|
|
|
inline int Bits::FindLSBSetNonZero64(uint64_t n) {
|
|
assert(n != 0);
|
|
return __builtin_ctzll(n);
|
|
}
|
|
|
|
#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64))
|
|
// _BitScanForward64() is only available on x64 and ARM64.
|
|
|
|
inline int Bits::FindLSBSetNonZero64(uint64_t n) {
|
|
assert(n != 0);
|
|
// NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
|
|
unsigned long where;
|
|
if (_BitScanForward64(&where, n))
|
|
return static_cast<int>(where);
|
|
return 64;
|
|
}
|
|
|
|
#else // Portable version.
|
|
|
|
// FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero().
|
|
inline int Bits::FindLSBSetNonZero64(uint64_t n) {
|
|
assert(n != 0);
|
|
|
|
const uint32_t bottombits = static_cast<uint32_t>(n);
|
|
if (bottombits == 0) {
|
|
// Bottom bits are zero, so scan the top bits.
|
|
return 32 + FindLSBSetNonZero(static_cast<uint32_t>(n >> 32));
|
|
} else {
|
|
return FindLSBSetNonZero(bottombits);
|
|
}
|
|
}
|
|
|
|
#endif // HAVE_BUILTIN_CTZ
|
|
|
|
// Variable-length integer encoding.
|
|
class Varint {
|
|
public:
|
|
// Maximum lengths of varint encoding of uint32_t.
|
|
static const int kMax32 = 5;
|
|
|
|
// Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
|
|
// Never reads a character at or beyond limit. If a valid/terminated varint32
|
|
// was found in the range, stores it in *OUTPUT and returns a pointer just
|
|
// past the last byte of the varint32. Else returns NULL. On success,
|
|
// "result <= limit".
|
|
static const char* Parse32WithLimit(const char* ptr, const char* limit,
|
|
uint32_t* OUTPUT);
|
|
|
|
// REQUIRES "ptr" points to a buffer of length sufficient to hold "v".
|
|
// EFFECTS Encodes "v" into "ptr" and returns a pointer to the
|
|
// byte just past the last encoded byte.
|
|
static char* Encode32(char* ptr, uint32_t v);
|
|
|
|
// EFFECTS Appends the varint representation of "value" to "*s".
|
|
static void Append32(std::string* s, uint32_t value);
|
|
};
|
|
|
|
inline const char* Varint::Parse32WithLimit(const char* p,
|
|
const char* l,
|
|
uint32_t* OUTPUT) {
|
|
const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p);
|
|
const unsigned char* limit = reinterpret_cast<const unsigned char*>(l);
|
|
uint32_t b, result;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result = b & 127; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done;
|
|
if (ptr >= limit) return NULL;
|
|
b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done;
|
|
return NULL; // Value is too long to be a varint32
|
|
done:
|
|
*OUTPUT = result;
|
|
return reinterpret_cast<const char*>(ptr);
|
|
}
|
|
|
|
inline char* Varint::Encode32(char* sptr, uint32_t v) {
|
|
// Operate on characters as unsigneds
|
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(sptr);
|
|
static const uint8_t B = 128;
|
|
if (v < (1 << 7)) {
|
|
*(ptr++) = static_cast<uint8_t>(v);
|
|
} else if (v < (1 << 14)) {
|
|
*(ptr++) = static_cast<uint8_t>(v | B);
|
|
*(ptr++) = static_cast<uint8_t>(v >> 7);
|
|
} else if (v < (1 << 21)) {
|
|
*(ptr++) = static_cast<uint8_t>(v | B);
|
|
*(ptr++) = static_cast<uint8_t>((v >> 7) | B);
|
|
*(ptr++) = static_cast<uint8_t>(v >> 14);
|
|
} else if (v < (1 << 28)) {
|
|
*(ptr++) = static_cast<uint8_t>(v | B);
|
|
*(ptr++) = static_cast<uint8_t>((v >> 7) | B);
|
|
*(ptr++) = static_cast<uint8_t>((v >> 14) | B);
|
|
*(ptr++) = static_cast<uint8_t>(v >> 21);
|
|
} else {
|
|
*(ptr++) = static_cast<uint8_t>(v | B);
|
|
*(ptr++) = static_cast<uint8_t>((v>>7) | B);
|
|
*(ptr++) = static_cast<uint8_t>((v>>14) | B);
|
|
*(ptr++) = static_cast<uint8_t>((v>>21) | B);
|
|
*(ptr++) = static_cast<uint8_t>(v >> 28);
|
|
}
|
|
return reinterpret_cast<char*>(ptr);
|
|
}
|
|
|
|
// If you know the internal layout of the std::string in use, you can
|
|
// replace this function with one that resizes the string without
|
|
// filling the new space with zeros (if applicable) --
|
|
// it will be non-portable but faster.
|
|
inline void STLStringResizeUninitialized(std::string* s, size_t new_size) {
|
|
s->resize(new_size);
|
|
}
|
|
|
|
// Return a mutable char* pointing to a string's internal buffer,
|
|
// which may not be null-terminated. Writing through this pointer will
|
|
// modify the string.
|
|
//
|
|
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
|
|
// next call to a string method that invalidates iterators.
|
|
//
|
|
// As of 2006-04, there is no standard-blessed way of getting a
|
|
// mutable reference to a string's internal buffer. However, issue 530
|
|
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530)
|
|
// proposes this as the method. It will officially be part of the standard
|
|
// for C++0x. This should already work on all current implementations.
|
|
inline char* string_as_array(std::string* str) {
|
|
return str->empty() ? NULL : &*str->begin();
|
|
}
|
|
|
|
} // namespace snappy
|
|
|
|
#endif // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
|