snappy/snappy_test_tool.cc

462 lines
15 KiB
C++
Raw Normal View History

// Copyright 2020 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
#include <utility>
#include <vector>
#include "snappy-test.h"
#include "snappy-internal.h"
#include "snappy-sinksource.h"
#include "snappy.h"
#include "snappy_test_data.h"
DEFINE_int32(start_len, -1,
"Starting prefix size for testing (-1: just full file contents)");
DEFINE_int32(end_len, -1,
"Starting prefix size for testing (-1: just full file contents)");
DEFINE_int32(bytes, 10485760,
"How many bytes to compress/uncompress per file for timing");
DEFINE_bool(zlib, true,
"Run zlib compression (http://www.zlib.net)");
DEFINE_bool(lzo, true,
"Run LZO compression (http://www.oberhumer.com/opensource/lzo/)");
DEFINE_bool(lz4, true, "Run LZ4 compression (https://github.com/lz4/lz4)");
DEFINE_bool(snappy, true, "Run snappy compression");
DEFINE_bool(write_compressed, false,
"Write compressed versions of each file to <file>.comp");
DEFINE_bool(write_uncompressed, false,
"Write uncompressed versions of each file to <file>.uncomp");
namespace snappy {
namespace {
#if defined(HAVE_FUNC_MMAP) && defined(HAVE_FUNC_SYSCONF)
// To test against code that reads beyond its input, this class copies a
// string to a newly allocated group of pages, the last of which
// is made unreadable via mprotect. Note that we need to allocate the
// memory with mmap(), as POSIX allows mprotect() only on memory allocated
// with mmap(), and some malloc/posix_memalign implementations expect to
// be able to read previously allocated memory while doing heap allocations.
class DataEndingAtUnreadablePage {
public:
explicit DataEndingAtUnreadablePage(const std::string& s) {
const size_t page_size = sysconf(_SC_PAGESIZE);
const size_t size = s.size();
// Round up space for string to a multiple of page_size.
size_t space_for_string = (size + page_size - 1) & ~(page_size - 1);
alloc_size_ = space_for_string + page_size;
mem_ = mmap(NULL, alloc_size_,
PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
CHECK_NE(MAP_FAILED, mem_);
protected_page_ = reinterpret_cast<char*>(mem_) + space_for_string;
char* dst = protected_page_ - size;
std::memcpy(dst, s.data(), size);
data_ = dst;
size_ = size;
// Make guard page unreadable.
CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_NONE));
}
~DataEndingAtUnreadablePage() {
const size_t page_size = sysconf(_SC_PAGESIZE);
// Undo the mprotect.
CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_READ|PROT_WRITE));
CHECK_EQ(0, munmap(mem_, alloc_size_));
}
const char* data() const { return data_; }
size_t size() const { return size_; }
private:
size_t alloc_size_;
void* mem_;
char* protected_page_;
const char* data_;
size_t size_;
};
#else // defined(HAVE_FUNC_MMAP) && defined(HAVE_FUNC_SYSCONF)
// Fallback for systems without mmap.
using DataEndingAtUnreadablePage = std::string;
#endif
enum CompressorType { ZLIB, LZO, LZ4, SNAPPY };
const char* names[] = {"ZLIB", "LZO", "LZ4", "SNAPPY"};
size_t MinimumRequiredOutputSpace(size_t input_size, CompressorType comp) {
switch (comp) {
#ifdef ZLIB_VERSION
case ZLIB:
return ZLib::MinCompressbufSize(input_size);
#endif // ZLIB_VERSION
#ifdef LZO_VERSION
case LZO:
return input_size + input_size/64 + 16 + 3;
#endif // LZO_VERSION
#ifdef LZ4_VERSION_NUMBER
case LZ4:
return LZ4_compressBound(input_size);
#endif // LZ4_VERSION_NUMBER
case SNAPPY:
return snappy::MaxCompressedLength(input_size);
default:
LOG(FATAL) << "Unknown compression type number " << comp;
return 0;
}
}
// Returns true if we successfully compressed, false otherwise.
//
// If compressed_is_preallocated is set, do not resize the compressed buffer.
// This is typically what you want for a benchmark, in order to not spend
// time in the memory allocator. If you do set this flag, however,
// "compressed" must be preinitialized to at least MinCompressbufSize(comp)
// number of bytes, and may contain junk bytes at the end after return.
bool Compress(const char* input, size_t input_size, CompressorType comp,
std::string* compressed, bool compressed_is_preallocated) {
if (!compressed_is_preallocated) {
compressed->resize(MinimumRequiredOutputSpace(input_size, comp));
}
switch (comp) {
#ifdef ZLIB_VERSION
case ZLIB: {
ZLib zlib;
uLongf destlen = compressed->size();
int ret = zlib.Compress(
reinterpret_cast<Bytef*>(string_as_array(compressed)),
&destlen,
reinterpret_cast<const Bytef*>(input),
input_size);
CHECK_EQ(Z_OK, ret);
if (!compressed_is_preallocated) {
compressed->resize(destlen);
}
return true;
}
#endif // ZLIB_VERSION
#ifdef LZO_VERSION
case LZO: {
unsigned char* mem = new unsigned char[LZO1X_1_15_MEM_COMPRESS];
lzo_uint destlen;
int ret = lzo1x_1_15_compress(
reinterpret_cast<const uint8_t*>(input),
input_size,
reinterpret_cast<uint8_t*>(string_as_array(compressed)),
&destlen,
mem);
CHECK_EQ(LZO_E_OK, ret);
delete[] mem;
if (!compressed_is_preallocated) {
compressed->resize(destlen);
}
break;
}
#endif // LZO_VERSION
#ifdef LZ4_VERSION_NUMBER
case LZ4: {
int destlen = compressed->size();
destlen = LZ4_compress_default(input, string_as_array(compressed),
input_size, destlen);
CHECK(destlen != 0);
if (!compressed_is_preallocated) {
compressed->resize(destlen);
}
break;
}
#endif // LZ4_VERSION_NUMBER
case SNAPPY: {
size_t destlen;
snappy::RawCompress(input, input_size,
string_as_array(compressed),
&destlen);
CHECK_LE(destlen, snappy::MaxCompressedLength(input_size));
if (!compressed_is_preallocated) {
compressed->resize(destlen);
}
break;
}
default: {
return false; // the asked-for library wasn't compiled in
}
}
return true;
}
bool Uncompress(const std::string& compressed, CompressorType comp, int size,
std::string* output) {
switch (comp) {
#ifdef ZLIB_VERSION
case ZLIB: {
output->resize(size);
ZLib zlib;
uLongf destlen = output->size();
int ret = zlib.Uncompress(
reinterpret_cast<Bytef*>(string_as_array(output)),
&destlen,
reinterpret_cast<const Bytef*>(compressed.data()),
compressed.size());
CHECK_EQ(Z_OK, ret);
CHECK_EQ(static_cast<uLongf>(size), destlen);
break;
}
#endif // ZLIB_VERSION
#ifdef LZO_VERSION
case LZO: {
output->resize(size);
lzo_uint destlen;
int ret = lzo1x_decompress(
reinterpret_cast<const uint8_t*>(compressed.data()),
compressed.size(),
reinterpret_cast<uint8_t*>(string_as_array(output)),
&destlen,
NULL);
CHECK_EQ(LZO_E_OK, ret);
CHECK_EQ(static_cast<lzo_uint>(size), destlen);
break;
}
#endif // LZO_VERSION
#ifdef LZ4_VERSION_NUMBER
case LZ4: {
output->resize(size);
int destlen = output->size();
destlen = LZ4_decompress_safe(compressed.data(), string_as_array(output),
compressed.size(), destlen);
CHECK(destlen != 0);
CHECK_EQ(size, destlen);
break;
}
#endif // LZ4_VERSION_NUMBER
case SNAPPY: {
snappy::RawUncompress(compressed.data(), compressed.size(),
string_as_array(output));
break;
}
default: {
return false; // the asked-for library wasn't compiled in
}
}
return true;
}
void Measure(const char* data, size_t length, CompressorType comp, int repeats,
int block_size) {
// Run tests a few time and pick median running times
static const int kRuns = 5;
double ctime[kRuns];
double utime[kRuns];
int compressed_size = 0;
{
// Chop the input into blocks
int num_blocks = (length + block_size - 1) / block_size;
std::vector<const char*> input(num_blocks);
std::vector<size_t> input_length(num_blocks);
std::vector<std::string> compressed(num_blocks);
std::vector<std::string> output(num_blocks);
for (int b = 0; b < num_blocks; ++b) {
int input_start = b * block_size;
int input_limit = std::min<int>((b+1)*block_size, length);
input[b] = data+input_start;
input_length[b] = input_limit-input_start;
}
// Pre-grow the output buffers so we don't measure string append time.
for (std::string& compressed_block : compressed) {
compressed_block.resize(MinimumRequiredOutputSpace(block_size, comp));
}
// First, try one trial compression to make sure the code is compiled in
if (!Compress(input[0], input_length[0], comp, &compressed[0], true)) {
LOG(WARNING) << "Skipping " << names[comp] << ": "
<< "library not compiled in";
return;
}
for (int run = 0; run < kRuns; ++run) {
CycleTimer ctimer, utimer;
// Pre-grow the output buffers so we don't measure string append time.
for (std::string& compressed_block : compressed) {
compressed_block.resize(MinimumRequiredOutputSpace(block_size, comp));
}
ctimer.Start();
for (int b = 0; b < num_blocks; ++b) {
for (int i = 0; i < repeats; ++i)
Compress(input[b], input_length[b], comp, &compressed[b], true);
}
ctimer.Stop();
// Compress once more, with resizing, so we don't leave junk
// at the end that will confuse the decompressor.
for (int b = 0; b < num_blocks; ++b) {
Compress(input[b], input_length[b], comp, &compressed[b], false);
}
for (int b = 0; b < num_blocks; ++b) {
output[b].resize(input_length[b]);
}
utimer.Start();
for (int i = 0; i < repeats; ++i) {
for (int b = 0; b < num_blocks; ++b)
Uncompress(compressed[b], comp, input_length[b], &output[b]);
}
utimer.Stop();
ctime[run] = ctimer.Get();
utime[run] = utimer.Get();
}
compressed_size = 0;
for (const std::string& compressed_item : compressed) {
compressed_size += compressed_item.size();
}
}
std::sort(ctime, ctime + kRuns);
std::sort(utime, utime + kRuns);
const int med = kRuns/2;
float comp_rate = (length / ctime[med]) * repeats / 1048576.0;
float uncomp_rate = (length / utime[med]) * repeats / 1048576.0;
std::string x = names[comp];
x += ":";
std::string urate = (uncomp_rate >= 0) ? StrFormat("%.1f", uncomp_rate)
: std::string("?");
std::printf("%-7s [b %dM] bytes %6d -> %6d %4.1f%% "
"comp %5.1f MB/s uncomp %5s MB/s\n",
x.c_str(),
block_size/(1<<20),
static_cast<int>(length), static_cast<uint32_t>(compressed_size),
(compressed_size * 100.0) / std::max<int>(1, length),
comp_rate,
urate.c_str());
}
void CompressFile(const char* fname) {
std::string fullinput;
CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
std::string compressed;
Compress(fullinput.data(), fullinput.size(), SNAPPY, &compressed, false);
CHECK_OK(file::SetContents(std::string(fname).append(".comp"), compressed,
file::Defaults()));
}
void UncompressFile(const char* fname) {
std::string fullinput;
CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
size_t uncompLength;
CHECK(snappy::GetUncompressedLength(fullinput.data(), fullinput.size(),
&uncompLength));
std::string uncompressed;
uncompressed.resize(uncompLength);
CHECK(snappy::Uncompress(fullinput.data(), fullinput.size(), &uncompressed));
CHECK_OK(file::SetContents(std::string(fname).append(".uncomp"), uncompressed,
file::Defaults()));
}
void MeasureFile(const char* fname) {
std::string fullinput;
CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
std::printf("%-40s :\n", fname);
int start_len = (FLAGS_start_len < 0) ? fullinput.size() : FLAGS_start_len;
int end_len = fullinput.size();
if (FLAGS_end_len >= 0) {
end_len = std::min<int>(fullinput.size(), FLAGS_end_len);
}
for (int len = start_len; len <= end_len; ++len) {
const char* const input = fullinput.data();
int repeats = (FLAGS_bytes + len) / (len + 1);
if (FLAGS_zlib) Measure(input, len, ZLIB, repeats, 1024 << 10);
if (FLAGS_lzo) Measure(input, len, LZO, repeats, 1024 << 10);
if (FLAGS_lz4) Measure(input, len, LZ4, repeats, 1024 << 10);
if (FLAGS_snappy) Measure(input, len, SNAPPY, repeats, 4096 << 10);
// For block-size based measurements
if (0 && FLAGS_snappy) {
Measure(input, len, SNAPPY, repeats, 8<<10);
Measure(input, len, SNAPPY, repeats, 16<<10);
Measure(input, len, SNAPPY, repeats, 32<<10);
Measure(input, len, SNAPPY, repeats, 64<<10);
Measure(input, len, SNAPPY, repeats, 256<<10);
Measure(input, len, SNAPPY, repeats, 1024<<10);
}
}
}
} // namespace
} // namespace snappy
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
for (int arg = 1; arg < argc; ++arg) {
if (FLAGS_write_compressed) {
snappy::CompressFile(argv[arg]);
} else if (FLAGS_write_uncompressed) {
snappy::UncompressFile(argv[arg]);
} else {
snappy::MeasureFile(argv[arg]);
}
}
return 0;
}