// Copyright 2005 and onwards Google Inc. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include #include #include "snappy-test.h" #include "gtest/gtest.h" #include "snappy-internal.h" #include "snappy-sinksource.h" #include "snappy.h" #include "snappy_test_data.h" DEFINE_bool(snappy_dump_decompression_table, false, "If true, we print the decompression table during tests."); namespace snappy { namespace { #if defined(HAVE_FUNC_MMAP) && defined(HAVE_FUNC_SYSCONF) // To test against code that reads beyond its input, this class copies a // string to a newly allocated group of pages, the last of which // is made unreadable via mprotect. Note that we need to allocate the // memory with mmap(), as POSIX allows mprotect() only on memory allocated // with mmap(), and some malloc/posix_memalign implementations expect to // be able to read previously allocated memory while doing heap allocations. class DataEndingAtUnreadablePage { public: explicit DataEndingAtUnreadablePage(const std::string& s) { const size_t page_size = sysconf(_SC_PAGESIZE); const size_t size = s.size(); // Round up space for string to a multiple of page_size. size_t space_for_string = (size + page_size - 1) & ~(page_size - 1); alloc_size_ = space_for_string + page_size; mem_ = mmap(NULL, alloc_size_, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); CHECK_NE(MAP_FAILED, mem_); protected_page_ = reinterpret_cast(mem_) + space_for_string; char* dst = protected_page_ - size; std::memcpy(dst, s.data(), size); data_ = dst; size_ = size; // Make guard page unreadable. CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_NONE)); } ~DataEndingAtUnreadablePage() { const size_t page_size = sysconf(_SC_PAGESIZE); // Undo the mprotect. CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_READ|PROT_WRITE)); CHECK_EQ(0, munmap(mem_, alloc_size_)); } const char* data() const { return data_; } size_t size() const { return size_; } private: size_t alloc_size_; void* mem_; char* protected_page_; const char* data_; size_t size_; }; #else // defined(HAVE_FUNC_MMAP) && defined(HAVE_FUNC_SYSCONF) // Fallback for systems without mmap. using DataEndingAtUnreadablePage = std::string; #endif int VerifyString(const std::string& input) { std::string compressed; DataEndingAtUnreadablePage i(input); const size_t written = snappy::Compress(i.data(), i.size(), &compressed); CHECK_EQ(written, compressed.size()); CHECK_LE(compressed.size(), snappy::MaxCompressedLength(input.size())); CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); std::string uncompressed; DataEndingAtUnreadablePage c(compressed); CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed)); CHECK_EQ(uncompressed, input); return uncompressed.size(); } void VerifyStringSink(const std::string& input) { std::string compressed; DataEndingAtUnreadablePage i(input); const size_t written = snappy::Compress(i.data(), i.size(), &compressed); CHECK_EQ(written, compressed.size()); CHECK_LE(compressed.size(), snappy::MaxCompressedLength(input.size())); CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); std::string uncompressed; uncompressed.resize(input.size()); snappy::UncheckedByteArraySink sink(string_as_array(&uncompressed)); DataEndingAtUnreadablePage c(compressed); snappy::ByteArraySource source(c.data(), c.size()); CHECK(snappy::Uncompress(&source, &sink)); CHECK_EQ(uncompressed, input); } void VerifyIOVec(const std::string& input) { std::string compressed; DataEndingAtUnreadablePage i(input); const size_t written = snappy::Compress(i.data(), i.size(), &compressed); CHECK_EQ(written, compressed.size()); CHECK_LE(compressed.size(), snappy::MaxCompressedLength(input.size())); CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); // Try uncompressing into an iovec containing a random number of entries // ranging from 1 to 10. char* buf = new char[input.size()]; std::minstd_rand0 rng(input.size()); std::uniform_int_distribution uniform_1_to_10(1, 10); size_t num = uniform_1_to_10(rng); if (input.size() < num) { num = input.size(); } struct iovec* iov = new iovec[num]; size_t used_so_far = 0; std::bernoulli_distribution one_in_five(1.0 / 5); for (size_t i = 0; i < num; ++i) { assert(used_so_far < input.size()); iov[i].iov_base = buf + used_so_far; if (i == num - 1) { iov[i].iov_len = input.size() - used_so_far; } else { // Randomly choose to insert a 0 byte entry. if (one_in_five(rng)) { iov[i].iov_len = 0; } else { std::uniform_int_distribution uniform_not_used_so_far( 0, input.size() - used_so_far - 1); iov[i].iov_len = uniform_not_used_so_far(rng); } } used_so_far += iov[i].iov_len; } CHECK(snappy::RawUncompressToIOVec( compressed.data(), compressed.size(), iov, num)); CHECK(!memcmp(buf, input.data(), input.size())); delete[] iov; delete[] buf; } // Test that data compressed by a compressor that does not // obey block sizes is uncompressed properly. void VerifyNonBlockedCompression(const std::string& input) { if (input.length() > snappy::kBlockSize) { // We cannot test larger blocks than the maximum block size, obviously. return; } std::string prefix; Varint::Append32(&prefix, input.size()); // Setup compression table snappy::internal::WorkingMemory wmem(input.size()); int table_size; uint16_t* table = wmem.GetHashTable(input.size(), &table_size); // Compress entire input in one shot std::string compressed; compressed += prefix; compressed.resize(prefix.size()+snappy::MaxCompressedLength(input.size())); char* dest = string_as_array(&compressed) + prefix.size(); char* end = snappy::internal::CompressFragment(input.data(), input.size(), dest, table, table_size); compressed.resize(end - compressed.data()); // Uncompress into std::string std::string uncomp_str; CHECK(snappy::Uncompress(compressed.data(), compressed.size(), &uncomp_str)); CHECK_EQ(uncomp_str, input); // Uncompress using source/sink std::string uncomp_str2; uncomp_str2.resize(input.size()); snappy::UncheckedByteArraySink sink(string_as_array(&uncomp_str2)); snappy::ByteArraySource source(compressed.data(), compressed.size()); CHECK(snappy::Uncompress(&source, &sink)); CHECK_EQ(uncomp_str2, input); // Uncompress into iovec { static const int kNumBlocks = 10; struct iovec vec[kNumBlocks]; const int block_size = 1 + input.size() / kNumBlocks; std::string iovec_data(block_size * kNumBlocks, 'x'); for (int i = 0; i < kNumBlocks; ++i) { vec[i].iov_base = string_as_array(&iovec_data) + i * block_size; vec[i].iov_len = block_size; } CHECK(snappy::RawUncompressToIOVec(compressed.data(), compressed.size(), vec, kNumBlocks)); CHECK_EQ(std::string(iovec_data.data(), input.size()), input); } } // Expand the input so that it is at least K times as big as block size std::string Expand(const std::string& input) { static const int K = 3; std::string data = input; while (data.size() < K * snappy::kBlockSize) { data += input; } return data; } int Verify(const std::string& input) { VLOG(1) << "Verifying input of size " << input.size(); // Compress using string based routines const int result = VerifyString(input); // Verify using sink based routines VerifyStringSink(input); VerifyNonBlockedCompression(input); VerifyIOVec(input); if (!input.empty()) { const std::string expanded = Expand(input); VerifyNonBlockedCompression(expanded); VerifyIOVec(input); } return result; } bool IsValidCompressedBuffer(const std::string& c) { return snappy::IsValidCompressedBuffer(c.data(), c.size()); } bool Uncompress(const std::string& c, std::string* u) { return snappy::Uncompress(c.data(), c.size(), u); } // This test checks to ensure that snappy doesn't coredump if it gets // corrupted data. TEST(CorruptedTest, VerifyCorrupted) { std::string source = "making sure we don't crash with corrupted input"; VLOG(1) << source; std::string dest; std::string uncmp; snappy::Compress(source.data(), source.size(), &dest); // Mess around with the data. It's hard to simulate all possible // corruptions; this is just one example ... CHECK_GT(dest.size(), 3); dest[1]--; dest[3]++; // this really ought to fail. CHECK(!IsValidCompressedBuffer(dest)); CHECK(!Uncompress(dest, &uncmp)); // This is testing for a security bug - a buffer that decompresses to 100k // but we lie in the snappy header and only reserve 0 bytes of memory :) source.resize(100000); for (char& source_char : source) { source_char = 'A'; } snappy::Compress(source.data(), source.size(), &dest); dest[0] = dest[1] = dest[2] = dest[3] = 0; CHECK(!IsValidCompressedBuffer(dest)); CHECK(!Uncompress(dest, &uncmp)); if (sizeof(void *) == 4) { // Another security check; check a crazy big length can't DoS us with an // over-allocation. // Currently this is done only for 32-bit builds. On 64-bit builds, // where 3 GB might be an acceptable allocation size, Uncompress() // attempts to decompress, and sometimes causes the test to run out of // memory. dest[0] = dest[1] = dest[2] = dest[3] = '\xff'; // This decodes to a really large size, i.e., about 3 GB. dest[4] = 'k'; CHECK(!IsValidCompressedBuffer(dest)); CHECK(!Uncompress(dest, &uncmp)); } else { LOG(WARNING) << "Crazy decompression lengths not checked on 64-bit build"; } // This decodes to about 2 MB; much smaller, but should still fail. dest[0] = dest[1] = dest[2] = '\xff'; dest[3] = 0x00; CHECK(!IsValidCompressedBuffer(dest)); CHECK(!Uncompress(dest, &uncmp)); // try reading stuff in from a bad file. for (int i = 1; i <= 3; ++i) { std::string data = ReadTestDataFile(StrFormat("baddata%d.snappy", i).c_str(), 0); std::string uncmp; // check that we don't return a crazy length size_t ulen; CHECK(!snappy::GetUncompressedLength(data.data(), data.size(), &ulen) || (ulen < (1<<20))); uint32_t ulen2; snappy::ByteArraySource source(data.data(), data.size()); CHECK(!snappy::GetUncompressedLength(&source, &ulen2) || (ulen2 < (1<<20))); CHECK(!IsValidCompressedBuffer(data)); CHECK(!Uncompress(data, &uncmp)); } } // Helper routines to construct arbitrary compressed strings. // These mirror the compression code in snappy.cc, but are copied // here so that we can bypass some limitations in the how snappy.cc // invokes these routines. void AppendLiteral(std::string* dst, const std::string& literal) { if (literal.empty()) return; int n = literal.size() - 1; if (n < 60) { // Fit length in tag byte dst->push_back(0 | (n << 2)); } else { // Encode in upcoming bytes char number[4]; int count = 0; while (n > 0) { number[count++] = n & 0xff; n >>= 8; } dst->push_back(0 | ((59+count) << 2)); *dst += std::string(number, count); } *dst += literal; } void AppendCopy(std::string* dst, int offset, int length) { while (length > 0) { // Figure out how much to copy in one shot int to_copy; if (length >= 68) { to_copy = 64; } else if (length > 64) { to_copy = 60; } else { to_copy = length; } length -= to_copy; if ((to_copy >= 4) && (to_copy < 12) && (offset < 2048)) { assert(to_copy-4 < 8); // Must fit in 3 bits dst->push_back(1 | ((to_copy-4) << 2) | ((offset >> 8) << 5)); dst->push_back(offset & 0xff); } else if (offset < 65536) { dst->push_back(2 | ((to_copy-1) << 2)); dst->push_back(offset & 0xff); dst->push_back(offset >> 8); } else { dst->push_back(3 | ((to_copy-1) << 2)); dst->push_back(offset & 0xff); dst->push_back((offset >> 8) & 0xff); dst->push_back((offset >> 16) & 0xff); dst->push_back((offset >> 24) & 0xff); } } } TEST(Snappy, SimpleTests) { Verify(""); Verify("a"); Verify("ab"); Verify("abc"); Verify("aaaaaaa" + std::string(16, 'b') + std::string("aaaaa") + "abc"); Verify("aaaaaaa" + std::string(256, 'b') + std::string("aaaaa") + "abc"); Verify("aaaaaaa" + std::string(2047, 'b') + std::string("aaaaa") + "abc"); Verify("aaaaaaa" + std::string(65536, 'b') + std::string("aaaaa") + "abc"); Verify("abcaaaaaaa" + std::string(65536, 'b') + std::string("aaaaa") + "abc"); } // Regression test for cr/345340892. TEST(Snappy, AppendSelfPatternExtensionEdgeCases) { Verify("abcabcabcabcabcabcab"); Verify("abcabcabcabcabcabcab0123456789ABCDEF"); Verify("abcabcabcabcabcabcabcabcabcabcabcabc"); Verify("abcabcabcabcabcabcabcabcabcabcabcabc0123456789ABCDEF"); } // Regression test for cr/345340892. TEST(Snappy, AppendSelfPatternExtensionEdgeCasesExhaustive) { std::mt19937 rng; std::uniform_int_distribution uniform_byte(0, 255); for (int pattern_size = 1; pattern_size <= 18; ++pattern_size) { for (int length = 1; length <= 64; ++length) { for (int extra_bytes_after_pattern : {0, 1, 15, 16, 128}) { const int size = pattern_size + length + extra_bytes_after_pattern; std::string input; input.resize(size); for (int i = 0; i < pattern_size; ++i) { input[i] = 'a' + i; } for (int i = 0; i < length; ++i) { input[pattern_size + i] = input[i]; } for (int i = 0; i < extra_bytes_after_pattern; ++i) { input[pattern_size + length + i] = static_cast(uniform_byte(rng)); } Verify(input); } } } } // Verify max blowup (lots of four-byte copies) TEST(Snappy, MaxBlowup) { std::mt19937 rng; std::uniform_int_distribution uniform_byte(0, 255); std::string input; for (int i = 0; i < 80000; ++i) input.push_back(static_cast(uniform_byte(rng))); for (int i = 0; i < 80000; i += 4) { std::string four_bytes(input.end() - i - 4, input.end() - i); input.append(four_bytes); } Verify(input); } TEST(Snappy, RandomData) { std::minstd_rand0 rng(FLAGS_test_random_seed); std::uniform_int_distribution uniform_0_to_3(0, 3); std::uniform_int_distribution uniform_0_to_8(0, 8); std::uniform_int_distribution uniform_byte(0, 255); std::uniform_int_distribution uniform_4k(0, 4095); std::uniform_int_distribution uniform_64k(0, 65535); std::bernoulli_distribution one_in_ten(1.0 / 10); constexpr int num_ops = 20000; for (int i = 0; i < num_ops; ++i) { if ((i % 1000) == 0) { VLOG(0) << "Random op " << i << " of " << num_ops; } std::string x; size_t len = uniform_4k(rng); if (i < 100) { len = 65536 + uniform_64k(rng); } while (x.size() < len) { int run_len = 1; if (one_in_ten(rng)) { int skewed_bits = uniform_0_to_8(rng); // int is guaranteed to hold at least 16 bits, this uses at most 8 bits. std::uniform_int_distribution skewed_low(0, (1 << skewed_bits) - 1); run_len = skewed_low(rng); } char c = static_cast(uniform_byte(rng)); if (i >= 100) { int skewed_bits = uniform_0_to_3(rng); // int is guaranteed to hold at least 16 bits, this uses at most 3 bits. std::uniform_int_distribution skewed_low(0, (1 << skewed_bits) - 1); c = static_cast(skewed_low(rng)); } while (run_len-- > 0 && x.size() < len) { x.push_back(c); } } Verify(x); } } TEST(Snappy, FourByteOffset) { // The new compressor cannot generate four-byte offsets since // it chops up the input into 32KB pieces. So we hand-emit the // copy manually. // The two fragments that make up the input string. std::string fragment1 = "012345689abcdefghijklmnopqrstuvwxyz"; std::string fragment2 = "some other string"; // How many times each fragment is emitted. const int n1 = 2; const int n2 = 100000 / fragment2.size(); const size_t length = n1 * fragment1.size() + n2 * fragment2.size(); std::string compressed; Varint::Append32(&compressed, length); AppendLiteral(&compressed, fragment1); std::string src = fragment1; for (int i = 0; i < n2; ++i) { AppendLiteral(&compressed, fragment2); src += fragment2; } AppendCopy(&compressed, src.size(), fragment1.size()); src += fragment1; CHECK_EQ(length, src.size()); std::string uncompressed; CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); CHECK(snappy::Uncompress(compressed.data(), compressed.size(), &uncompressed)); CHECK_EQ(uncompressed, src); } TEST(Snappy, IOVecEdgeCases) { // Test some tricky edge cases in the iovec output that are not necessarily // exercised by random tests. // Our output blocks look like this initially (the last iovec is bigger // than depicted): // [ ] [ ] [ ] [ ] [ ] static const int kLengths[] = { 2, 1, 4, 8, 128 }; struct iovec iov[ARRAYSIZE(kLengths)]; for (int i = 0; i < ARRAYSIZE(kLengths); ++i) { iov[i].iov_base = new char[kLengths[i]]; iov[i].iov_len = kLengths[i]; } std::string compressed; Varint::Append32(&compressed, 22); // A literal whose output crosses three blocks. // [ab] [c] [123 ] [ ] [ ] AppendLiteral(&compressed, "abc123"); // A copy whose output crosses two blocks (source and destination // segments marked). // [ab] [c] [1231] [23 ] [ ] // ^--^ -- AppendCopy(&compressed, 3, 3); // A copy where the input is, at first, in the block before the output: // // [ab] [c] [1231] [231231 ] [ ] // ^--- ^--- // Then during the copy, the pointers move such that the input and // output pointers are in the same block: // // [ab] [c] [1231] [23123123] [ ] // ^- ^- // And then they move again, so that the output pointer is no longer // in the same block as the input pointer: // [ab] [c] [1231] [23123123] [123 ] // ^-- ^-- AppendCopy(&compressed, 6, 9); // Finally, a copy where the input is from several blocks back, // and it also crosses three blocks: // // [ab] [c] [1231] [23123123] [123b ] // ^ ^ // [ab] [c] [1231] [23123123] [123bc ] // ^ ^ // [ab] [c] [1231] [23123123] [123bc12 ] // ^- ^- AppendCopy(&compressed, 17, 4); CHECK(snappy::RawUncompressToIOVec( compressed.data(), compressed.size(), iov, ARRAYSIZE(iov))); CHECK_EQ(0, memcmp(iov[0].iov_base, "ab", 2)); CHECK_EQ(0, memcmp(iov[1].iov_base, "c", 1)); CHECK_EQ(0, memcmp(iov[2].iov_base, "1231", 4)); CHECK_EQ(0, memcmp(iov[3].iov_base, "23123123", 8)); CHECK_EQ(0, memcmp(iov[4].iov_base, "123bc12", 7)); for (int i = 0; i < ARRAYSIZE(kLengths); ++i) { delete[] reinterpret_cast(iov[i].iov_base); } } TEST(Snappy, IOVecLiteralOverflow) { static const int kLengths[] = { 3, 4 }; struct iovec iov[ARRAYSIZE(kLengths)]; for (int i = 0; i < ARRAYSIZE(kLengths); ++i) { iov[i].iov_base = new char[kLengths[i]]; iov[i].iov_len = kLengths[i]; } std::string compressed; Varint::Append32(&compressed, 8); AppendLiteral(&compressed, "12345678"); CHECK(!snappy::RawUncompressToIOVec( compressed.data(), compressed.size(), iov, ARRAYSIZE(iov))); for (int i = 0; i < ARRAYSIZE(kLengths); ++i) { delete[] reinterpret_cast(iov[i].iov_base); } } TEST(Snappy, IOVecCopyOverflow) { static const int kLengths[] = { 3, 4 }; struct iovec iov[ARRAYSIZE(kLengths)]; for (int i = 0; i < ARRAYSIZE(kLengths); ++i) { iov[i].iov_base = new char[kLengths[i]]; iov[i].iov_len = kLengths[i]; } std::string compressed; Varint::Append32(&compressed, 8); AppendLiteral(&compressed, "123"); AppendCopy(&compressed, 3, 5); CHECK(!snappy::RawUncompressToIOVec( compressed.data(), compressed.size(), iov, ARRAYSIZE(iov))); for (int i = 0; i < ARRAYSIZE(kLengths); ++i) { delete[] reinterpret_cast(iov[i].iov_base); } } bool CheckUncompressedLength(const std::string& compressed, size_t* ulength) { const bool result1 = snappy::GetUncompressedLength(compressed.data(), compressed.size(), ulength); snappy::ByteArraySource source(compressed.data(), compressed.size()); uint32_t length; const bool result2 = snappy::GetUncompressedLength(&source, &length); CHECK_EQ(result1, result2); return result1; } TEST(SnappyCorruption, TruncatedVarint) { std::string compressed, uncompressed; size_t ulength; compressed.push_back('\xf0'); CHECK(!CheckUncompressedLength(compressed, &ulength)); CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); CHECK(!snappy::Uncompress(compressed.data(), compressed.size(), &uncompressed)); } TEST(SnappyCorruption, UnterminatedVarint) { std::string compressed, uncompressed; size_t ulength; compressed.push_back('\x80'); compressed.push_back('\x80'); compressed.push_back('\x80'); compressed.push_back('\x80'); compressed.push_back('\x80'); compressed.push_back(10); CHECK(!CheckUncompressedLength(compressed, &ulength)); CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); CHECK(!snappy::Uncompress(compressed.data(), compressed.size(), &uncompressed)); } TEST(SnappyCorruption, OverflowingVarint) { std::string compressed, uncompressed; size_t ulength; compressed.push_back('\xfb'); compressed.push_back('\xff'); compressed.push_back('\xff'); compressed.push_back('\xff'); compressed.push_back('\x7f'); CHECK(!CheckUncompressedLength(compressed, &ulength)); CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size())); CHECK(!snappy::Uncompress(compressed.data(), compressed.size(), &uncompressed)); } TEST(Snappy, ReadPastEndOfBuffer) { // Check that we do not read past end of input // Make a compressed string that ends with a single-byte literal std::string compressed; Varint::Append32(&compressed, 1); AppendLiteral(&compressed, "x"); std::string uncompressed; DataEndingAtUnreadablePage c(compressed); CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed)); CHECK_EQ(uncompressed, std::string("x")); } // Check for an infinite loop caused by a copy with offset==0 TEST(Snappy, ZeroOffsetCopy) { const char* compressed = "\x40\x12\x00\x00"; // \x40 Length (must be > kMaxIncrementCopyOverflow) // \x12\x00\x00 Copy with offset==0, length==5 char uncompressed[100]; EXPECT_FALSE(snappy::RawUncompress(compressed, 4, uncompressed)); } TEST(Snappy, ZeroOffsetCopyValidation) { const char* compressed = "\x05\x12\x00\x00"; // \x05 Length // \x12\x00\x00 Copy with offset==0, length==5 EXPECT_FALSE(snappy::IsValidCompressedBuffer(compressed, 4)); } int TestFindMatchLength(const char* s1, const char *s2, unsigned length) { uint64_t data; std::pair p = snappy::internal::FindMatchLength(s1, s2, s2 + length, &data); CHECK_EQ(p.first < 8, p.second); return p.first; } TEST(Snappy, FindMatchLength) { // Exercise all different code paths through the function. // 64-bit version: // Hit s1_limit in 64-bit loop, hit s1_limit in single-character loop. EXPECT_EQ(6, TestFindMatchLength("012345", "012345", 6)); EXPECT_EQ(11, TestFindMatchLength("01234567abc", "01234567abc", 11)); // Hit s1_limit in 64-bit loop, find a non-match in single-character loop. EXPECT_EQ(9, TestFindMatchLength("01234567abc", "01234567axc", 9)); // Same, but edge cases. EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc!", 11)); EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc?", 11)); // Find non-match at once in first loop. EXPECT_EQ(0, TestFindMatchLength("01234567xxxxxxxx", "?1234567xxxxxxxx", 16)); EXPECT_EQ(1, TestFindMatchLength("01234567xxxxxxxx", "0?234567xxxxxxxx", 16)); EXPECT_EQ(4, TestFindMatchLength("01234567xxxxxxxx", "01237654xxxxxxxx", 16)); EXPECT_EQ(7, TestFindMatchLength("01234567xxxxxxxx", "0123456?xxxxxxxx", 16)); // Find non-match in first loop after one block. EXPECT_EQ(8, TestFindMatchLength("abcdefgh01234567xxxxxxxx", "abcdefgh?1234567xxxxxxxx", 24)); EXPECT_EQ(9, TestFindMatchLength("abcdefgh01234567xxxxxxxx", "abcdefgh0?234567xxxxxxxx", 24)); EXPECT_EQ(12, TestFindMatchLength("abcdefgh01234567xxxxxxxx", "abcdefgh01237654xxxxxxxx", 24)); EXPECT_EQ(15, TestFindMatchLength("abcdefgh01234567xxxxxxxx", "abcdefgh0123456?xxxxxxxx", 24)); // 32-bit version: // Short matches. EXPECT_EQ(0, TestFindMatchLength("01234567", "?1234567", 8)); EXPECT_EQ(1, TestFindMatchLength("01234567", "0?234567", 8)); EXPECT_EQ(2, TestFindMatchLength("01234567", "01?34567", 8)); EXPECT_EQ(3, TestFindMatchLength("01234567", "012?4567", 8)); EXPECT_EQ(4, TestFindMatchLength("01234567", "0123?567", 8)); EXPECT_EQ(5, TestFindMatchLength("01234567", "01234?67", 8)); EXPECT_EQ(6, TestFindMatchLength("01234567", "012345?7", 8)); EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 8)); EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 7)); EXPECT_EQ(7, TestFindMatchLength("01234567!", "0123456??", 7)); // Hit s1_limit in 32-bit loop, hit s1_limit in single-character loop. EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd", "xxxxxxabcd", 10)); EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd?", "xxxxxxabcd?", 10)); EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcdef", "xxxxxxabcdef", 13)); // Same, but edge cases. EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc!", 12)); EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc?", 12)); // Hit s1_limit in 32-bit loop, find a non-match in single-character loop. EXPECT_EQ(11, TestFindMatchLength("xxxxxx0123abc", "xxxxxx0123axc", 13)); // Find non-match at once in first loop. EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123xxxxxxxx", "xxxxxx?123xxxxxxxx", 18)); EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123xxxxxxxx", "xxxxxx0?23xxxxxxxx", 18)); EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123xxxxxxxx", "xxxxxx0132xxxxxxxx", 18)); EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123xxxxxxxx", "xxxxxx012?xxxxxxxx", 18)); // Same, but edge cases. EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123", "xxxxxx?123", 10)); EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123", "xxxxxx0?23", 10)); EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123", "xxxxxx0132", 10)); EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123", "xxxxxx012?", 10)); // Find non-match in first loop after one block. EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123xx", "xxxxxxabcd?123xx", 16)); EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123xx", "xxxxxxabcd0?23xx", 16)); EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123xx", "xxxxxxabcd0132xx", 16)); EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123xx", "xxxxxxabcd012?xx", 16)); // Same, but edge cases. EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd?123", 14)); EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0?23", 14)); EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0132", 14)); EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd012?", 14)); } TEST(Snappy, FindMatchLengthRandom) { constexpr int kNumTrials = 10000; constexpr int kTypicalLength = 10; std::minstd_rand0 rng(FLAGS_test_random_seed); std::uniform_int_distribution uniform_byte(0, 255); std::bernoulli_distribution one_in_two(1.0 / 2); std::bernoulli_distribution one_in_typical_length(1.0 / kTypicalLength); for (int i = 0; i < kNumTrials; ++i) { std::string s, t; char a = static_cast(uniform_byte(rng)); char b = static_cast(uniform_byte(rng)); while (!one_in_typical_length(rng)) { s.push_back(one_in_two(rng) ? a : b); t.push_back(one_in_two(rng) ? a : b); } DataEndingAtUnreadablePage u(s); DataEndingAtUnreadablePage v(t); size_t matched = TestFindMatchLength(u.data(), v.data(), t.size()); if (matched == t.size()) { EXPECT_EQ(s, t); } else { EXPECT_NE(s[matched], t[matched]); for (size_t j = 0; j < matched; ++j) { EXPECT_EQ(s[j], t[j]); } } } } uint16_t MakeEntry(unsigned int extra, unsigned int len, unsigned int copy_offset) { // Check that all of the fields fit within the allocated space assert(extra == (extra & 0x7)); // At most 3 bits assert(copy_offset == (copy_offset & 0x7)); // At most 3 bits assert(len == (len & 0x7f)); // At most 7 bits return len | (copy_offset << 8) | (extra << 11); } // Check that the decompression table is correct, and optionally print out // the computed one. TEST(Snappy, VerifyCharTable) { using snappy::internal::LITERAL; using snappy::internal::COPY_1_BYTE_OFFSET; using snappy::internal::COPY_2_BYTE_OFFSET; using snappy::internal::COPY_4_BYTE_OFFSET; using snappy::internal::char_table; uint16_t dst[256]; // Place invalid entries in all places to detect missing initialization int assigned = 0; for (int i = 0; i < 256; ++i) { dst[i] = 0xffff; } // Small LITERAL entries. We store (len-1) in the top 6 bits. for (uint8_t len = 1; len <= 60; ++len) { dst[LITERAL | ((len - 1) << 2)] = MakeEntry(0, len, 0); assigned++; } // Large LITERAL entries. We use 60..63 in the high 6 bits to // encode the number of bytes of length info that follow the opcode. for (uint8_t extra_bytes = 1; extra_bytes <= 4; ++extra_bytes) { // We set the length field in the lookup table to 1 because extra // bytes encode len-1. dst[LITERAL | ((extra_bytes + 59) << 2)] = MakeEntry(extra_bytes, 1, 0); assigned++; } // COPY_1_BYTE_OFFSET. // // The tag byte in the compressed data stores len-4 in 3 bits, and // offset/256 in 5 bits. offset%256 is stored in the next byte. // // This format is used for length in range [4..11] and offset in // range [0..2047] for (uint8_t len = 4; len < 12; ++len) { for (uint16_t offset = 0; offset < 2048; offset += 256) { uint8_t offset_high = static_cast(offset >> 8); dst[COPY_1_BYTE_OFFSET | ((len - 4) << 2) | (offset_high << 5)] = MakeEntry(1, len, offset_high); assigned++; } } // COPY_2_BYTE_OFFSET. // Tag contains len-1 in top 6 bits, and offset in next two bytes. for (uint8_t len = 1; len <= 64; ++len) { dst[COPY_2_BYTE_OFFSET | ((len - 1) << 2)] = MakeEntry(2, len, 0); assigned++; } // COPY_4_BYTE_OFFSET. // Tag contents len-1 in top 6 bits, and offset in next four bytes. for (uint8_t len = 1; len <= 64; ++len) { dst[COPY_4_BYTE_OFFSET | ((len - 1) << 2)] = MakeEntry(4, len, 0); assigned++; } // Check that each entry was initialized exactly once. EXPECT_EQ(256, assigned) << "Assigned only " << assigned << " of 256"; for (int i = 0; i < 256; ++i) { EXPECT_NE(0xffff, dst[i]) << "Did not assign byte " << i; } if (FLAGS_snappy_dump_decompression_table) { std::printf("static const uint16_t char_table[256] = {\n "); for (int i = 0; i < 256; ++i) { std::printf("0x%04x%s", dst[i], ((i == 255) ? "\n" : (((i % 8) == 7) ? ",\n " : ", "))); } std::printf("};\n"); } // Check that computed table matched recorded table. for (int i = 0; i < 256; ++i) { EXPECT_EQ(dst[i], char_table[i]) << "Mismatch in byte " << i; } } TEST(Snappy, TestBenchmarkFiles) { for (int i = 0; i < ARRAYSIZE(kTestDataFiles); ++i) { Verify(ReadTestDataFile(kTestDataFiles[i].filename, kTestDataFiles[i].size_limit)); } } } // namespace } // namespace snappy