snappy/snappy-stubs-internal.h

458 lines
13 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Various stubs for the open-source version of Snappy.
#ifndef UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
#define UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
#include <iostream>
#include <string>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include "config.h"
#include "snappy-stubs-public.h"
#if defined(__x86_64__)
// Enable 64-bit optimized versions of some routines.
#define ARCH_K8 1
#endif
// Needed by OS X, among others.
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
// Pull in std::min, std::ostream, and the likes. This is safe because this
// header file is never used from any public header files.
using namespace std;
// The size of an array, if known at compile-time.
// Will give unexpected results if used on a pointer.
// We undefine it first, since some compilers already have a definition.
#ifdef ARRAYSIZE
#undef ARRAYSIZE
#endif
#define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a)))
// Static prediction hints.
#ifdef HAVE_BUILTIN_EXPECT
#define PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define PREDICT_FALSE(x) x
#define PREDICT_TRUE(x) x
#endif
// This is only used for recomputing the tag byte table used during
// decompression; for simplicity we just remove it from the open-source
// version (anyone who wants to regenerate it can just do the call
// themselves within main()).
#define DEFINE_bool(flag_name, default_value, description) \
bool FLAGS_ ## flag_name = default_value;
#define DECLARE_bool(flag_name) \
extern bool FLAGS_ ## flag_name;
#define REGISTER_MODULE_INITIALIZER(name, code)
namespace snappy {
static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF);
static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL);
// Logging.
#define LOG(level) LogMessage()
#define VLOG(level) true ? (void)0 : \
snappy::LogMessageVoidify() & snappy::LogMessage()
class LogMessage {
public:
LogMessage() { }
~LogMessage() {
cerr << endl;
}
LogMessage& operator<<(const std::string& msg) {
cerr << msg;
return *this;
}
LogMessage& operator<<(int x) {
cerr << x;
return *this;
}
};
// Asserts, both versions activated in debug mode only,
// and ones that are always active.
#define CRASH_UNLESS(condition) \
PREDICT_TRUE(condition) ? (void)0 : \
snappy::LogMessageVoidify() & snappy::LogMessageCrash()
class LogMessageCrash : public LogMessage {
public:
LogMessageCrash() { }
~LogMessageCrash() {
cerr << endl;
abort();
}
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class LogMessageVoidify {
public:
LogMessageVoidify() { }
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const LogMessage&) { }
};
#define CHECK(cond) CRASH_UNLESS(cond)
#define CHECK_LE(a, b) CRASH_UNLESS((a) <= (b))
#define CHECK_GE(a, b) CRASH_UNLESS((a) >= (b))
#define CHECK_EQ(a, b) CRASH_UNLESS((a) == (b))
#define CHECK_NE(a, b) CRASH_UNLESS((a) != (b))
#define CHECK_LT(a, b) CRASH_UNLESS((a) < (b))
#define CHECK_GT(a, b) CRASH_UNLESS((a) > (b))
#ifdef NDEBUG
#define DCHECK(cond) CRASH_UNLESS(true)
#define DCHECK_LE(a, b) CRASH_UNLESS(true)
#define DCHECK_GE(a, b) CRASH_UNLESS(true)
#define DCHECK_EQ(a, b) CRASH_UNLESS(true)
#define DCHECK_NE(a, b) CRASH_UNLESS(true)
#define DCHECK_LT(a, b) CRASH_UNLESS(true)
#define DCHECK_GT(a, b) CRASH_UNLESS(true)
#else
#define DCHECK(cond) CHECK(cond)
#define DCHECK_LE(a, b) CHECK_LE(a, b)
#define DCHECK_GE(a, b) CHECK_GE(a, b)
#define DCHECK_EQ(a, b) CHECK_EQ(a, b)
#define DCHECK_NE(a, b) CHECK_NE(a, b)
#define DCHECK_LT(a, b) CHECK_LT(a, b)
#define DCHECK_GT(a, b) CHECK_GT(a, b)
#endif
// Potentially unaligned loads and stores.
#if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__)
#define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p))
#define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p))
#define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p))
#define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val))
#define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val))
#define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val))
#else
// These functions are provided for architectures that don't support
// unaligned loads and stores.
inline uint16 UNALIGNED_LOAD16(const void *p) {
uint16 t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint32 UNALIGNED_LOAD32(const void *p) {
uint32 t;
memcpy(&t, p, sizeof t);
return t;
}
inline uint64 UNALIGNED_LOAD64(const void *p) {
uint64 t;
memcpy(&t, p, sizeof t);
return t;
}
inline void UNALIGNED_STORE16(void *p, uint16 v) {
memcpy(p, &v, sizeof v);
}
inline void UNALIGNED_STORE32(void *p, uint32 v) {
memcpy(p, &v, sizeof v);
}
inline void UNALIGNED_STORE64(void *p, uint64 v) {
memcpy(p, &v, sizeof v);
}
#endif
// The following guarantees declaration of the byte swap functions.
#ifdef WORDS_BIGENDIAN
#ifdef _MSC_VER
#include <stdlib.h>
#define bswap_16(x) _byteswap_ushort(x)
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)
#elif defined(__APPLE__)
// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)
#else
#include <byteswap.h>
#endif
#endif // WORDS_BIGENDIAN
// Convert to little-endian storage, opposite of network format.
// Convert x from host to little endian: x = LittleEndian.FromHost(x);
// convert x from little endian to host: x = LittleEndian.ToHost(x);
//
// Store values into unaligned memory converting to little endian order:
// LittleEndian.Store16(p, x);
//
// Load unaligned values stored in little endian converting to host order:
// x = LittleEndian.Load16(p);
class LittleEndian {
public:
// Conversion functions.
#ifdef WORDS_BIGENDIAN
static uint16 FromHost16(uint16 x) { return bswap_16(x); }
static uint16 ToHost16(uint16 x) { return bswap_16(x); }
static uint32 FromHost32(uint32 x) { return bswap_32(x); }
static uint32 ToHost32(uint32 x) { return bswap_32(x); }
static bool IsLittleEndian() { return false; }
#else // !defined(WORDS_BIGENDIAN)
static uint16 FromHost16(uint16 x) { return x; }
static uint16 ToHost16(uint16 x) { return x; }
static uint32 FromHost32(uint32 x) { return x; }
static uint32 ToHost32(uint32 x) { return x; }
static bool IsLittleEndian() { return true; }
#endif // !defined(WORDS_BIGENDIAN)
// Functions to do unaligned loads and stores in little-endian order.
static uint16 Load16(const void *p) {
return ToHost16(UNALIGNED_LOAD16(p));
}
static void Store16(void *p, uint16 v) {
UNALIGNED_STORE16(p, FromHost16(v));
}
static uint32 Load32(const void *p) {
return ToHost32(UNALIGNED_LOAD32(p));
}
static void Store32(void *p, uint32 v) {
UNALIGNED_STORE32(p, FromHost32(v));
}
};
// Some bit-manipulation functions.
class Bits {
public:
// Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0.
static int Log2Floor(uint32 n);
// Return the first set least / most significant bit, 0-indexed. Returns an
// undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except
// that it's 0-indexed.
static int FindLSBSetNonZero(uint32 n);
static int FindLSBSetNonZero64(uint64 n);
private:
DISALLOW_COPY_AND_ASSIGN(Bits);
};
#ifdef HAVE_BUILTIN_CTZ
inline int Bits::Log2Floor(uint32 n) {
return n == 0 ? -1 : 31 ^ __builtin_clz(n);
}
inline int Bits::FindLSBSetNonZero(uint32 n) {
return __builtin_ctz(n);
}
inline int Bits::FindLSBSetNonZero64(uint64 n) {
return __builtin_ctzll(n);
}
#else // Portable versions.
inline int Bits::Log2Floor(uint32 n) {
if (n == 0)
return -1;
int log = 0;
uint32 value = n;
for (int i = 4; i >= 0; --i) {
int shift = (1 << i);
uint32 x = value >> shift;
if (x != 0) {
value = x;
log += shift;
}
}
assert(value == 1);
return log;
}
inline int Bits::FindLSBSetNonZero(uint32 n) {
int rc = 31;
for (int i = 4, shift = 1 << 4; i >= 0; --i) {
const uint32 x = n << shift;
if (x != 0) {
n = x;
rc -= shift;
}
shift >>= 1;
}
return rc;
}
// FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero().
inline int Bits::FindLSBSetNonZero64(uint64 n) {
const uint32 bottombits = static_cast<uint32>(n);
if (bottombits == 0) {
// Bottom bits are zero, so scan in top bits
return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32));
} else {
return FindLSBSetNonZero(bottombits);
}
}
#endif // End portable versions.
// Variable-length integer encoding.
class Varint {
public:
// Maximum lengths of varint encoding of uint32.
static const int kMax32 = 5;
// Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
// Never reads a character at or beyond limit. If a valid/terminated varint32
// was found in the range, stores it in *OUTPUT and returns a pointer just
// past the last byte of the varint32. Else returns NULL. On success,
// "result <= limit".
static const char* Parse32WithLimit(const char* ptr, const char* limit,
uint32* OUTPUT);
// REQUIRES "ptr" points to a buffer of length sufficient to hold "v".
// EFFECTS Encodes "v" into "ptr" and returns a pointer to the
// byte just past the last encoded byte.
static char* Encode32(char* ptr, uint32 v);
// EFFECTS Appends the varint representation of "value" to "*s".
static void Append32(string* s, uint32 value);
};
inline const char* Varint::Parse32WithLimit(const char* p,
const char* l,
uint32* OUTPUT) {
const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p);
const unsigned char* limit = reinterpret_cast<const unsigned char*>(l);
uint32 b, result;
if (ptr >= limit) return NULL;
b = *(ptr++); result = b & 127; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done;
if (ptr >= limit) return NULL;
b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done;
return NULL; // Value is too long to be a varint32
done:
*OUTPUT = result;
return reinterpret_cast<const char*>(ptr);
}
inline char* Varint::Encode32(char* sptr, uint32 v) {
// Operate on characters as unsigneds
unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr);
static const int B = 128;
if (v < (1<<7)) {
*(ptr++) = v;
} else if (v < (1<<14)) {
*(ptr++) = v | B;
*(ptr++) = v>>7;
} else if (v < (1<<21)) {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = v>>14;
} else if (v < (1<<28)) {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = (v>>14) | B;
*(ptr++) = v>>21;
} else {
*(ptr++) = v | B;
*(ptr++) = (v>>7) | B;
*(ptr++) = (v>>14) | B;
*(ptr++) = (v>>21) | B;
*(ptr++) = v>>28;
}
return reinterpret_cast<char*>(ptr);
}
// If you know the internal layout of the std::string in use, you can
// replace this function with one that resizes the string without
// filling the new space with zeros (if applicable) --
// it will be non-portable but faster.
inline void STLStringResizeUninitialized(string* s, size_t new_size) {
s->resize(new_size);
}
// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530)
// proposes this as the method. It will officially be part of the standard
// for C++0x. This should already work on all current implementations.
inline char* string_as_array(string* str) {
return str->empty() ? NULL : &*str->begin();
}
} // namespace snappy
#endif // UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_