mirror of
https://github.com/google/snappy.git
synced 2024-11-30 22:42:07 +00:00
4c7f2d5dfb
PiperOrigin-RevId: 257518137
1497 lines
49 KiB
C++
1497 lines
49 KiB
C++
// Copyright 2005 and onwards Google Inc.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <random>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "snappy.h"
|
|
#include "snappy-internal.h"
|
|
#include "snappy-test.h"
|
|
#include "snappy-sinksource.h"
|
|
|
|
DEFINE_int32(start_len, -1,
|
|
"Starting prefix size for testing (-1: just full file contents)");
|
|
DEFINE_int32(end_len, -1,
|
|
"Starting prefix size for testing (-1: just full file contents)");
|
|
DEFINE_int32(bytes, 10485760,
|
|
"How many bytes to compress/uncompress per file for timing");
|
|
|
|
DEFINE_bool(zlib, false,
|
|
"Run zlib compression (http://www.zlib.net)");
|
|
DEFINE_bool(lzo, false,
|
|
"Run LZO compression (http://www.oberhumer.com/opensource/lzo/)");
|
|
DEFINE_bool(snappy, true, "Run snappy compression");
|
|
|
|
DEFINE_bool(write_compressed, false,
|
|
"Write compressed versions of each file to <file>.comp");
|
|
DEFINE_bool(write_uncompressed, false,
|
|
"Write uncompressed versions of each file to <file>.uncomp");
|
|
|
|
DEFINE_bool(snappy_dump_decompression_table, false,
|
|
"If true, we print the decompression table during tests.");
|
|
|
|
namespace snappy {
|
|
|
|
#if defined(HAVE_FUNC_MMAP) && defined(HAVE_FUNC_SYSCONF)
|
|
|
|
// To test against code that reads beyond its input, this class copies a
|
|
// string to a newly allocated group of pages, the last of which
|
|
// is made unreadable via mprotect. Note that we need to allocate the
|
|
// memory with mmap(), as POSIX allows mprotect() only on memory allocated
|
|
// with mmap(), and some malloc/posix_memalign implementations expect to
|
|
// be able to read previously allocated memory while doing heap allocations.
|
|
class DataEndingAtUnreadablePage {
|
|
public:
|
|
explicit DataEndingAtUnreadablePage(const string& s) {
|
|
const size_t page_size = sysconf(_SC_PAGESIZE);
|
|
const size_t size = s.size();
|
|
// Round up space for string to a multiple of page_size.
|
|
size_t space_for_string = (size + page_size - 1) & ~(page_size - 1);
|
|
alloc_size_ = space_for_string + page_size;
|
|
mem_ = mmap(NULL, alloc_size_,
|
|
PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
CHECK_NE(MAP_FAILED, mem_);
|
|
protected_page_ = reinterpret_cast<char*>(mem_) + space_for_string;
|
|
char* dst = protected_page_ - size;
|
|
memcpy(dst, s.data(), size);
|
|
data_ = dst;
|
|
size_ = size;
|
|
// Make guard page unreadable.
|
|
CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_NONE));
|
|
}
|
|
|
|
~DataEndingAtUnreadablePage() {
|
|
const size_t page_size = sysconf(_SC_PAGESIZE);
|
|
// Undo the mprotect.
|
|
CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_READ|PROT_WRITE));
|
|
CHECK_EQ(0, munmap(mem_, alloc_size_));
|
|
}
|
|
|
|
const char* data() const { return data_; }
|
|
size_t size() const { return size_; }
|
|
|
|
private:
|
|
size_t alloc_size_;
|
|
void* mem_;
|
|
char* protected_page_;
|
|
const char* data_;
|
|
size_t size_;
|
|
};
|
|
|
|
#else // defined(HAVE_FUNC_MMAP) && defined(HAVE_FUNC_SYSCONF)
|
|
|
|
// Fallback for systems without mmap.
|
|
typedef string DataEndingAtUnreadablePage;
|
|
|
|
#endif
|
|
|
|
enum CompressorType {
|
|
ZLIB, LZO, SNAPPY
|
|
};
|
|
|
|
const char* names[] = {
|
|
"ZLIB", "LZO", "SNAPPY"
|
|
};
|
|
|
|
static size_t MinimumRequiredOutputSpace(size_t input_size,
|
|
CompressorType comp) {
|
|
switch (comp) {
|
|
#ifdef ZLIB_VERSION
|
|
case ZLIB:
|
|
return ZLib::MinCompressbufSize(input_size);
|
|
#endif // ZLIB_VERSION
|
|
|
|
#ifdef LZO_VERSION
|
|
case LZO:
|
|
return input_size + input_size/64 + 16 + 3;
|
|
#endif // LZO_VERSION
|
|
|
|
case SNAPPY:
|
|
return snappy::MaxCompressedLength(input_size);
|
|
|
|
default:
|
|
LOG(FATAL) << "Unknown compression type number " << comp;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Returns true if we successfully compressed, false otherwise.
|
|
//
|
|
// If compressed_is_preallocated is set, do not resize the compressed buffer.
|
|
// This is typically what you want for a benchmark, in order to not spend
|
|
// time in the memory allocator. If you do set this flag, however,
|
|
// "compressed" must be preinitialized to at least MinCompressbufSize(comp)
|
|
// number of bytes, and may contain junk bytes at the end after return.
|
|
static bool Compress(const char* input, size_t input_size, CompressorType comp,
|
|
string* compressed, bool compressed_is_preallocated) {
|
|
if (!compressed_is_preallocated) {
|
|
compressed->resize(MinimumRequiredOutputSpace(input_size, comp));
|
|
}
|
|
|
|
switch (comp) {
|
|
#ifdef ZLIB_VERSION
|
|
case ZLIB: {
|
|
ZLib zlib;
|
|
uLongf destlen = compressed->size();
|
|
int ret = zlib.Compress(
|
|
reinterpret_cast<Bytef*>(string_as_array(compressed)),
|
|
&destlen,
|
|
reinterpret_cast<const Bytef*>(input),
|
|
input_size);
|
|
CHECK_EQ(Z_OK, ret);
|
|
if (!compressed_is_preallocated) {
|
|
compressed->resize(destlen);
|
|
}
|
|
return true;
|
|
}
|
|
#endif // ZLIB_VERSION
|
|
|
|
#ifdef LZO_VERSION
|
|
case LZO: {
|
|
unsigned char* mem = new unsigned char[LZO1X_1_15_MEM_COMPRESS];
|
|
lzo_uint destlen;
|
|
int ret = lzo1x_1_15_compress(
|
|
reinterpret_cast<const uint8*>(input),
|
|
input_size,
|
|
reinterpret_cast<uint8*>(string_as_array(compressed)),
|
|
&destlen,
|
|
mem);
|
|
CHECK_EQ(LZO_E_OK, ret);
|
|
delete[] mem;
|
|
if (!compressed_is_preallocated) {
|
|
compressed->resize(destlen);
|
|
}
|
|
break;
|
|
}
|
|
#endif // LZO_VERSION
|
|
|
|
case SNAPPY: {
|
|
size_t destlen;
|
|
snappy::RawCompress(input, input_size,
|
|
string_as_array(compressed),
|
|
&destlen);
|
|
CHECK_LE(destlen, snappy::MaxCompressedLength(input_size));
|
|
if (!compressed_is_preallocated) {
|
|
compressed->resize(destlen);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
return false; // the asked-for library wasn't compiled in
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool Uncompress(const string& compressed, CompressorType comp,
|
|
int size, string* output) {
|
|
switch (comp) {
|
|
#ifdef ZLIB_VERSION
|
|
case ZLIB: {
|
|
output->resize(size);
|
|
ZLib zlib;
|
|
uLongf destlen = output->size();
|
|
int ret = zlib.Uncompress(
|
|
reinterpret_cast<Bytef*>(string_as_array(output)),
|
|
&destlen,
|
|
reinterpret_cast<const Bytef*>(compressed.data()),
|
|
compressed.size());
|
|
CHECK_EQ(Z_OK, ret);
|
|
CHECK_EQ(static_cast<uLongf>(size), destlen);
|
|
break;
|
|
}
|
|
#endif // ZLIB_VERSION
|
|
|
|
#ifdef LZO_VERSION
|
|
case LZO: {
|
|
output->resize(size);
|
|
lzo_uint destlen;
|
|
int ret = lzo1x_decompress(
|
|
reinterpret_cast<const uint8*>(compressed.data()),
|
|
compressed.size(),
|
|
reinterpret_cast<uint8*>(string_as_array(output)),
|
|
&destlen,
|
|
NULL);
|
|
CHECK_EQ(LZO_E_OK, ret);
|
|
CHECK_EQ(static_cast<lzo_uint>(size), destlen);
|
|
break;
|
|
}
|
|
#endif // LZO_VERSION
|
|
|
|
case SNAPPY: {
|
|
snappy::RawUncompress(compressed.data(), compressed.size(),
|
|
string_as_array(output));
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
return false; // the asked-for library wasn't compiled in
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void Measure(const char* data,
|
|
size_t length,
|
|
CompressorType comp,
|
|
int repeats,
|
|
int block_size) {
|
|
// Run tests a few time and pick median running times
|
|
static const int kRuns = 5;
|
|
double ctime[kRuns];
|
|
double utime[kRuns];
|
|
int compressed_size = 0;
|
|
|
|
{
|
|
// Chop the input into blocks
|
|
int num_blocks = (length + block_size - 1) / block_size;
|
|
std::vector<const char*> input(num_blocks);
|
|
std::vector<size_t> input_length(num_blocks);
|
|
std::vector<string> compressed(num_blocks);
|
|
std::vector<string> output(num_blocks);
|
|
for (int b = 0; b < num_blocks; b++) {
|
|
int input_start = b * block_size;
|
|
int input_limit = std::min<int>((b+1)*block_size, length);
|
|
input[b] = data+input_start;
|
|
input_length[b] = input_limit-input_start;
|
|
|
|
// Pre-grow the output buffer so we don't measure string append time.
|
|
compressed[b].resize(MinimumRequiredOutputSpace(block_size, comp));
|
|
}
|
|
|
|
// First, try one trial compression to make sure the code is compiled in
|
|
if (!Compress(input[0], input_length[0], comp, &compressed[0], true)) {
|
|
LOG(WARNING) << "Skipping " << names[comp] << ": "
|
|
<< "library not compiled in";
|
|
return;
|
|
}
|
|
|
|
for (int run = 0; run < kRuns; run++) {
|
|
CycleTimer ctimer, utimer;
|
|
|
|
for (int b = 0; b < num_blocks; b++) {
|
|
// Pre-grow the output buffer so we don't measure string append time.
|
|
compressed[b].resize(MinimumRequiredOutputSpace(block_size, comp));
|
|
}
|
|
|
|
ctimer.Start();
|
|
for (int b = 0; b < num_blocks; b++)
|
|
for (int i = 0; i < repeats; i++)
|
|
Compress(input[b], input_length[b], comp, &compressed[b], true);
|
|
ctimer.Stop();
|
|
|
|
// Compress once more, with resizing, so we don't leave junk
|
|
// at the end that will confuse the decompressor.
|
|
for (int b = 0; b < num_blocks; b++) {
|
|
Compress(input[b], input_length[b], comp, &compressed[b], false);
|
|
}
|
|
|
|
for (int b = 0; b < num_blocks; b++) {
|
|
output[b].resize(input_length[b]);
|
|
}
|
|
|
|
utimer.Start();
|
|
for (int i = 0; i < repeats; i++)
|
|
for (int b = 0; b < num_blocks; b++)
|
|
Uncompress(compressed[b], comp, input_length[b], &output[b]);
|
|
utimer.Stop();
|
|
|
|
ctime[run] = ctimer.Get();
|
|
utime[run] = utimer.Get();
|
|
}
|
|
|
|
compressed_size = 0;
|
|
for (size_t i = 0; i < compressed.size(); i++) {
|
|
compressed_size += compressed[i].size();
|
|
}
|
|
}
|
|
|
|
std::sort(ctime, ctime + kRuns);
|
|
std::sort(utime, utime + kRuns);
|
|
const int med = kRuns/2;
|
|
|
|
float comp_rate = (length / ctime[med]) * repeats / 1048576.0;
|
|
float uncomp_rate = (length / utime[med]) * repeats / 1048576.0;
|
|
string x = names[comp];
|
|
x += ":";
|
|
string urate = (uncomp_rate >= 0)
|
|
? StringPrintf("%.1f", uncomp_rate)
|
|
: string("?");
|
|
printf("%-7s [b %dM] bytes %6d -> %6d %4.1f%% "
|
|
"comp %5.1f MB/s uncomp %5s MB/s\n",
|
|
x.c_str(),
|
|
block_size/(1<<20),
|
|
static_cast<int>(length), static_cast<uint32>(compressed_size),
|
|
(compressed_size * 100.0) / std::max<int>(1, length),
|
|
comp_rate,
|
|
urate.c_str());
|
|
}
|
|
|
|
static int VerifyString(const string& input) {
|
|
string compressed;
|
|
DataEndingAtUnreadablePage i(input);
|
|
const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
|
|
CHECK_EQ(written, compressed.size());
|
|
CHECK_LE(compressed.size(),
|
|
snappy::MaxCompressedLength(input.size()));
|
|
CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
|
|
string uncompressed;
|
|
DataEndingAtUnreadablePage c(compressed);
|
|
CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
|
|
CHECK_EQ(uncompressed, input);
|
|
return uncompressed.size();
|
|
}
|
|
|
|
static void VerifyStringSink(const string& input) {
|
|
string compressed;
|
|
DataEndingAtUnreadablePage i(input);
|
|
const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
|
|
CHECK_EQ(written, compressed.size());
|
|
CHECK_LE(compressed.size(),
|
|
snappy::MaxCompressedLength(input.size()));
|
|
CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
|
|
string uncompressed;
|
|
uncompressed.resize(input.size());
|
|
snappy::UncheckedByteArraySink sink(string_as_array(&uncompressed));
|
|
DataEndingAtUnreadablePage c(compressed);
|
|
snappy::ByteArraySource source(c.data(), c.size());
|
|
CHECK(snappy::Uncompress(&source, &sink));
|
|
CHECK_EQ(uncompressed, input);
|
|
}
|
|
|
|
static void VerifyIOVec(const string& input) {
|
|
string compressed;
|
|
DataEndingAtUnreadablePage i(input);
|
|
const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
|
|
CHECK_EQ(written, compressed.size());
|
|
CHECK_LE(compressed.size(),
|
|
snappy::MaxCompressedLength(input.size()));
|
|
CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
|
|
// Try uncompressing into an iovec containing a random number of entries
|
|
// ranging from 1 to 10.
|
|
char* buf = new char[input.size()];
|
|
std::minstd_rand0 rng(input.size());
|
|
std::uniform_int_distribution<size_t> uniform_1_to_10(1, 10);
|
|
size_t num = uniform_1_to_10(rng);
|
|
if (input.size() < num) {
|
|
num = input.size();
|
|
}
|
|
struct iovec* iov = new iovec[num];
|
|
int used_so_far = 0;
|
|
std::bernoulli_distribution one_in_five(1.0 / 5);
|
|
for (size_t i = 0; i < num; ++i) {
|
|
assert(used_so_far < input.size());
|
|
iov[i].iov_base = buf + used_so_far;
|
|
if (i == num - 1) {
|
|
iov[i].iov_len = input.size() - used_so_far;
|
|
} else {
|
|
// Randomly choose to insert a 0 byte entry.
|
|
if (one_in_five(rng)) {
|
|
iov[i].iov_len = 0;
|
|
} else {
|
|
std::uniform_int_distribution<size_t> uniform_not_used_so_far(
|
|
0, input.size() - used_so_far - 1);
|
|
iov[i].iov_len = uniform_not_used_so_far(rng);
|
|
}
|
|
}
|
|
used_so_far += iov[i].iov_len;
|
|
}
|
|
CHECK(snappy::RawUncompressToIOVec(
|
|
compressed.data(), compressed.size(), iov, num));
|
|
CHECK(!memcmp(buf, input.data(), input.size()));
|
|
delete[] iov;
|
|
delete[] buf;
|
|
}
|
|
|
|
// Test that data compressed by a compressor that does not
|
|
// obey block sizes is uncompressed properly.
|
|
static void VerifyNonBlockedCompression(const string& input) {
|
|
if (input.length() > snappy::kBlockSize) {
|
|
// We cannot test larger blocks than the maximum block size, obviously.
|
|
return;
|
|
}
|
|
|
|
string prefix;
|
|
Varint::Append32(&prefix, input.size());
|
|
|
|
// Setup compression table
|
|
snappy::internal::WorkingMemory wmem(input.size());
|
|
int table_size;
|
|
uint16* table = wmem.GetHashTable(input.size(), &table_size);
|
|
|
|
// Compress entire input in one shot
|
|
string compressed;
|
|
compressed += prefix;
|
|
compressed.resize(prefix.size()+snappy::MaxCompressedLength(input.size()));
|
|
char* dest = string_as_array(&compressed) + prefix.size();
|
|
char* end = snappy::internal::CompressFragment(input.data(), input.size(),
|
|
dest, table, table_size);
|
|
compressed.resize(end - compressed.data());
|
|
|
|
// Uncompress into string
|
|
string uncomp_str;
|
|
CHECK(snappy::Uncompress(compressed.data(), compressed.size(), &uncomp_str));
|
|
CHECK_EQ(uncomp_str, input);
|
|
|
|
// Uncompress using source/sink
|
|
string uncomp_str2;
|
|
uncomp_str2.resize(input.size());
|
|
snappy::UncheckedByteArraySink sink(string_as_array(&uncomp_str2));
|
|
snappy::ByteArraySource source(compressed.data(), compressed.size());
|
|
CHECK(snappy::Uncompress(&source, &sink));
|
|
CHECK_EQ(uncomp_str2, input);
|
|
|
|
// Uncompress into iovec
|
|
{
|
|
static const int kNumBlocks = 10;
|
|
struct iovec vec[kNumBlocks];
|
|
const int block_size = 1 + input.size() / kNumBlocks;
|
|
string iovec_data(block_size * kNumBlocks, 'x');
|
|
for (int i = 0; i < kNumBlocks; i++) {
|
|
vec[i].iov_base = string_as_array(&iovec_data) + i * block_size;
|
|
vec[i].iov_len = block_size;
|
|
}
|
|
CHECK(snappy::RawUncompressToIOVec(compressed.data(), compressed.size(),
|
|
vec, kNumBlocks));
|
|
CHECK_EQ(string(iovec_data.data(), input.size()), input);
|
|
}
|
|
}
|
|
|
|
// Expand the input so that it is at least K times as big as block size
|
|
static string Expand(const string& input) {
|
|
static const int K = 3;
|
|
string data = input;
|
|
while (data.size() < K * snappy::kBlockSize) {
|
|
data += input;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
static int Verify(const string& input) {
|
|
VLOG(1) << "Verifying input of size " << input.size();
|
|
|
|
// Compress using string based routines
|
|
const int result = VerifyString(input);
|
|
|
|
// Verify using sink based routines
|
|
VerifyStringSink(input);
|
|
|
|
VerifyNonBlockedCompression(input);
|
|
VerifyIOVec(input);
|
|
if (!input.empty()) {
|
|
const string expanded = Expand(input);
|
|
VerifyNonBlockedCompression(expanded);
|
|
VerifyIOVec(input);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool IsValidCompressedBuffer(const string& c) {
|
|
return snappy::IsValidCompressedBuffer(c.data(), c.size());
|
|
}
|
|
static bool Uncompress(const string& c, string* u) {
|
|
return snappy::Uncompress(c.data(), c.size(), u);
|
|
}
|
|
|
|
// This test checks to ensure that snappy doesn't coredump if it gets
|
|
// corrupted data.
|
|
TEST(CorruptedTest, VerifyCorrupted) {
|
|
string source = "making sure we don't crash with corrupted input";
|
|
VLOG(1) << source;
|
|
string dest;
|
|
string uncmp;
|
|
snappy::Compress(source.data(), source.size(), &dest);
|
|
|
|
// Mess around with the data. It's hard to simulate all possible
|
|
// corruptions; this is just one example ...
|
|
CHECK_GT(dest.size(), 3);
|
|
dest[1]--;
|
|
dest[3]++;
|
|
// this really ought to fail.
|
|
CHECK(!IsValidCompressedBuffer(dest));
|
|
CHECK(!Uncompress(dest, &uncmp));
|
|
|
|
// This is testing for a security bug - a buffer that decompresses to 100k
|
|
// but we lie in the snappy header and only reserve 0 bytes of memory :)
|
|
source.resize(100000);
|
|
for (size_t i = 0; i < source.length(); ++i) {
|
|
source[i] = 'A';
|
|
}
|
|
snappy::Compress(source.data(), source.size(), &dest);
|
|
dest[0] = dest[1] = dest[2] = dest[3] = 0;
|
|
CHECK(!IsValidCompressedBuffer(dest));
|
|
CHECK(!Uncompress(dest, &uncmp));
|
|
|
|
if (sizeof(void *) == 4) {
|
|
// Another security check; check a crazy big length can't DoS us with an
|
|
// over-allocation.
|
|
// Currently this is done only for 32-bit builds. On 64-bit builds,
|
|
// where 3 GB might be an acceptable allocation size, Uncompress()
|
|
// attempts to decompress, and sometimes causes the test to run out of
|
|
// memory.
|
|
dest[0] = dest[1] = dest[2] = dest[3] = '\xff';
|
|
// This decodes to a really large size, i.e., about 3 GB.
|
|
dest[4] = 'k';
|
|
CHECK(!IsValidCompressedBuffer(dest));
|
|
CHECK(!Uncompress(dest, &uncmp));
|
|
} else {
|
|
LOG(WARNING) << "Crazy decompression lengths not checked on 64-bit build";
|
|
}
|
|
|
|
// This decodes to about 2 MB; much smaller, but should still fail.
|
|
dest[0] = dest[1] = dest[2] = '\xff';
|
|
dest[3] = 0x00;
|
|
CHECK(!IsValidCompressedBuffer(dest));
|
|
CHECK(!Uncompress(dest, &uncmp));
|
|
|
|
// try reading stuff in from a bad file.
|
|
for (int i = 1; i <= 3; ++i) {
|
|
string data = ReadTestDataFile(StringPrintf("baddata%d.snappy", i).c_str(),
|
|
0);
|
|
string uncmp;
|
|
// check that we don't return a crazy length
|
|
size_t ulen;
|
|
CHECK(!snappy::GetUncompressedLength(data.data(), data.size(), &ulen)
|
|
|| (ulen < (1<<20)));
|
|
uint32 ulen2;
|
|
snappy::ByteArraySource source(data.data(), data.size());
|
|
CHECK(!snappy::GetUncompressedLength(&source, &ulen2) ||
|
|
(ulen2 < (1<<20)));
|
|
CHECK(!IsValidCompressedBuffer(data));
|
|
CHECK(!Uncompress(data, &uncmp));
|
|
}
|
|
}
|
|
|
|
// Helper routines to construct arbitrary compressed strings.
|
|
// These mirror the compression code in snappy.cc, but are copied
|
|
// here so that we can bypass some limitations in the how snappy.cc
|
|
// invokes these routines.
|
|
static void AppendLiteral(string* dst, const string& literal) {
|
|
if (literal.empty()) return;
|
|
int n = literal.size() - 1;
|
|
if (n < 60) {
|
|
// Fit length in tag byte
|
|
dst->push_back(0 | (n << 2));
|
|
} else {
|
|
// Encode in upcoming bytes
|
|
char number[4];
|
|
int count = 0;
|
|
while (n > 0) {
|
|
number[count++] = n & 0xff;
|
|
n >>= 8;
|
|
}
|
|
dst->push_back(0 | ((59+count) << 2));
|
|
*dst += string(number, count);
|
|
}
|
|
*dst += literal;
|
|
}
|
|
|
|
static void AppendCopy(string* dst, int offset, int length) {
|
|
while (length > 0) {
|
|
// Figure out how much to copy in one shot
|
|
int to_copy;
|
|
if (length >= 68) {
|
|
to_copy = 64;
|
|
} else if (length > 64) {
|
|
to_copy = 60;
|
|
} else {
|
|
to_copy = length;
|
|
}
|
|
length -= to_copy;
|
|
|
|
if ((to_copy >= 4) && (to_copy < 12) && (offset < 2048)) {
|
|
assert(to_copy-4 < 8); // Must fit in 3 bits
|
|
dst->push_back(1 | ((to_copy-4) << 2) | ((offset >> 8) << 5));
|
|
dst->push_back(offset & 0xff);
|
|
} else if (offset < 65536) {
|
|
dst->push_back(2 | ((to_copy-1) << 2));
|
|
dst->push_back(offset & 0xff);
|
|
dst->push_back(offset >> 8);
|
|
} else {
|
|
dst->push_back(3 | ((to_copy-1) << 2));
|
|
dst->push_back(offset & 0xff);
|
|
dst->push_back((offset >> 8) & 0xff);
|
|
dst->push_back((offset >> 16) & 0xff);
|
|
dst->push_back((offset >> 24) & 0xff);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Snappy, SimpleTests) {
|
|
Verify("");
|
|
Verify("a");
|
|
Verify("ab");
|
|
Verify("abc");
|
|
|
|
Verify("aaaaaaa" + string(16, 'b') + string("aaaaa") + "abc");
|
|
Verify("aaaaaaa" + string(256, 'b') + string("aaaaa") + "abc");
|
|
Verify("aaaaaaa" + string(2047, 'b') + string("aaaaa") + "abc");
|
|
Verify("aaaaaaa" + string(65536, 'b') + string("aaaaa") + "abc");
|
|
Verify("abcaaaaaaa" + string(65536, 'b') + string("aaaaa") + "abc");
|
|
}
|
|
|
|
// Verify max blowup (lots of four-byte copies)
|
|
TEST(Snappy, MaxBlowup) {
|
|
std::mt19937 rng;
|
|
std::uniform_int_distribution<int> uniform_byte(0, 255);
|
|
string input;
|
|
for (int i = 0; i < 80000; ++i)
|
|
input.push_back(static_cast<char>(uniform_byte(rng)));
|
|
|
|
for (int i = 0; i < 80000; i += 4) {
|
|
string four_bytes(input.end() - i - 4, input.end() - i);
|
|
input.append(four_bytes);
|
|
}
|
|
Verify(input);
|
|
}
|
|
|
|
TEST(Snappy, RandomData) {
|
|
std::minstd_rand0 rng(FLAGS_test_random_seed);
|
|
std::uniform_int_distribution<int> uniform_0_to_3(0, 3);
|
|
std::uniform_int_distribution<int> uniform_0_to_8(0, 8);
|
|
std::uniform_int_distribution<int> uniform_byte(0, 255);
|
|
std::uniform_int_distribution<size_t> uniform_4k(0, 4095);
|
|
std::uniform_int_distribution<size_t> uniform_64k(0, 65535);
|
|
std::bernoulli_distribution one_in_ten(1.0 / 10);
|
|
|
|
constexpr int num_ops = 20000;
|
|
for (int i = 0; i < num_ops; i++) {
|
|
if ((i % 1000) == 0) {
|
|
VLOG(0) << "Random op " << i << " of " << num_ops;
|
|
}
|
|
|
|
string x;
|
|
size_t len = uniform_4k(rng);
|
|
if (i < 100) {
|
|
len = 65536 + uniform_64k(rng);
|
|
}
|
|
while (x.size() < len) {
|
|
int run_len = 1;
|
|
if (one_in_ten(rng)) {
|
|
int skewed_bits = uniform_0_to_8(rng);
|
|
// int is guaranteed to hold at least 16 bits, this uses at most 8 bits.
|
|
std::uniform_int_distribution<int> skewed_low(0,
|
|
(1 << skewed_bits) - 1);
|
|
run_len = skewed_low(rng);
|
|
}
|
|
char c = static_cast<char>(uniform_byte(rng));
|
|
if (i >= 100) {
|
|
int skewed_bits = uniform_0_to_3(rng);
|
|
// int is guaranteed to hold at least 16 bits, this uses at most 3 bits.
|
|
std::uniform_int_distribution<int> skewed_low(0,
|
|
(1 << skewed_bits) - 1);
|
|
c = static_cast<char>(skewed_low(rng));
|
|
}
|
|
while (run_len-- > 0 && x.size() < len) {
|
|
x.push_back(c);
|
|
}
|
|
}
|
|
|
|
Verify(x);
|
|
}
|
|
}
|
|
|
|
TEST(Snappy, FourByteOffset) {
|
|
// The new compressor cannot generate four-byte offsets since
|
|
// it chops up the input into 32KB pieces. So we hand-emit the
|
|
// copy manually.
|
|
|
|
// The two fragments that make up the input string.
|
|
string fragment1 = "012345689abcdefghijklmnopqrstuvwxyz";
|
|
string fragment2 = "some other string";
|
|
|
|
// How many times each fragment is emitted.
|
|
const int n1 = 2;
|
|
const int n2 = 100000 / fragment2.size();
|
|
const int length = n1 * fragment1.size() + n2 * fragment2.size();
|
|
|
|
string compressed;
|
|
Varint::Append32(&compressed, length);
|
|
|
|
AppendLiteral(&compressed, fragment1);
|
|
string src = fragment1;
|
|
for (int i = 0; i < n2; i++) {
|
|
AppendLiteral(&compressed, fragment2);
|
|
src += fragment2;
|
|
}
|
|
AppendCopy(&compressed, src.size(), fragment1.size());
|
|
src += fragment1;
|
|
CHECK_EQ(length, src.size());
|
|
|
|
string uncompressed;
|
|
CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
CHECK(snappy::Uncompress(compressed.data(), compressed.size(),
|
|
&uncompressed));
|
|
CHECK_EQ(uncompressed, src);
|
|
}
|
|
|
|
TEST(Snappy, IOVecEdgeCases) {
|
|
// Test some tricky edge cases in the iovec output that are not necessarily
|
|
// exercised by random tests.
|
|
|
|
// Our output blocks look like this initially (the last iovec is bigger
|
|
// than depicted):
|
|
// [ ] [ ] [ ] [ ] [ ]
|
|
static const int kLengths[] = { 2, 1, 4, 8, 128 };
|
|
|
|
struct iovec iov[ARRAYSIZE(kLengths)];
|
|
for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
|
|
iov[i].iov_base = new char[kLengths[i]];
|
|
iov[i].iov_len = kLengths[i];
|
|
}
|
|
|
|
string compressed;
|
|
Varint::Append32(&compressed, 22);
|
|
|
|
// A literal whose output crosses three blocks.
|
|
// [ab] [c] [123 ] [ ] [ ]
|
|
AppendLiteral(&compressed, "abc123");
|
|
|
|
// A copy whose output crosses two blocks (source and destination
|
|
// segments marked).
|
|
// [ab] [c] [1231] [23 ] [ ]
|
|
// ^--^ --
|
|
AppendCopy(&compressed, 3, 3);
|
|
|
|
// A copy where the input is, at first, in the block before the output:
|
|
//
|
|
// [ab] [c] [1231] [231231 ] [ ]
|
|
// ^--- ^---
|
|
// Then during the copy, the pointers move such that the input and
|
|
// output pointers are in the same block:
|
|
//
|
|
// [ab] [c] [1231] [23123123] [ ]
|
|
// ^- ^-
|
|
// And then they move again, so that the output pointer is no longer
|
|
// in the same block as the input pointer:
|
|
// [ab] [c] [1231] [23123123] [123 ]
|
|
// ^-- ^--
|
|
AppendCopy(&compressed, 6, 9);
|
|
|
|
// Finally, a copy where the input is from several blocks back,
|
|
// and it also crosses three blocks:
|
|
//
|
|
// [ab] [c] [1231] [23123123] [123b ]
|
|
// ^ ^
|
|
// [ab] [c] [1231] [23123123] [123bc ]
|
|
// ^ ^
|
|
// [ab] [c] [1231] [23123123] [123bc12 ]
|
|
// ^- ^-
|
|
AppendCopy(&compressed, 17, 4);
|
|
|
|
CHECK(snappy::RawUncompressToIOVec(
|
|
compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
|
|
CHECK_EQ(0, memcmp(iov[0].iov_base, "ab", 2));
|
|
CHECK_EQ(0, memcmp(iov[1].iov_base, "c", 1));
|
|
CHECK_EQ(0, memcmp(iov[2].iov_base, "1231", 4));
|
|
CHECK_EQ(0, memcmp(iov[3].iov_base, "23123123", 8));
|
|
CHECK_EQ(0, memcmp(iov[4].iov_base, "123bc12", 7));
|
|
|
|
for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
|
|
delete[] reinterpret_cast<char *>(iov[i].iov_base);
|
|
}
|
|
}
|
|
|
|
TEST(Snappy, IOVecLiteralOverflow) {
|
|
static const int kLengths[] = { 3, 4 };
|
|
|
|
struct iovec iov[ARRAYSIZE(kLengths)];
|
|
for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
|
|
iov[i].iov_base = new char[kLengths[i]];
|
|
iov[i].iov_len = kLengths[i];
|
|
}
|
|
|
|
string compressed;
|
|
Varint::Append32(&compressed, 8);
|
|
|
|
AppendLiteral(&compressed, "12345678");
|
|
|
|
CHECK(!snappy::RawUncompressToIOVec(
|
|
compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
|
|
|
|
for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
|
|
delete[] reinterpret_cast<char *>(iov[i].iov_base);
|
|
}
|
|
}
|
|
|
|
TEST(Snappy, IOVecCopyOverflow) {
|
|
static const int kLengths[] = { 3, 4 };
|
|
|
|
struct iovec iov[ARRAYSIZE(kLengths)];
|
|
for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
|
|
iov[i].iov_base = new char[kLengths[i]];
|
|
iov[i].iov_len = kLengths[i];
|
|
}
|
|
|
|
string compressed;
|
|
Varint::Append32(&compressed, 8);
|
|
|
|
AppendLiteral(&compressed, "123");
|
|
AppendCopy(&compressed, 3, 5);
|
|
|
|
CHECK(!snappy::RawUncompressToIOVec(
|
|
compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
|
|
|
|
for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
|
|
delete[] reinterpret_cast<char *>(iov[i].iov_base);
|
|
}
|
|
}
|
|
|
|
static bool CheckUncompressedLength(const string& compressed,
|
|
size_t* ulength) {
|
|
const bool result1 = snappy::GetUncompressedLength(compressed.data(),
|
|
compressed.size(),
|
|
ulength);
|
|
|
|
snappy::ByteArraySource source(compressed.data(), compressed.size());
|
|
uint32 length;
|
|
const bool result2 = snappy::GetUncompressedLength(&source, &length);
|
|
CHECK_EQ(result1, result2);
|
|
return result1;
|
|
}
|
|
|
|
TEST(SnappyCorruption, TruncatedVarint) {
|
|
string compressed, uncompressed;
|
|
size_t ulength;
|
|
compressed.push_back('\xf0');
|
|
CHECK(!CheckUncompressedLength(compressed, &ulength));
|
|
CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
|
|
&uncompressed));
|
|
}
|
|
|
|
TEST(SnappyCorruption, UnterminatedVarint) {
|
|
string compressed, uncompressed;
|
|
size_t ulength;
|
|
compressed.push_back('\x80');
|
|
compressed.push_back('\x80');
|
|
compressed.push_back('\x80');
|
|
compressed.push_back('\x80');
|
|
compressed.push_back('\x80');
|
|
compressed.push_back(10);
|
|
CHECK(!CheckUncompressedLength(compressed, &ulength));
|
|
CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
|
|
&uncompressed));
|
|
}
|
|
|
|
TEST(SnappyCorruption, OverflowingVarint) {
|
|
string compressed, uncompressed;
|
|
size_t ulength;
|
|
compressed.push_back('\xfb');
|
|
compressed.push_back('\xff');
|
|
compressed.push_back('\xff');
|
|
compressed.push_back('\xff');
|
|
compressed.push_back('\x7f');
|
|
CHECK(!CheckUncompressedLength(compressed, &ulength));
|
|
CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
|
|
CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
|
|
&uncompressed));
|
|
}
|
|
|
|
TEST(Snappy, ReadPastEndOfBuffer) {
|
|
// Check that we do not read past end of input
|
|
|
|
// Make a compressed string that ends with a single-byte literal
|
|
string compressed;
|
|
Varint::Append32(&compressed, 1);
|
|
AppendLiteral(&compressed, "x");
|
|
|
|
string uncompressed;
|
|
DataEndingAtUnreadablePage c(compressed);
|
|
CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
|
|
CHECK_EQ(uncompressed, string("x"));
|
|
}
|
|
|
|
// Check for an infinite loop caused by a copy with offset==0
|
|
TEST(Snappy, ZeroOffsetCopy) {
|
|
const char* compressed = "\x40\x12\x00\x00";
|
|
// \x40 Length (must be > kMaxIncrementCopyOverflow)
|
|
// \x12\x00\x00 Copy with offset==0, length==5
|
|
char uncompressed[100];
|
|
EXPECT_FALSE(snappy::RawUncompress(compressed, 4, uncompressed));
|
|
}
|
|
|
|
TEST(Snappy, ZeroOffsetCopyValidation) {
|
|
const char* compressed = "\x05\x12\x00\x00";
|
|
// \x05 Length
|
|
// \x12\x00\x00 Copy with offset==0, length==5
|
|
EXPECT_FALSE(snappy::IsValidCompressedBuffer(compressed, 4));
|
|
}
|
|
|
|
namespace {
|
|
|
|
int TestFindMatchLength(const char* s1, const char *s2, unsigned length) {
|
|
std::pair<size_t, bool> p =
|
|
snappy::internal::FindMatchLength(s1, s2, s2 + length);
|
|
CHECK_EQ(p.first < 8, p.second);
|
|
return p.first;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(Snappy, FindMatchLength) {
|
|
// Exercise all different code paths through the function.
|
|
// 64-bit version:
|
|
|
|
// Hit s1_limit in 64-bit loop, hit s1_limit in single-character loop.
|
|
EXPECT_EQ(6, TestFindMatchLength("012345", "012345", 6));
|
|
EXPECT_EQ(11, TestFindMatchLength("01234567abc", "01234567abc", 11));
|
|
|
|
// Hit s1_limit in 64-bit loop, find a non-match in single-character loop.
|
|
EXPECT_EQ(9, TestFindMatchLength("01234567abc", "01234567axc", 9));
|
|
|
|
// Same, but edge cases.
|
|
EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc!", 11));
|
|
EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc?", 11));
|
|
|
|
// Find non-match at once in first loop.
|
|
EXPECT_EQ(0, TestFindMatchLength("01234567xxxxxxxx", "?1234567xxxxxxxx", 16));
|
|
EXPECT_EQ(1, TestFindMatchLength("01234567xxxxxxxx", "0?234567xxxxxxxx", 16));
|
|
EXPECT_EQ(4, TestFindMatchLength("01234567xxxxxxxx", "01237654xxxxxxxx", 16));
|
|
EXPECT_EQ(7, TestFindMatchLength("01234567xxxxxxxx", "0123456?xxxxxxxx", 16));
|
|
|
|
// Find non-match in first loop after one block.
|
|
EXPECT_EQ(8, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
|
|
"abcdefgh?1234567xxxxxxxx", 24));
|
|
EXPECT_EQ(9, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
|
|
"abcdefgh0?234567xxxxxxxx", 24));
|
|
EXPECT_EQ(12, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
|
|
"abcdefgh01237654xxxxxxxx", 24));
|
|
EXPECT_EQ(15, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
|
|
"abcdefgh0123456?xxxxxxxx", 24));
|
|
|
|
// 32-bit version:
|
|
|
|
// Short matches.
|
|
EXPECT_EQ(0, TestFindMatchLength("01234567", "?1234567", 8));
|
|
EXPECT_EQ(1, TestFindMatchLength("01234567", "0?234567", 8));
|
|
EXPECT_EQ(2, TestFindMatchLength("01234567", "01?34567", 8));
|
|
EXPECT_EQ(3, TestFindMatchLength("01234567", "012?4567", 8));
|
|
EXPECT_EQ(4, TestFindMatchLength("01234567", "0123?567", 8));
|
|
EXPECT_EQ(5, TestFindMatchLength("01234567", "01234?67", 8));
|
|
EXPECT_EQ(6, TestFindMatchLength("01234567", "012345?7", 8));
|
|
EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 8));
|
|
EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 7));
|
|
EXPECT_EQ(7, TestFindMatchLength("01234567!", "0123456??", 7));
|
|
|
|
// Hit s1_limit in 32-bit loop, hit s1_limit in single-character loop.
|
|
EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd", "xxxxxxabcd", 10));
|
|
EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd?", "xxxxxxabcd?", 10));
|
|
EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcdef", "xxxxxxabcdef", 13));
|
|
|
|
// Same, but edge cases.
|
|
EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc!", 12));
|
|
EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc?", 12));
|
|
|
|
// Hit s1_limit in 32-bit loop, find a non-match in single-character loop.
|
|
EXPECT_EQ(11, TestFindMatchLength("xxxxxx0123abc", "xxxxxx0123axc", 13));
|
|
|
|
// Find non-match at once in first loop.
|
|
EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123xxxxxxxx",
|
|
"xxxxxx?123xxxxxxxx", 18));
|
|
EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123xxxxxxxx",
|
|
"xxxxxx0?23xxxxxxxx", 18));
|
|
EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123xxxxxxxx",
|
|
"xxxxxx0132xxxxxxxx", 18));
|
|
EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123xxxxxxxx",
|
|
"xxxxxx012?xxxxxxxx", 18));
|
|
|
|
// Same, but edge cases.
|
|
EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123", "xxxxxx?123", 10));
|
|
EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123", "xxxxxx0?23", 10));
|
|
EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123", "xxxxxx0132", 10));
|
|
EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123", "xxxxxx012?", 10));
|
|
|
|
// Find non-match in first loop after one block.
|
|
EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123xx",
|
|
"xxxxxxabcd?123xx", 16));
|
|
EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123xx",
|
|
"xxxxxxabcd0?23xx", 16));
|
|
EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123xx",
|
|
"xxxxxxabcd0132xx", 16));
|
|
EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123xx",
|
|
"xxxxxxabcd012?xx", 16));
|
|
|
|
// Same, but edge cases.
|
|
EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd?123", 14));
|
|
EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0?23", 14));
|
|
EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0132", 14));
|
|
EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd012?", 14));
|
|
}
|
|
|
|
TEST(Snappy, FindMatchLengthRandom) {
|
|
constexpr int kNumTrials = 10000;
|
|
constexpr int kTypicalLength = 10;
|
|
std::minstd_rand0 rng(FLAGS_test_random_seed);
|
|
std::uniform_int_distribution<int> uniform_byte(0, 255);
|
|
std::bernoulli_distribution one_in_two(1.0 / 2);
|
|
std::bernoulli_distribution one_in_typical_length(1.0 / kTypicalLength);
|
|
|
|
for (int i = 0; i < kNumTrials; i++) {
|
|
string s, t;
|
|
char a = static_cast<char>(uniform_byte(rng));
|
|
char b = static_cast<char>(uniform_byte(rng));
|
|
while (!one_in_typical_length(rng)) {
|
|
s.push_back(one_in_two(rng) ? a : b);
|
|
t.push_back(one_in_two(rng) ? a : b);
|
|
}
|
|
DataEndingAtUnreadablePage u(s);
|
|
DataEndingAtUnreadablePage v(t);
|
|
int matched = TestFindMatchLength(u.data(), v.data(), t.size());
|
|
if (matched == t.size()) {
|
|
EXPECT_EQ(s, t);
|
|
} else {
|
|
EXPECT_NE(s[matched], t[matched]);
|
|
for (int j = 0; j < matched; j++) {
|
|
EXPECT_EQ(s[j], t[j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16 MakeEntry(unsigned int extra,
|
|
unsigned int len,
|
|
unsigned int copy_offset) {
|
|
// Check that all of the fields fit within the allocated space
|
|
assert(extra == (extra & 0x7)); // At most 3 bits
|
|
assert(copy_offset == (copy_offset & 0x7)); // At most 3 bits
|
|
assert(len == (len & 0x7f)); // At most 7 bits
|
|
return len | (copy_offset << 8) | (extra << 11);
|
|
}
|
|
|
|
// Check that the decompression table is correct, and optionally print out
|
|
// the computed one.
|
|
TEST(Snappy, VerifyCharTable) {
|
|
using snappy::internal::LITERAL;
|
|
using snappy::internal::COPY_1_BYTE_OFFSET;
|
|
using snappy::internal::COPY_2_BYTE_OFFSET;
|
|
using snappy::internal::COPY_4_BYTE_OFFSET;
|
|
using snappy::internal::char_table;
|
|
|
|
uint16 dst[256];
|
|
|
|
// Place invalid entries in all places to detect missing initialization
|
|
int assigned = 0;
|
|
for (int i = 0; i < 256; i++) {
|
|
dst[i] = 0xffff;
|
|
}
|
|
|
|
// Small LITERAL entries. We store (len-1) in the top 6 bits.
|
|
for (unsigned int len = 1; len <= 60; len++) {
|
|
dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0);
|
|
assigned++;
|
|
}
|
|
|
|
// Large LITERAL entries. We use 60..63 in the high 6 bits to
|
|
// encode the number of bytes of length info that follow the opcode.
|
|
for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) {
|
|
// We set the length field in the lookup table to 1 because extra
|
|
// bytes encode len-1.
|
|
dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0);
|
|
assigned++;
|
|
}
|
|
|
|
// COPY_1_BYTE_OFFSET.
|
|
//
|
|
// The tag byte in the compressed data stores len-4 in 3 bits, and
|
|
// offset/256 in 5 bits. offset%256 is stored in the next byte.
|
|
//
|
|
// This format is used for length in range [4..11] and offset in
|
|
// range [0..2047]
|
|
for (unsigned int len = 4; len < 12; len++) {
|
|
for (unsigned int offset = 0; offset < 2048; offset += 256) {
|
|
dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] =
|
|
MakeEntry(1, len, offset>>8);
|
|
assigned++;
|
|
}
|
|
}
|
|
|
|
// COPY_2_BYTE_OFFSET.
|
|
// Tag contains len-1 in top 6 bits, and offset in next two bytes.
|
|
for (unsigned int len = 1; len <= 64; len++) {
|
|
dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0);
|
|
assigned++;
|
|
}
|
|
|
|
// COPY_4_BYTE_OFFSET.
|
|
// Tag contents len-1 in top 6 bits, and offset in next four bytes.
|
|
for (unsigned int len = 1; len <= 64; len++) {
|
|
dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0);
|
|
assigned++;
|
|
}
|
|
|
|
// Check that each entry was initialized exactly once.
|
|
EXPECT_EQ(256, assigned) << "Assigned only " << assigned << " of 256";
|
|
for (int i = 0; i < 256; i++) {
|
|
EXPECT_NE(0xffff, dst[i]) << "Did not assign byte " << i;
|
|
}
|
|
|
|
if (FLAGS_snappy_dump_decompression_table) {
|
|
printf("static const uint16 char_table[256] = {\n ");
|
|
for (int i = 0; i < 256; i++) {
|
|
printf("0x%04x%s",
|
|
dst[i],
|
|
((i == 255) ? "\n" : (((i%8) == 7) ? ",\n " : ", ")));
|
|
}
|
|
printf("};\n");
|
|
}
|
|
|
|
// Check that computed table matched recorded table.
|
|
for (int i = 0; i < 256; i++) {
|
|
EXPECT_EQ(dst[i], char_table[i]) << "Mismatch in byte " << i;
|
|
}
|
|
}
|
|
|
|
static void CompressFile(const char* fname) {
|
|
string fullinput;
|
|
CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
|
|
|
|
string compressed;
|
|
Compress(fullinput.data(), fullinput.size(), SNAPPY, &compressed, false);
|
|
|
|
CHECK_OK(file::SetContents(string(fname).append(".comp"), compressed,
|
|
file::Defaults()));
|
|
}
|
|
|
|
static void UncompressFile(const char* fname) {
|
|
string fullinput;
|
|
CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
|
|
|
|
size_t uncompLength;
|
|
CHECK(CheckUncompressedLength(fullinput, &uncompLength));
|
|
|
|
string uncompressed;
|
|
uncompressed.resize(uncompLength);
|
|
CHECK(snappy::Uncompress(fullinput.data(), fullinput.size(), &uncompressed));
|
|
|
|
CHECK_OK(file::SetContents(string(fname).append(".uncomp"), uncompressed,
|
|
file::Defaults()));
|
|
}
|
|
|
|
static void MeasureFile(const char* fname) {
|
|
string fullinput;
|
|
CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
|
|
printf("%-40s :\n", fname);
|
|
|
|
int start_len = (FLAGS_start_len < 0) ? fullinput.size() : FLAGS_start_len;
|
|
int end_len = fullinput.size();
|
|
if (FLAGS_end_len >= 0) {
|
|
end_len = std::min<int>(fullinput.size(), FLAGS_end_len);
|
|
}
|
|
for (int len = start_len; len <= end_len; len++) {
|
|
const char* const input = fullinput.data();
|
|
int repeats = (FLAGS_bytes + len) / (len + 1);
|
|
if (FLAGS_zlib) Measure(input, len, ZLIB, repeats, 1024<<10);
|
|
if (FLAGS_lzo) Measure(input, len, LZO, repeats, 1024<<10);
|
|
if (FLAGS_snappy) Measure(input, len, SNAPPY, repeats, 4096<<10);
|
|
|
|
// For block-size based measurements
|
|
if (0 && FLAGS_snappy) {
|
|
Measure(input, len, SNAPPY, repeats, 8<<10);
|
|
Measure(input, len, SNAPPY, repeats, 16<<10);
|
|
Measure(input, len, SNAPPY, repeats, 32<<10);
|
|
Measure(input, len, SNAPPY, repeats, 64<<10);
|
|
Measure(input, len, SNAPPY, repeats, 256<<10);
|
|
Measure(input, len, SNAPPY, repeats, 1024<<10);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct {
|
|
const char* label;
|
|
const char* filename;
|
|
size_t size_limit;
|
|
} files[] = {
|
|
{ "html", "html", 0 },
|
|
{ "urls", "urls.10K", 0 },
|
|
{ "jpg", "fireworks.jpeg", 0 },
|
|
{ "jpg_200", "fireworks.jpeg", 200 },
|
|
{ "pdf", "paper-100k.pdf", 0 },
|
|
{ "html4", "html_x_4", 0 },
|
|
{ "txt1", "alice29.txt", 0 },
|
|
{ "txt2", "asyoulik.txt", 0 },
|
|
{ "txt3", "lcet10.txt", 0 },
|
|
{ "txt4", "plrabn12.txt", 0 },
|
|
{ "pb", "geo.protodata", 0 },
|
|
{ "gaviota", "kppkn.gtb", 0 },
|
|
};
|
|
|
|
static void BM_UFlat(int iters, int arg) {
|
|
StopBenchmarkTiming();
|
|
|
|
// Pick file to process based on "arg"
|
|
CHECK_GE(arg, 0);
|
|
CHECK_LT(arg, ARRAYSIZE(files));
|
|
string contents = ReadTestDataFile(files[arg].filename,
|
|
files[arg].size_limit);
|
|
|
|
string zcontents;
|
|
snappy::Compress(contents.data(), contents.size(), &zcontents);
|
|
char* dst = new char[contents.size()];
|
|
|
|
SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
|
|
static_cast<int64>(contents.size()));
|
|
SetBenchmarkLabel(files[arg].label);
|
|
StartBenchmarkTiming();
|
|
while (iters-- > 0) {
|
|
CHECK(snappy::RawUncompress(zcontents.data(), zcontents.size(), dst));
|
|
}
|
|
StopBenchmarkTiming();
|
|
|
|
delete[] dst;
|
|
}
|
|
BENCHMARK(BM_UFlat)->DenseRange(0, ARRAYSIZE(files) - 1);
|
|
|
|
static void BM_UValidate(int iters, int arg) {
|
|
StopBenchmarkTiming();
|
|
|
|
// Pick file to process based on "arg"
|
|
CHECK_GE(arg, 0);
|
|
CHECK_LT(arg, ARRAYSIZE(files));
|
|
string contents = ReadTestDataFile(files[arg].filename,
|
|
files[arg].size_limit);
|
|
|
|
string zcontents;
|
|
snappy::Compress(contents.data(), contents.size(), &zcontents);
|
|
|
|
SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
|
|
static_cast<int64>(contents.size()));
|
|
SetBenchmarkLabel(files[arg].label);
|
|
StartBenchmarkTiming();
|
|
while (iters-- > 0) {
|
|
CHECK(snappy::IsValidCompressedBuffer(zcontents.data(), zcontents.size()));
|
|
}
|
|
StopBenchmarkTiming();
|
|
}
|
|
BENCHMARK(BM_UValidate)->DenseRange(0, 4);
|
|
|
|
static void BM_UIOVec(int iters, int arg) {
|
|
StopBenchmarkTiming();
|
|
|
|
// Pick file to process based on "arg"
|
|
CHECK_GE(arg, 0);
|
|
CHECK_LT(arg, ARRAYSIZE(files));
|
|
string contents = ReadTestDataFile(files[arg].filename,
|
|
files[arg].size_limit);
|
|
|
|
string zcontents;
|
|
snappy::Compress(contents.data(), contents.size(), &zcontents);
|
|
|
|
// Uncompress into an iovec containing ten entries.
|
|
const int kNumEntries = 10;
|
|
struct iovec iov[kNumEntries];
|
|
char *dst = new char[contents.size()];
|
|
int used_so_far = 0;
|
|
for (int i = 0; i < kNumEntries; ++i) {
|
|
iov[i].iov_base = dst + used_so_far;
|
|
if (used_so_far == contents.size()) {
|
|
iov[i].iov_len = 0;
|
|
continue;
|
|
}
|
|
|
|
if (i == kNumEntries - 1) {
|
|
iov[i].iov_len = contents.size() - used_so_far;
|
|
} else {
|
|
iov[i].iov_len = contents.size() / kNumEntries;
|
|
}
|
|
used_so_far += iov[i].iov_len;
|
|
}
|
|
|
|
SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
|
|
static_cast<int64>(contents.size()));
|
|
SetBenchmarkLabel(files[arg].label);
|
|
StartBenchmarkTiming();
|
|
while (iters-- > 0) {
|
|
CHECK(snappy::RawUncompressToIOVec(zcontents.data(), zcontents.size(), iov,
|
|
kNumEntries));
|
|
}
|
|
StopBenchmarkTiming();
|
|
|
|
delete[] dst;
|
|
}
|
|
BENCHMARK(BM_UIOVec)->DenseRange(0, 4);
|
|
|
|
static void BM_UFlatSink(int iters, int arg) {
|
|
StopBenchmarkTiming();
|
|
|
|
// Pick file to process based on "arg"
|
|
CHECK_GE(arg, 0);
|
|
CHECK_LT(arg, ARRAYSIZE(files));
|
|
string contents = ReadTestDataFile(files[arg].filename,
|
|
files[arg].size_limit);
|
|
|
|
string zcontents;
|
|
snappy::Compress(contents.data(), contents.size(), &zcontents);
|
|
char* dst = new char[contents.size()];
|
|
|
|
SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
|
|
static_cast<int64>(contents.size()));
|
|
SetBenchmarkLabel(files[arg].label);
|
|
StartBenchmarkTiming();
|
|
while (iters-- > 0) {
|
|
snappy::ByteArraySource source(zcontents.data(), zcontents.size());
|
|
snappy::UncheckedByteArraySink sink(dst);
|
|
CHECK(snappy::Uncompress(&source, &sink));
|
|
}
|
|
StopBenchmarkTiming();
|
|
|
|
string s(dst, contents.size());
|
|
CHECK_EQ(contents, s);
|
|
|
|
delete[] dst;
|
|
}
|
|
|
|
BENCHMARK(BM_UFlatSink)->DenseRange(0, ARRAYSIZE(files) - 1);
|
|
|
|
static void BM_ZFlat(int iters, int arg) {
|
|
StopBenchmarkTiming();
|
|
|
|
// Pick file to process based on "arg"
|
|
CHECK_GE(arg, 0);
|
|
CHECK_LT(arg, ARRAYSIZE(files));
|
|
string contents = ReadTestDataFile(files[arg].filename,
|
|
files[arg].size_limit);
|
|
|
|
char* dst = new char[snappy::MaxCompressedLength(contents.size())];
|
|
|
|
SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
|
|
static_cast<int64>(contents.size()));
|
|
StartBenchmarkTiming();
|
|
|
|
size_t zsize = 0;
|
|
while (iters-- > 0) {
|
|
snappy::RawCompress(contents.data(), contents.size(), dst, &zsize);
|
|
}
|
|
StopBenchmarkTiming();
|
|
const double compression_ratio =
|
|
static_cast<double>(zsize) / std::max<size_t>(1, contents.size());
|
|
SetBenchmarkLabel(StringPrintf("%s (%.2f %%)",
|
|
files[arg].label, 100.0 * compression_ratio));
|
|
VLOG(0) << StringPrintf("compression for %s: %zd -> %zd bytes",
|
|
files[arg].label, contents.size(), zsize);
|
|
delete[] dst;
|
|
}
|
|
BENCHMARK(BM_ZFlat)->DenseRange(0, ARRAYSIZE(files) - 1);
|
|
|
|
static void BM_ZFlatAll(int iters) {
|
|
StopBenchmarkTiming();
|
|
|
|
const int num_files = ARRAYSIZE(files);
|
|
|
|
std::vector<std::string> contents(num_files);
|
|
std::vector<char*> dst(num_files);
|
|
|
|
for (int i = 0; i < num_files; ++i) {
|
|
contents[i] = ReadTestDataFile(files[i].filename, files[i].size_limit);
|
|
dst[i] = new char[snappy::MaxCompressedLength(contents[i].size())];
|
|
}
|
|
|
|
StartBenchmarkTiming();
|
|
|
|
size_t zsize = 0;
|
|
while (iters-- > 0) {
|
|
for (int i = 0; i < num_files; ++i) {
|
|
snappy::RawCompress(contents[i].data(), contents[i].size(), dst[i],
|
|
&zsize);
|
|
}
|
|
}
|
|
StopBenchmarkTiming();
|
|
|
|
for (int i = 0; i < num_files; ++i) {
|
|
delete[] dst[i];
|
|
}
|
|
}
|
|
BENCHMARK(BM_ZFlatAll);
|
|
|
|
static void BM_ZFlatIncreasingTableSize(int iters) {
|
|
StopBenchmarkTiming();
|
|
|
|
QCHECK_GT(ARRAYSIZE(files), 0);
|
|
const std::string base_content =
|
|
ReadTestDataFile(files[0].filename, files[0].size_limit);
|
|
|
|
std::vector<std::string> contents;
|
|
std::vector<char*> dst;
|
|
for (int table_bits = kMinHashTableBits; table_bits <= kMaxHashTableBits;
|
|
++table_bits) {
|
|
std::string content = base_content;
|
|
content.resize(1 << table_bits);
|
|
dst.push_back(new char[snappy::MaxCompressedLength(content.size())]);
|
|
contents.push_back(std::move(content));
|
|
}
|
|
|
|
size_t zsize = 0;
|
|
StartBenchmarkTiming();
|
|
while (iters-- > 0) {
|
|
for (int i = 0; i < contents.size(); ++i) {
|
|
snappy::RawCompress(contents[i].data(), contents[i].size(), dst[i],
|
|
&zsize);
|
|
}
|
|
}
|
|
StopBenchmarkTiming();
|
|
|
|
for (int i = 0; i < dst.size(); ++i) {
|
|
delete[] dst[i];
|
|
}
|
|
}
|
|
BENCHMARK(BM_ZFlatIncreasingTableSize);
|
|
|
|
} // namespace snappy
|
|
|
|
int main(int argc, char** argv) {
|
|
InitGoogle(argv[0], &argc, &argv, true);
|
|
RunSpecifiedBenchmarks();
|
|
|
|
if (argc >= 2) {
|
|
for (int arg = 1; arg < argc; arg++) {
|
|
if (FLAGS_write_compressed) {
|
|
snappy::CompressFile(argv[arg]);
|
|
} else if (FLAGS_write_uncompressed) {
|
|
snappy::UncompressFile(argv[arg]);
|
|
} else {
|
|
snappy::MeasureFile(argv[arg]);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|