Optimize zippy decompression by making IncrementalCopy faster.

When SSSE3 is available:
- Use PSHUFB (_mm_shuffle_epi8) to handle pattern size 1 to 15 (previously it handled size 1 to 7).
- This enables us to do 16 byte copies instead of 8 bytes copies because we know that the pattern size >= 16.
- Use shuffle-reshuffle strategy to generate the next pattern after loading the initial pattern. This enables us to write 4 conditionals (similar to when pattern size >= 16) which would allow FDO to layout the code with respect to actual probabilities of each length.
- The PSHUFB masks are now generated programmatically at compile-time.

When SSSE3 is unavailable:
- No change.

In both cases:
- assert(op < op_limit) in IncrementalCopy so that we can check 'op_limit <= buf_limit - 15' instead of 'op_limit <= buf_limit - 16'. All existing call sites of IncrementalCopy guarantee this.

'bin' case is notably >20% faster because it has many repeated character patterns (i.e. pattern_size = 1).

PiperOrigin-RevId: 346454471
This commit is contained in:
Shahriar Rouf 2020-12-09 02:27:22 +00:00 committed by Victor Costan
parent 56c2c247d0
commit a9730ed505
2 changed files with 267 additions and 58 deletions

282
snappy.cc
View File

@ -74,6 +74,7 @@
#include <cstdio>
#include <cstring>
#include <string>
#include <utility>
#include <vector>
namespace snappy {
@ -178,6 +179,16 @@ void UnalignedCopy128(const void* src, void* dst) {
std::memcpy(dst, tmp, 16);
}
template <bool use_16bytes_chunk>
inline void ConditionalUnalignedCopy128(const char* src, char* dst) {
if (use_16bytes_chunk) {
UnalignedCopy128(src, dst);
} else {
UnalignedCopy64(src, dst);
UnalignedCopy64(src + 8, dst + 8);
}
}
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
// for handling COPY operations where the input and output regions may overlap.
// For example, suppose:
@ -205,36 +216,164 @@ inline char* IncrementalCopySlow(const char* src, char* op,
#if SNAPPY_HAVE_SSSE3
// This is a table of shuffle control masks that can be used as the source
// Computes the bytes for shuffle control mask (please read comments on
// 'pattern_generation_masks' as well) for the given index_offset and
// pattern_size. For example, when the 'offset' is 6, it will generate a
// repeating pattern of size 6. So, the first 16 byte indexes will correspond to
// the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the
// next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3,
// 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by
// calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and
// MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively.
template <size_t... indexes>
inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes(
int index_offset, int pattern_size, index_sequence<indexes...>) {
return {static_cast<char>((index_offset + indexes) % pattern_size)...};
}
// Computes the shuffle control mask bytes array for given pattern-sizes and
// returns an array.
template <size_t... pattern_sizes_minus_one>
inline constexpr std::array<std::array<char, sizeof(__m128i)>,
sizeof...(pattern_sizes_minus_one)>
MakePatternMaskBytesTable(int index_offset,
index_sequence<pattern_sizes_minus_one...>) {
return {MakePatternMaskBytes(
index_offset, pattern_sizes_minus_one + 1,
make_index_sequence</*indexes=*/sizeof(__m128i)>())...};
}
// This is an array of shuffle control masks that can be used as the source
// operand for PSHUFB to permute the contents of the destination XMM register
// into a repeating byte pattern.
alignas(16) const char pshufb_fill_patterns[7][16] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
{0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
{0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
{0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
};
alignas(16) inline constexpr std::array<std::array<char, sizeof(__m128i)>,
16> pattern_generation_masks =
MakePatternMaskBytesTable(
/*index_offset=*/0,
/*pattern_sizes_minus_one=*/make_index_sequence<16>());
// j * (16 / j) for all j from 0 to 7. 0 is not actually used.
const uint8_t pattern_size_table[8] = {0, 16, 16, 15, 16, 15, 12, 14};
// Similar to 'pattern_generation_masks', this table is used to "rotate" the
// pattern so that we can copy the *next 16 bytes* consistent with the pattern.
// Basically, pattern_reshuffle_masks is a continuation of
// pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as
// pattern_generation_masks for offsets 1, 2, 4, 8 and 16.
alignas(16) inline constexpr std::array<std::array<char, sizeof(__m128i)>,
16> pattern_reshuffle_masks =
MakePatternMaskBytesTable(
/*index_offset=*/16,
/*pattern_sizes_minus_one=*/make_index_sequence<16>());
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline __m128i LoadPattern(const char* src, const size_t pattern_size) {
__m128i generation_mask = _mm_load_si128(reinterpret_cast<const __m128i*>(
pattern_generation_masks[pattern_size - 1].data()));
// Uninitialized bytes are masked out by the shuffle mask.
// TODO: remove annotation and macro defs once MSan is fixed.
SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size);
return _mm_shuffle_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(src)), generation_mask);
}
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline std::pair<__m128i /* pattern */, __m128i /* reshuffle_mask */>
LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
__m128i pattern = LoadPattern(src, pattern_size);
// This mask will generate the next 16 bytes in-place. Doing so enables us to
// write data by at most 4 _mm_storeu_si128.
//
// For example, suppose pattern is: abcdefabcdefabcd
// Shuffling with this mask will generate: efabcdefabcdefab
// Shuffling again will generate: cdefabcdefabcdef
__m128i reshuffle_mask = _mm_load_si128(reinterpret_cast<const __m128i*>(
pattern_reshuffle_masks[pattern_size - 1].data()));
return {pattern, reshuffle_mask};
}
#endif // SNAPPY_HAVE_SSSE3
// Fallback for when we need to copy while extending the pattern, for example
// copying 10 bytes from 3 positions back abc -> abcabcabcabca.
//
// REQUIRES: [dst - offset, dst + 64) is a valid address range.
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
#if SNAPPY_HAVE_SSSE3
if (SNAPPY_PREDICT_TRUE(offset <= 16)) {
switch (offset) {
case 0:
return false;
case 1: {
std::memset(dst, dst[-1], 64);
return true;
}
case 2:
case 4:
case 8:
case 16: {
__m128i pattern = LoadPattern(dst - offset, offset);
for (int i = 0; i < 4; i++) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16 * i), pattern);
}
return true;
}
default: {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(dst - offset, offset);
__m128i pattern = pattern_and_reshuffle_mask.first;
__m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
for (int i = 0; i < 4; i++) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16 * i), pattern);
pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
}
return true;
}
}
}
#else
if (SNAPPY_PREDICT_TRUE(offset < 16)) {
if (SNAPPY_PREDICT_FALSE(offset == 0)) return false;
// Extend the pattern to the first 16 bytes.
for (int i = 0; i < 16; i++) dst[i] = dst[i - offset];
// Find a multiple of pattern >= 16.
static std::array<uint8_t, 16> pattern_sizes = []() {
std::array<uint8_t, 16> res;
for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i;
return res;
}();
offset = pattern_sizes[offset];
for (int i = 1; i < 4; i++) {
std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
}
return true;
}
#endif // SNAPPY_HAVE_SSSE3
// Very rare.
for (int i = 0; i < 4; i++) {
std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
}
return true;
}
// Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than
// IncrementalCopySlow. buf_limit is the address past the end of the writable
// region of the buffer.
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
char* const buf_limit) {
#if SNAPPY_HAVE_SSSE3
constexpr int big_pattern_size_lower_bound = 16;
#else
constexpr int big_pattern_size_lower_bound = 8;
#endif
// Terminology:
//
// slop = buf_limit - op
// pat = op - src
// len = limit - op
// len = op_limit - op
assert(src < op);
assert(op <= op_limit);
assert(op < op_limit);
assert(op_limit <= buf_limit);
// NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64.
assert(op_limit - op <= 64);
@ -265,11 +404,13 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
// input. In general if we always predict len <= 16 it would be an ok
// prediction.
//
// In order to be fast we want a pattern >= 8 bytes and an unrolled loop
// copying 2x 8 bytes at a time.
// In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE)
// and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a
// time.
// Handle the uncommon case where pattern is less than 8 bytes.
if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
// Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE)
// bytes.
if (pattern_size < big_pattern_size_lower_bound) {
#if SNAPPY_HAVE_SSSE3
// Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
// to permute the register's contents in-place into a repeating sequence of
@ -283,24 +424,55 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
// The non-SSE fallback implementation suffers from store-forwarding stalls
// because its loads and stores partly overlap. By expanding the pattern
// in-place, we avoid the penalty.
if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
const __m128i shuffle_mask = _mm_load_si128(
reinterpret_cast<const __m128i*>(pshufb_fill_patterns) +
pattern_size - 1);
const __m128i pattern = _mm_shuffle_epi8(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
// Uninitialized bytes are masked out by the shuffle mask.
// TODO: remove annotation and macro defs once MSan is fixed.
SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
pattern_size = pattern_size_table[pattern_size];
char* op_end = std::min(op_limit, buf_limit - 15);
while (op < op_end) {
// Typically, the op_limit is the gating factor so try to simplify the loop
// based on that.
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(src, pattern_size);
__m128i pattern = pattern_and_reshuffle_mask.first;
__m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
// There is at least one, and at most four 16-byte blocks. Writing four
// conditionals instead of a loop allows FDO to layout the code with
// respect to the actual probabilities of each length.
// TODO: Replace with loop with trip count hint.
_mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
op += pattern_size;
if (op + 16 < op_limit) {
pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
_mm_storeu_si128(reinterpret_cast<__m128i*>(op + 16), pattern);
}
if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
if (op + 32 < op_limit) {
pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
_mm_storeu_si128(reinterpret_cast<__m128i*>(op + 32), pattern);
}
return IncrementalCopySlow(src, op, op_limit);
if (op + 48 < op_limit) {
pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
_mm_storeu_si128(reinterpret_cast<__m128i*>(op + 48), pattern);
}
return op_limit;
}
char* const op_end = buf_limit - 15;
if (SNAPPY_PREDICT_TRUE(op < op_end)) {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(src, pattern_size);
__m128i pattern = pattern_and_reshuffle_mask.first;
__m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
// This code path is relatively cold however so we save code size
// by avoiding unrolling and vectorizing.
//
// TODO: Remove pragma when when cold regions don't get
// vectorized or unrolled.
#pragma nounroll
do {
_mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
op += 16;
} while (SNAPPY_PREDICT_TRUE(op < op_end));
}
return IncrementalCopySlow(op - pattern_size, op, op_limit);
#else // !SNAPPY_HAVE_SSSE3
// If plenty of buffer space remains, expand the pattern to at least 8
// bytes. The way the following loop is written, we need 8 bytes of buffer
@ -320,34 +492,30 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
}
#endif // SNAPPY_HAVE_SSSE3
}
assert(pattern_size >= 8);
assert(pattern_size >= big_pattern_size_lower_bound);
constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16;
// Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
// UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
// because expanding the pattern to at least 8 bytes guarantees that
// op - src >= 8.
// Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can
// be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op.
// UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes
// guarantees that op - src >= 8.
//
// Typically, the op_limit is the gating factor so try to simplify the loop
// based on that.
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
// There is at least one, and at most four 16-byte blocks. Writing four
// conditionals instead of a loop allows FDO to layout the code with respect
// to the actual probabilities of each length.
// TODO: Replace with loop with trip count hint.
UnalignedCopy64(src, op);
UnalignedCopy64(src + 8, op + 8);
ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
if (op + 16 < op_limit) {
UnalignedCopy64(src + 16, op + 16);
UnalignedCopy64(src + 24, op + 24);
ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 16, op + 16);
}
if (op + 32 < op_limit) {
UnalignedCopy64(src + 32, op + 32);
UnalignedCopy64(src + 40, op + 40);
ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 32, op + 32);
}
if (op + 48 < op_limit) {
UnalignedCopy64(src + 48, op + 48);
UnalignedCopy64(src + 56, op + 56);
ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 48, op + 48);
}
return op_limit;
}
@ -358,12 +526,9 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
//
// TODO: Remove pragma when when cold regions don't get vectorized
// or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
#pragma nounroll
for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
UnalignedCopy64(src, op);
UnalignedCopy64(src + 8, op + 8);
ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
}
if (op >= op_limit) return op_limit;
@ -894,10 +1059,10 @@ std::pair<const uint8_t*, char*> DecompressBranchless(
if (SNAPPY_PREDICT_FALSE(std::size_t(offset) < len)) {
assert(tag_type != 0);
// offset 0 is an error.
if (SNAPPY_PREDICT_FALSE(offset == 0)) break;
op = IncrementalCopy(op_base + delta, op_base + op, op_base + op + len,
op_base + op_limit) -
op_base;
if (!Copy64BytesWithPatternExtension(op_base + op, offset)) {
break;
}
op += len;
continue;
}
@ -1089,6 +1254,7 @@ class SnappyDecompressor {
preload = LittleEndian::Load32(ip);
const uint32_t trailer = ExtractLowBytes(preload, c & 3);
const uint32_t length = entry & 0xff;
assert(length > 0);
// copy_offset/256 is encoded in bits 8..10. By just fetching
// those bits, we get copy_offset (since the bit-field starts at
@ -1459,6 +1625,7 @@ class SnappyIOVecWriter {
if (to_copy > len) {
to_copy = len;
}
assert(to_copy > 0);
IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
curr_iov_output_, curr_iov_output_ + to_copy,
@ -1552,6 +1719,7 @@ class SnappyArrayWriter {
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) {
assert(len > 0);
char* const op = *op_p;
assert(op >= base_);
char* const op_end = op + len;

View File

@ -695,6 +695,41 @@ TEST(Snappy, SimpleTests) {
Verify("abcaaaaaaa" + std::string(65536, 'b') + std::string("aaaaa") + "abc");
}
// Regression test for cr/345340892.
TEST(Snappy, AppendSelfPatternExtensionEdgeCases) {
Verify("abcabcabcabcabcabcab");
Verify("abcabcabcabcabcabcab0123456789ABCDEF");
Verify("abcabcabcabcabcabcabcabcabcabcabcabc");
Verify("abcabcabcabcabcabcabcabcabcabcabcabc0123456789ABCDEF");
}
// Regression test for cr/345340892.
TEST(Snappy, AppendSelfPatternExtensionEdgeCasesExhaustive) {
std::mt19937 rng;
std::uniform_int_distribution<int> uniform_byte(0, 255);
for (int pattern_size = 1; pattern_size <= 18; ++pattern_size) {
for (int length = 1; length <= 64; ++length) {
for (int extra_bytes_after_pattern : {0, 1, 15, 16, 128}) {
const int size = pattern_size + length + extra_bytes_after_pattern;
std::string input;
input.resize(size);
for (int i = 0; i < pattern_size; ++i) {
input[i] = 'a' + i;
}
for (int i = 0; i < length; ++i) {
input[pattern_size + i] = input[i];
}
for (int i = 0; i < extra_bytes_after_pattern; ++i) {
input[pattern_size + length + i] =
static_cast<char>(uniform_byte(rng));
}
Verify(input);
}
}
}
}
// Verify max blowup (lots of four-byte copies)
TEST(Snappy, MaxBlowup) {
std::mt19937 rng;
@ -1285,6 +1320,12 @@ static struct {
{ "gaviota", "kppkn.gtb", 0 },
};
TEST(Snappy, TestBenchmarkFiles) {
for (int i = 0; i < ARRAYSIZE(files); ++i) {
Verify(ReadTestDataFile(files[i].filename, files[i].size_limit));
}
}
static void BM_UFlat(int iters, int arg) {
StopBenchmarkTiming();