2011-03-18 17:14:15 +00:00
|
|
|
// Copyright 2005 Google Inc. All Rights Reserved.
|
|
|
|
//
|
2011-03-26 02:34:34 +00:00
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
2011-03-18 17:14:15 +00:00
|
|
|
//
|
2011-03-26 02:34:34 +00:00
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived from
|
|
|
|
// this software without specific prior written permission.
|
2011-03-18 17:14:15 +00:00
|
|
|
//
|
2011-03-26 02:34:34 +00:00
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
#include "snappy.h"
|
|
|
|
#include "snappy-internal.h"
|
|
|
|
#include "snappy-sinksource.h"
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
|
|
namespace snappy {
|
|
|
|
|
|
|
|
// Any hash function will produce a valid compressed bitstream, but a good
|
|
|
|
// hash function reduces the number of collisions and thus yields better
|
|
|
|
// compression for compressible input, and more speed for incompressible
|
|
|
|
// input. Of course, it doesn't hurt if the hash function is reasonably fast
|
|
|
|
// either, as it gets called a lot.
|
|
|
|
static inline uint32 HashBytes(uint32 bytes, int shift) {
|
|
|
|
uint32 kMul = 0x1e35a7bd;
|
|
|
|
return (bytes * kMul) >> shift;
|
|
|
|
}
|
|
|
|
static inline uint32 Hash(const char* p, int shift) {
|
|
|
|
return HashBytes(UNALIGNED_LOAD32(p), shift);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t MaxCompressedLength(size_t source_len) {
|
|
|
|
// Compressed data can be defined as:
|
|
|
|
// compressed := item* literal*
|
|
|
|
// item := literal* copy
|
|
|
|
//
|
|
|
|
// The trailing literal sequence has a space blowup of at most 62/60
|
|
|
|
// since a literal of length 60 needs one tag byte + one extra byte
|
|
|
|
// for length information.
|
|
|
|
//
|
|
|
|
// Item blowup is trickier to measure. Suppose the "copy" op copies
|
|
|
|
// 4 bytes of data. Because of a special check in the encoding code,
|
|
|
|
// we produce a 4-byte copy only if the offset is < 65536. Therefore
|
|
|
|
// the copy op takes 3 bytes to encode, and this type of item leads
|
|
|
|
// to at most the 62/60 blowup for representing literals.
|
|
|
|
//
|
|
|
|
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
|
|
|
|
// enough, it will take 5 bytes to encode the copy op. Therefore the
|
|
|
|
// worst case here is a one-byte literal followed by a five-byte copy.
|
|
|
|
// I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
|
|
|
|
//
|
|
|
|
// This last factor dominates the blowup, so the final estimate is:
|
|
|
|
return 32 + source_len + source_len/6;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum {
|
|
|
|
LITERAL = 0,
|
|
|
|
COPY_1_BYTE_OFFSET = 1, // 3 bit length + 3 bits of offset in opcode
|
|
|
|
COPY_2_BYTE_OFFSET = 2,
|
|
|
|
COPY_4_BYTE_OFFSET = 3
|
|
|
|
};
|
|
|
|
|
|
|
|
// Copy "len" bytes from "src" to "op", one byte at a time. Used for
|
|
|
|
// handling COPY operations where the input and output regions may
|
|
|
|
// overlap. For example, suppose:
|
|
|
|
// src == "ab"
|
|
|
|
// op == src + 2
|
|
|
|
// len == 20
|
|
|
|
// After IncrementalCopy(src, op, len), the result will have
|
|
|
|
// eleven copies of "ab"
|
|
|
|
// ababababababababababab
|
|
|
|
// Note that this does not match the semantics of either memcpy()
|
|
|
|
// or memmove().
|
|
|
|
static inline void IncrementalCopy(const char* src, char* op, int len) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(len > 0);
|
2011-03-18 17:14:15 +00:00
|
|
|
do {
|
|
|
|
*op++ = *src++;
|
|
|
|
} while (--len > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Equivalent to IncrementalCopy except that it can write up to ten extra
|
|
|
|
// bytes after the end of the copy, and that it is faster.
|
|
|
|
//
|
|
|
|
// The main part of this loop is a simple copy of eight bytes at a time until
|
|
|
|
// we've copied (at least) the requested amount of bytes. However, if op and
|
|
|
|
// src are less than eight bytes apart (indicating a repeating pattern of
|
|
|
|
// length < 8), we first need to expand the pattern in order to get the correct
|
|
|
|
// results. For instance, if the buffer looks like this, with the eight-byte
|
|
|
|
// <src> and <op> patterns marked as intervals:
|
|
|
|
//
|
|
|
|
// abxxxxxxxxxxxx
|
|
|
|
// [------] src
|
|
|
|
// [------] op
|
|
|
|
//
|
|
|
|
// a single eight-byte copy from <src> to <op> will repeat the pattern once,
|
|
|
|
// after which we can move <op> two bytes without moving <src>:
|
|
|
|
//
|
|
|
|
// ababxxxxxxxxxx
|
|
|
|
// [------] src
|
|
|
|
// [------] op
|
|
|
|
//
|
|
|
|
// and repeat the exercise until the two no longer overlap.
|
|
|
|
//
|
|
|
|
// This allows us to do very well in the special case of one single byte
|
|
|
|
// repeated many times, without taking a big hit for more general cases.
|
|
|
|
//
|
|
|
|
// The worst case of extra writing past the end of the match occurs when
|
|
|
|
// op - src == 1 and len == 1; the last copy will read from byte positions
|
|
|
|
// [0..7] and write to [4..11], whereas it was only supposed to write to
|
|
|
|
// position 1. Thus, ten excess bytes.
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
const int kMaxIncrementCopyOverflow = 10;
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
static inline void IncrementalCopyFastPath(const char* src, char* op, int len) {
|
|
|
|
while (op - src < 8) {
|
2012-02-21 17:02:17 +00:00
|
|
|
UnalignedCopy64(src, op);
|
2011-03-18 17:14:15 +00:00
|
|
|
len -= op - src;
|
|
|
|
op += op - src;
|
|
|
|
}
|
|
|
|
while (len > 0) {
|
2012-02-21 17:02:17 +00:00
|
|
|
UnalignedCopy64(src, op);
|
2011-03-18 17:14:15 +00:00
|
|
|
src += 8;
|
|
|
|
op += 8;
|
|
|
|
len -= 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline char* EmitLiteral(char* op,
|
|
|
|
const char* literal,
|
|
|
|
int len,
|
|
|
|
bool allow_fast_path) {
|
|
|
|
int n = len - 1; // Zero-length literals are disallowed
|
|
|
|
if (n < 60) {
|
|
|
|
// Fits in tag byte
|
|
|
|
*op++ = LITERAL | (n << 2);
|
|
|
|
|
|
|
|
// The vast majority of copies are below 16 bytes, for which a
|
|
|
|
// call to memcpy is overkill. This fast path can sometimes
|
|
|
|
// copy up to 15 bytes too much, but that is okay in the
|
|
|
|
// main loop, since we have a bit to go on for both sides:
|
|
|
|
//
|
|
|
|
// - The input will always have kInputMarginBytes = 15 extra
|
|
|
|
// available bytes, as long as we're in the main loop, and
|
|
|
|
// if not, allow_fast_path = false.
|
|
|
|
// - The output will always have 32 spare bytes (see
|
|
|
|
// MaxCompressedLength).
|
|
|
|
if (allow_fast_path && len <= 16) {
|
2012-02-21 17:02:17 +00:00
|
|
|
UnalignedCopy64(literal, op);
|
|
|
|
UnalignedCopy64(literal + 8, op + 8);
|
2011-03-18 17:14:15 +00:00
|
|
|
return op + len;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Encode in upcoming bytes
|
|
|
|
char* base = op;
|
|
|
|
int count = 0;
|
|
|
|
op++;
|
|
|
|
while (n > 0) {
|
|
|
|
*op++ = n & 0xff;
|
|
|
|
n >>= 8;
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
assert(count >= 1);
|
|
|
|
assert(count <= 4);
|
|
|
|
*base = LITERAL | ((59+count) << 2);
|
|
|
|
}
|
|
|
|
memcpy(op, literal, len);
|
|
|
|
return op + len;
|
|
|
|
}
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
static inline char* EmitCopyLessThan64(char* op, size_t offset, int len) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(len <= 64);
|
|
|
|
assert(len >= 4);
|
|
|
|
assert(offset < 65536);
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
if ((len < 12) && (offset < 2048)) {
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t len_minus_4 = len - 4;
|
2011-03-18 17:14:15 +00:00
|
|
|
assert(len_minus_4 < 8); // Must fit in 3 bits
|
|
|
|
*op++ = COPY_1_BYTE_OFFSET | ((len_minus_4) << 2) | ((offset >> 8) << 5);
|
|
|
|
*op++ = offset & 0xff;
|
|
|
|
} else {
|
|
|
|
*op++ = COPY_2_BYTE_OFFSET | ((len-1) << 2);
|
|
|
|
LittleEndian::Store16(op, offset);
|
|
|
|
op += 2;
|
|
|
|
}
|
|
|
|
return op;
|
|
|
|
}
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
static inline char* EmitCopy(char* op, size_t offset, int len) {
|
2011-03-18 17:14:15 +00:00
|
|
|
// Emit 64 byte copies but make sure to keep at least four bytes reserved
|
|
|
|
while (len >= 68) {
|
|
|
|
op = EmitCopyLessThan64(op, offset, 64);
|
|
|
|
len -= 64;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Emit an extra 60 byte copy if have too much data to fit in one copy
|
|
|
|
if (len > 64) {
|
|
|
|
op = EmitCopyLessThan64(op, offset, 60);
|
|
|
|
len -= 60;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Emit remainder
|
|
|
|
op = EmitCopyLessThan64(op, offset, len);
|
|
|
|
return op;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
|
|
|
|
uint32 v = 0;
|
|
|
|
const char* limit = start + n;
|
|
|
|
if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
|
|
|
|
*result = v;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
|
|
|
|
// Use smaller hash table when input.size() is smaller, since we
|
|
|
|
// fill the table, incurring O(hash table size) overhead for
|
|
|
|
// compression, and if the input is short, we won't need that
|
|
|
|
// many hash table entries anyway.
|
|
|
|
assert(kMaxHashTableSize >= 256);
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t htsize = 256;
|
2011-03-18 17:14:15 +00:00
|
|
|
while (htsize < kMaxHashTableSize && htsize < input_size) {
|
|
|
|
htsize <<= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16* table;
|
|
|
|
if (htsize <= ARRAYSIZE(small_table_)) {
|
|
|
|
table = small_table_;
|
|
|
|
} else {
|
|
|
|
if (large_table_ == NULL) {
|
|
|
|
large_table_ = new uint16[kMaxHashTableSize];
|
|
|
|
}
|
|
|
|
table = large_table_;
|
|
|
|
}
|
|
|
|
|
|
|
|
*table_size = htsize;
|
|
|
|
memset(table, 0, htsize * sizeof(*table));
|
|
|
|
return table;
|
|
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
|
For 32-bit platforms, do not try to accelerate multiple neighboring
32-bit loads with a 64-bit load during compression (it's not a win).
The main target for this optimization is ARM, but 32-bit x86 gets
a small gain, too, although there is noise in the microbenchmarks.
It's a no-op for 64-bit x86. It does not affect decompression.
Microbenchmark results on a Cortex-A9 1GHz, using g++ 4.6.2 (from
Ubuntu/Linaro), -O2 -DNDEBUG -Wa,-march=armv7a -mtune=cortex-a9
-mthumb-interwork, minimum 1000 iterations:
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 1158277 1160000 1000 84.2MB/s html (23.57 %) [ +4.3%]
BM_ZFlat/1 14861782 14860000 1000 45.1MB/s urls (50.89 %) [ +1.1%]
BM_ZFlat/2 393595 390000 1000 310.5MB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 650583 650000 1000 138.4MB/s pdf (82.13 %) [ +3.1%]
BM_ZFlat/4 4661480 4660000 1000 83.8MB/s html4 (23.55 %) [ +4.3%]
BM_ZFlat/5 491973 490000 1000 47.9MB/s cp (48.12 %) [ +2.0%]
BM_ZFlat/6 193575 192678 1038 55.2MB/s c (42.40 %) [ +9.0%]
BM_ZFlat/7 62343 62754 3187 56.5MB/s lsp (48.37 %) [ +2.6%]
BM_ZFlat/8 17708468 17710000 1000 55.5MB/s xls (41.34 %) [ -0.3%]
BM_ZFlat/9 3755345 3760000 1000 38.6MB/s txt1 (59.81 %) [ +8.2%]
BM_ZFlat/10 3324217 3320000 1000 36.0MB/s txt2 (64.07 %) [ +4.2%]
BM_ZFlat/11 10139932 10140000 1000 40.1MB/s txt3 (57.11 %) [ +6.4%]
BM_ZFlat/12 13532109 13530000 1000 34.0MB/s txt4 (68.35 %) [ +5.0%]
BM_ZFlat/13 4690847 4690000 1000 104.4MB/s bin (18.21 %) [ +4.1%]
BM_ZFlat/14 830682 830000 1000 43.9MB/s sum (51.88 %) [ +1.2%]
BM_ZFlat/15 84784 85011 2235 47.4MB/s man (59.36 %) [ +1.1%]
BM_ZFlat/16 1293254 1290000 1000 87.7MB/s pb (23.15 %) [ +2.3%]
BM_ZFlat/17 2775155 2780000 1000 63.2MB/s gaviota (38.27 %) [+12.2%]
Core i7 in 32-bit mode (only one run and 100 iterations, though, so noisy):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 227582 223464 3043 437.0MB/s html (23.57 %) [ +7.4%]
BM_ZFlat/1 2982430 2918455 233 229.4MB/s urls (50.89 %) [ +2.9%]
BM_ZFlat/2 46967 46658 15217 2.5GB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 115298 114864 5833 783.2MB/s pdf (82.13 %) [ +1.5%]
BM_ZFlat/4 913440 899743 778 434.2MB/s html4 (23.55 %) [ +0.3%]
BM_ZFlat/5 110302 108571 7000 216.1MB/s cp (48.12 %) [ +0.0%]
BM_ZFlat/6 44409 43372 15909 245.2MB/s c (42.40 %) [ +0.8%]
BM_ZFlat/7 15713 15643 46667 226.9MB/s lsp (48.37 %) [ +2.7%]
BM_ZFlat/8 2625539 2602230 269 377.4MB/s xls (41.34 %) [ +1.4%]
BM_ZFlat/9 808884 811429 875 178.8MB/s txt1 (59.81 %) [ -3.9%]
BM_ZFlat/10 709532 700000 1000 170.5MB/s txt2 (64.07 %) [ +0.0%]
BM_ZFlat/11 2177682 2162162 333 188.2MB/s txt3 (57.11 %) [ -1.4%]
BM_ZFlat/12 2849640 2840000 250 161.8MB/s txt4 (68.35 %) [ -1.4%]
BM_ZFlat/13 849760 835476 778 585.8MB/s bin (18.21 %) [ +1.2%]
BM_ZFlat/14 165940 164571 4375 221.6MB/s sum (51.88 %) [ +1.4%]
BM_ZFlat/15 20939 20571 35000 196.0MB/s man (59.36 %) [ +2.1%]
BM_ZFlat/16 239209 236544 2917 478.1MB/s pb (23.15 %) [ +4.2%]
BM_ZFlat/17 616206 610000 1000 288.2MB/s gaviota (38.27 %) [ -1.6%]
R=sanjay
git-svn-id: https://snappy.googlecode.com/svn/trunk@60 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-02-23 17:00:36 +00:00
|
|
|
// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
|
2011-03-18 17:14:15 +00:00
|
|
|
// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
|
|
|
|
// empirically found that overlapping loads such as
|
|
|
|
// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
|
|
|
|
// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
|
For 32-bit platforms, do not try to accelerate multiple neighboring
32-bit loads with a 64-bit load during compression (it's not a win).
The main target for this optimization is ARM, but 32-bit x86 gets
a small gain, too, although there is noise in the microbenchmarks.
It's a no-op for 64-bit x86. It does not affect decompression.
Microbenchmark results on a Cortex-A9 1GHz, using g++ 4.6.2 (from
Ubuntu/Linaro), -O2 -DNDEBUG -Wa,-march=armv7a -mtune=cortex-a9
-mthumb-interwork, minimum 1000 iterations:
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 1158277 1160000 1000 84.2MB/s html (23.57 %) [ +4.3%]
BM_ZFlat/1 14861782 14860000 1000 45.1MB/s urls (50.89 %) [ +1.1%]
BM_ZFlat/2 393595 390000 1000 310.5MB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 650583 650000 1000 138.4MB/s pdf (82.13 %) [ +3.1%]
BM_ZFlat/4 4661480 4660000 1000 83.8MB/s html4 (23.55 %) [ +4.3%]
BM_ZFlat/5 491973 490000 1000 47.9MB/s cp (48.12 %) [ +2.0%]
BM_ZFlat/6 193575 192678 1038 55.2MB/s c (42.40 %) [ +9.0%]
BM_ZFlat/7 62343 62754 3187 56.5MB/s lsp (48.37 %) [ +2.6%]
BM_ZFlat/8 17708468 17710000 1000 55.5MB/s xls (41.34 %) [ -0.3%]
BM_ZFlat/9 3755345 3760000 1000 38.6MB/s txt1 (59.81 %) [ +8.2%]
BM_ZFlat/10 3324217 3320000 1000 36.0MB/s txt2 (64.07 %) [ +4.2%]
BM_ZFlat/11 10139932 10140000 1000 40.1MB/s txt3 (57.11 %) [ +6.4%]
BM_ZFlat/12 13532109 13530000 1000 34.0MB/s txt4 (68.35 %) [ +5.0%]
BM_ZFlat/13 4690847 4690000 1000 104.4MB/s bin (18.21 %) [ +4.1%]
BM_ZFlat/14 830682 830000 1000 43.9MB/s sum (51.88 %) [ +1.2%]
BM_ZFlat/15 84784 85011 2235 47.4MB/s man (59.36 %) [ +1.1%]
BM_ZFlat/16 1293254 1290000 1000 87.7MB/s pb (23.15 %) [ +2.3%]
BM_ZFlat/17 2775155 2780000 1000 63.2MB/s gaviota (38.27 %) [+12.2%]
Core i7 in 32-bit mode (only one run and 100 iterations, though, so noisy):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 227582 223464 3043 437.0MB/s html (23.57 %) [ +7.4%]
BM_ZFlat/1 2982430 2918455 233 229.4MB/s urls (50.89 %) [ +2.9%]
BM_ZFlat/2 46967 46658 15217 2.5GB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 115298 114864 5833 783.2MB/s pdf (82.13 %) [ +1.5%]
BM_ZFlat/4 913440 899743 778 434.2MB/s html4 (23.55 %) [ +0.3%]
BM_ZFlat/5 110302 108571 7000 216.1MB/s cp (48.12 %) [ +0.0%]
BM_ZFlat/6 44409 43372 15909 245.2MB/s c (42.40 %) [ +0.8%]
BM_ZFlat/7 15713 15643 46667 226.9MB/s lsp (48.37 %) [ +2.7%]
BM_ZFlat/8 2625539 2602230 269 377.4MB/s xls (41.34 %) [ +1.4%]
BM_ZFlat/9 808884 811429 875 178.8MB/s txt1 (59.81 %) [ -3.9%]
BM_ZFlat/10 709532 700000 1000 170.5MB/s txt2 (64.07 %) [ +0.0%]
BM_ZFlat/11 2177682 2162162 333 188.2MB/s txt3 (57.11 %) [ -1.4%]
BM_ZFlat/12 2849640 2840000 250 161.8MB/s txt4 (68.35 %) [ -1.4%]
BM_ZFlat/13 849760 835476 778 585.8MB/s bin (18.21 %) [ +1.2%]
BM_ZFlat/14 165940 164571 4375 221.6MB/s sum (51.88 %) [ +1.4%]
BM_ZFlat/15 20939 20571 35000 196.0MB/s man (59.36 %) [ +2.1%]
BM_ZFlat/16 239209 236544 2917 478.1MB/s pb (23.15 %) [ +4.2%]
BM_ZFlat/17 616206 610000 1000 288.2MB/s gaviota (38.27 %) [ -1.6%]
R=sanjay
git-svn-id: https://snappy.googlecode.com/svn/trunk@60 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-02-23 17:00:36 +00:00
|
|
|
//
|
|
|
|
// We have different versions for 64- and 32-bit; ideally we would avoid the
|
|
|
|
// two functions and just inline the UNALIGNED_LOAD64 call into
|
|
|
|
// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
|
|
|
|
// enough to avoid loading the value multiple times then. For 64-bit, the load
|
|
|
|
// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
|
|
|
|
// done at GetUint32AtOffset() time.
|
|
|
|
|
|
|
|
#ifdef ARCH_K8
|
|
|
|
|
|
|
|
typedef uint64 EightBytesReference;
|
|
|
|
|
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) {
|
|
|
|
return UNALIGNED_LOAD64(ptr);
|
|
|
|
}
|
|
|
|
|
2011-03-18 17:14:15 +00:00
|
|
|
static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(offset >= 0);
|
|
|
|
assert(offset <= 4);
|
2011-03-18 17:14:15 +00:00
|
|
|
return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
|
|
|
|
}
|
|
|
|
|
For 32-bit platforms, do not try to accelerate multiple neighboring
32-bit loads with a 64-bit load during compression (it's not a win).
The main target for this optimization is ARM, but 32-bit x86 gets
a small gain, too, although there is noise in the microbenchmarks.
It's a no-op for 64-bit x86. It does not affect decompression.
Microbenchmark results on a Cortex-A9 1GHz, using g++ 4.6.2 (from
Ubuntu/Linaro), -O2 -DNDEBUG -Wa,-march=armv7a -mtune=cortex-a9
-mthumb-interwork, minimum 1000 iterations:
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 1158277 1160000 1000 84.2MB/s html (23.57 %) [ +4.3%]
BM_ZFlat/1 14861782 14860000 1000 45.1MB/s urls (50.89 %) [ +1.1%]
BM_ZFlat/2 393595 390000 1000 310.5MB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 650583 650000 1000 138.4MB/s pdf (82.13 %) [ +3.1%]
BM_ZFlat/4 4661480 4660000 1000 83.8MB/s html4 (23.55 %) [ +4.3%]
BM_ZFlat/5 491973 490000 1000 47.9MB/s cp (48.12 %) [ +2.0%]
BM_ZFlat/6 193575 192678 1038 55.2MB/s c (42.40 %) [ +9.0%]
BM_ZFlat/7 62343 62754 3187 56.5MB/s lsp (48.37 %) [ +2.6%]
BM_ZFlat/8 17708468 17710000 1000 55.5MB/s xls (41.34 %) [ -0.3%]
BM_ZFlat/9 3755345 3760000 1000 38.6MB/s txt1 (59.81 %) [ +8.2%]
BM_ZFlat/10 3324217 3320000 1000 36.0MB/s txt2 (64.07 %) [ +4.2%]
BM_ZFlat/11 10139932 10140000 1000 40.1MB/s txt3 (57.11 %) [ +6.4%]
BM_ZFlat/12 13532109 13530000 1000 34.0MB/s txt4 (68.35 %) [ +5.0%]
BM_ZFlat/13 4690847 4690000 1000 104.4MB/s bin (18.21 %) [ +4.1%]
BM_ZFlat/14 830682 830000 1000 43.9MB/s sum (51.88 %) [ +1.2%]
BM_ZFlat/15 84784 85011 2235 47.4MB/s man (59.36 %) [ +1.1%]
BM_ZFlat/16 1293254 1290000 1000 87.7MB/s pb (23.15 %) [ +2.3%]
BM_ZFlat/17 2775155 2780000 1000 63.2MB/s gaviota (38.27 %) [+12.2%]
Core i7 in 32-bit mode (only one run and 100 iterations, though, so noisy):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 227582 223464 3043 437.0MB/s html (23.57 %) [ +7.4%]
BM_ZFlat/1 2982430 2918455 233 229.4MB/s urls (50.89 %) [ +2.9%]
BM_ZFlat/2 46967 46658 15217 2.5GB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 115298 114864 5833 783.2MB/s pdf (82.13 %) [ +1.5%]
BM_ZFlat/4 913440 899743 778 434.2MB/s html4 (23.55 %) [ +0.3%]
BM_ZFlat/5 110302 108571 7000 216.1MB/s cp (48.12 %) [ +0.0%]
BM_ZFlat/6 44409 43372 15909 245.2MB/s c (42.40 %) [ +0.8%]
BM_ZFlat/7 15713 15643 46667 226.9MB/s lsp (48.37 %) [ +2.7%]
BM_ZFlat/8 2625539 2602230 269 377.4MB/s xls (41.34 %) [ +1.4%]
BM_ZFlat/9 808884 811429 875 178.8MB/s txt1 (59.81 %) [ -3.9%]
BM_ZFlat/10 709532 700000 1000 170.5MB/s txt2 (64.07 %) [ +0.0%]
BM_ZFlat/11 2177682 2162162 333 188.2MB/s txt3 (57.11 %) [ -1.4%]
BM_ZFlat/12 2849640 2840000 250 161.8MB/s txt4 (68.35 %) [ -1.4%]
BM_ZFlat/13 849760 835476 778 585.8MB/s bin (18.21 %) [ +1.2%]
BM_ZFlat/14 165940 164571 4375 221.6MB/s sum (51.88 %) [ +1.4%]
BM_ZFlat/15 20939 20571 35000 196.0MB/s man (59.36 %) [ +2.1%]
BM_ZFlat/16 239209 236544 2917 478.1MB/s pb (23.15 %) [ +4.2%]
BM_ZFlat/17 616206 610000 1000 288.2MB/s gaviota (38.27 %) [ -1.6%]
R=sanjay
git-svn-id: https://snappy.googlecode.com/svn/trunk@60 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-02-23 17:00:36 +00:00
|
|
|
#else
|
|
|
|
|
|
|
|
typedef const char* EightBytesReference;
|
|
|
|
|
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) {
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32 GetUint32AtOffset(const char* v, int offset) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(offset >= 0);
|
|
|
|
assert(offset <= 4);
|
For 32-bit platforms, do not try to accelerate multiple neighboring
32-bit loads with a 64-bit load during compression (it's not a win).
The main target for this optimization is ARM, but 32-bit x86 gets
a small gain, too, although there is noise in the microbenchmarks.
It's a no-op for 64-bit x86. It does not affect decompression.
Microbenchmark results on a Cortex-A9 1GHz, using g++ 4.6.2 (from
Ubuntu/Linaro), -O2 -DNDEBUG -Wa,-march=armv7a -mtune=cortex-a9
-mthumb-interwork, minimum 1000 iterations:
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 1158277 1160000 1000 84.2MB/s html (23.57 %) [ +4.3%]
BM_ZFlat/1 14861782 14860000 1000 45.1MB/s urls (50.89 %) [ +1.1%]
BM_ZFlat/2 393595 390000 1000 310.5MB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 650583 650000 1000 138.4MB/s pdf (82.13 %) [ +3.1%]
BM_ZFlat/4 4661480 4660000 1000 83.8MB/s html4 (23.55 %) [ +4.3%]
BM_ZFlat/5 491973 490000 1000 47.9MB/s cp (48.12 %) [ +2.0%]
BM_ZFlat/6 193575 192678 1038 55.2MB/s c (42.40 %) [ +9.0%]
BM_ZFlat/7 62343 62754 3187 56.5MB/s lsp (48.37 %) [ +2.6%]
BM_ZFlat/8 17708468 17710000 1000 55.5MB/s xls (41.34 %) [ -0.3%]
BM_ZFlat/9 3755345 3760000 1000 38.6MB/s txt1 (59.81 %) [ +8.2%]
BM_ZFlat/10 3324217 3320000 1000 36.0MB/s txt2 (64.07 %) [ +4.2%]
BM_ZFlat/11 10139932 10140000 1000 40.1MB/s txt3 (57.11 %) [ +6.4%]
BM_ZFlat/12 13532109 13530000 1000 34.0MB/s txt4 (68.35 %) [ +5.0%]
BM_ZFlat/13 4690847 4690000 1000 104.4MB/s bin (18.21 %) [ +4.1%]
BM_ZFlat/14 830682 830000 1000 43.9MB/s sum (51.88 %) [ +1.2%]
BM_ZFlat/15 84784 85011 2235 47.4MB/s man (59.36 %) [ +1.1%]
BM_ZFlat/16 1293254 1290000 1000 87.7MB/s pb (23.15 %) [ +2.3%]
BM_ZFlat/17 2775155 2780000 1000 63.2MB/s gaviota (38.27 %) [+12.2%]
Core i7 in 32-bit mode (only one run and 100 iterations, though, so noisy):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 227582 223464 3043 437.0MB/s html (23.57 %) [ +7.4%]
BM_ZFlat/1 2982430 2918455 233 229.4MB/s urls (50.89 %) [ +2.9%]
BM_ZFlat/2 46967 46658 15217 2.5GB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 115298 114864 5833 783.2MB/s pdf (82.13 %) [ +1.5%]
BM_ZFlat/4 913440 899743 778 434.2MB/s html4 (23.55 %) [ +0.3%]
BM_ZFlat/5 110302 108571 7000 216.1MB/s cp (48.12 %) [ +0.0%]
BM_ZFlat/6 44409 43372 15909 245.2MB/s c (42.40 %) [ +0.8%]
BM_ZFlat/7 15713 15643 46667 226.9MB/s lsp (48.37 %) [ +2.7%]
BM_ZFlat/8 2625539 2602230 269 377.4MB/s xls (41.34 %) [ +1.4%]
BM_ZFlat/9 808884 811429 875 178.8MB/s txt1 (59.81 %) [ -3.9%]
BM_ZFlat/10 709532 700000 1000 170.5MB/s txt2 (64.07 %) [ +0.0%]
BM_ZFlat/11 2177682 2162162 333 188.2MB/s txt3 (57.11 %) [ -1.4%]
BM_ZFlat/12 2849640 2840000 250 161.8MB/s txt4 (68.35 %) [ -1.4%]
BM_ZFlat/13 849760 835476 778 585.8MB/s bin (18.21 %) [ +1.2%]
BM_ZFlat/14 165940 164571 4375 221.6MB/s sum (51.88 %) [ +1.4%]
BM_ZFlat/15 20939 20571 35000 196.0MB/s man (59.36 %) [ +2.1%]
BM_ZFlat/16 239209 236544 2917 478.1MB/s pb (23.15 %) [ +4.2%]
BM_ZFlat/17 616206 610000 1000 288.2MB/s gaviota (38.27 %) [ -1.6%]
R=sanjay
git-svn-id: https://snappy.googlecode.com/svn/trunk@60 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-02-23 17:00:36 +00:00
|
|
|
return UNALIGNED_LOAD32(v + offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2011-03-18 17:14:15 +00:00
|
|
|
// Flat array compression that does not emit the "uncompressed length"
|
|
|
|
// prefix. Compresses "input" string to the "*op" buffer.
|
|
|
|
//
|
|
|
|
// REQUIRES: "input" is at most "kBlockSize" bytes long.
|
|
|
|
// REQUIRES: "op" points to an array of memory that is at least
|
|
|
|
// "MaxCompressedLength(input.size())" in size.
|
|
|
|
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
|
|
|
|
// REQUIRES: "table_size" is a power of two
|
|
|
|
//
|
|
|
|
// Returns an "end" pointer into "op" buffer.
|
|
|
|
// "end - op" is the compressed size of "input".
|
|
|
|
namespace internal {
|
2011-06-28 11:40:25 +00:00
|
|
|
char* CompressFragment(const char* input,
|
|
|
|
size_t input_size,
|
2011-03-18 17:14:15 +00:00
|
|
|
char* op,
|
|
|
|
uint16* table,
|
|
|
|
const int table_size) {
|
|
|
|
// "ip" is the input pointer, and "op" is the output pointer.
|
|
|
|
const char* ip = input;
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(input_size <= kBlockSize);
|
|
|
|
assert((table_size & (table_size - 1)) == 0); // table must be power of two
|
2011-03-18 17:14:15 +00:00
|
|
|
const int shift = 32 - Bits::Log2Floor(table_size);
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
|
2011-03-18 17:14:15 +00:00
|
|
|
const char* ip_end = input + input_size;
|
|
|
|
const char* base_ip = ip;
|
|
|
|
// Bytes in [next_emit, ip) will be emitted as literal bytes. Or
|
|
|
|
// [next_emit, ip_end) after the main loop.
|
|
|
|
const char* next_emit = ip;
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
const size_t kInputMarginBytes = 15;
|
2011-03-18 17:14:15 +00:00
|
|
|
if (PREDICT_TRUE(input_size >= kInputMarginBytes)) {
|
|
|
|
const char* ip_limit = input + input_size - kInputMarginBytes;
|
|
|
|
|
|
|
|
for (uint32 next_hash = Hash(++ip, shift); ; ) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(next_emit < ip);
|
2011-03-18 17:14:15 +00:00
|
|
|
// The body of this loop calls EmitLiteral once and then EmitCopy one or
|
|
|
|
// more times. (The exception is that when we're close to exhausting
|
|
|
|
// the input we goto emit_remainder.)
|
|
|
|
//
|
|
|
|
// In the first iteration of this loop we're just starting, so
|
|
|
|
// there's nothing to copy, so calling EmitLiteral once is
|
|
|
|
// necessary. And we only start a new iteration when the
|
|
|
|
// current iteration has determined that a call to EmitLiteral will
|
|
|
|
// precede the next call to EmitCopy (if any).
|
|
|
|
//
|
|
|
|
// Step 1: Scan forward in the input looking for a 4-byte-long match.
|
|
|
|
// If we get close to exhausting the input then goto emit_remainder.
|
|
|
|
//
|
|
|
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
|
|
|
// found, start looking only at every other byte. If 32 more bytes are
|
|
|
|
// scanned, look at every third byte, etc.. When a match is found,
|
|
|
|
// immediately go back to looking at every byte. This is a small loss
|
|
|
|
// (~5% performance, ~0.1% density) for compressible data due to more
|
|
|
|
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge
|
|
|
|
// win since the compressor quickly "realizes" the data is incompressible
|
|
|
|
// and doesn't bother looking for matches everywhere.
|
|
|
|
//
|
|
|
|
// The "skip" variable keeps track of how many bytes there are since the
|
|
|
|
// last match; dividing it by 32 (ie. right-shifting by five) gives the
|
|
|
|
// number of bytes to move ahead for each iteration.
|
|
|
|
uint32 skip = 32;
|
|
|
|
|
|
|
|
const char* next_ip = ip;
|
|
|
|
const char* candidate;
|
|
|
|
do {
|
|
|
|
ip = next_ip;
|
|
|
|
uint32 hash = next_hash;
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(hash == Hash(ip, shift));
|
2011-03-18 17:14:15 +00:00
|
|
|
uint32 bytes_between_hash_lookups = skip++ >> 5;
|
|
|
|
next_ip = ip + bytes_between_hash_lookups;
|
|
|
|
if (PREDICT_FALSE(next_ip > ip_limit)) {
|
|
|
|
goto emit_remainder;
|
|
|
|
}
|
|
|
|
next_hash = Hash(next_ip, shift);
|
|
|
|
candidate = base_ip + table[hash];
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(candidate >= base_ip);
|
|
|
|
assert(candidate < ip);
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
table[hash] = ip - base_ip;
|
|
|
|
} while (PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
|
|
|
|
UNALIGNED_LOAD32(candidate)));
|
|
|
|
|
|
|
|
// Step 2: A 4-byte match has been found. We'll later see if more
|
|
|
|
// than 4 bytes match. But, prior to the match, input
|
|
|
|
// bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(next_emit + 16 <= ip_end);
|
2011-03-18 17:14:15 +00:00
|
|
|
op = EmitLiteral(op, next_emit, ip - next_emit, true);
|
|
|
|
|
|
|
|
// Step 3: Call EmitCopy, and then see if another EmitCopy could
|
|
|
|
// be our next move. Repeat until we find no match for the
|
|
|
|
// input immediately after what was consumed by the last EmitCopy call.
|
|
|
|
//
|
|
|
|
// If we exit this loop normally then we need to call EmitLiteral next,
|
|
|
|
// though we don't yet know how big the literal will be. We handle that
|
|
|
|
// by proceeding to the next iteration of the main loop. We also can exit
|
|
|
|
// this loop via goto if we get close to exhausting the input.
|
For 32-bit platforms, do not try to accelerate multiple neighboring
32-bit loads with a 64-bit load during compression (it's not a win).
The main target for this optimization is ARM, but 32-bit x86 gets
a small gain, too, although there is noise in the microbenchmarks.
It's a no-op for 64-bit x86. It does not affect decompression.
Microbenchmark results on a Cortex-A9 1GHz, using g++ 4.6.2 (from
Ubuntu/Linaro), -O2 -DNDEBUG -Wa,-march=armv7a -mtune=cortex-a9
-mthumb-interwork, minimum 1000 iterations:
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 1158277 1160000 1000 84.2MB/s html (23.57 %) [ +4.3%]
BM_ZFlat/1 14861782 14860000 1000 45.1MB/s urls (50.89 %) [ +1.1%]
BM_ZFlat/2 393595 390000 1000 310.5MB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 650583 650000 1000 138.4MB/s pdf (82.13 %) [ +3.1%]
BM_ZFlat/4 4661480 4660000 1000 83.8MB/s html4 (23.55 %) [ +4.3%]
BM_ZFlat/5 491973 490000 1000 47.9MB/s cp (48.12 %) [ +2.0%]
BM_ZFlat/6 193575 192678 1038 55.2MB/s c (42.40 %) [ +9.0%]
BM_ZFlat/7 62343 62754 3187 56.5MB/s lsp (48.37 %) [ +2.6%]
BM_ZFlat/8 17708468 17710000 1000 55.5MB/s xls (41.34 %) [ -0.3%]
BM_ZFlat/9 3755345 3760000 1000 38.6MB/s txt1 (59.81 %) [ +8.2%]
BM_ZFlat/10 3324217 3320000 1000 36.0MB/s txt2 (64.07 %) [ +4.2%]
BM_ZFlat/11 10139932 10140000 1000 40.1MB/s txt3 (57.11 %) [ +6.4%]
BM_ZFlat/12 13532109 13530000 1000 34.0MB/s txt4 (68.35 %) [ +5.0%]
BM_ZFlat/13 4690847 4690000 1000 104.4MB/s bin (18.21 %) [ +4.1%]
BM_ZFlat/14 830682 830000 1000 43.9MB/s sum (51.88 %) [ +1.2%]
BM_ZFlat/15 84784 85011 2235 47.4MB/s man (59.36 %) [ +1.1%]
BM_ZFlat/16 1293254 1290000 1000 87.7MB/s pb (23.15 %) [ +2.3%]
BM_ZFlat/17 2775155 2780000 1000 63.2MB/s gaviota (38.27 %) [+12.2%]
Core i7 in 32-bit mode (only one run and 100 iterations, though, so noisy):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 227582 223464 3043 437.0MB/s html (23.57 %) [ +7.4%]
BM_ZFlat/1 2982430 2918455 233 229.4MB/s urls (50.89 %) [ +2.9%]
BM_ZFlat/2 46967 46658 15217 2.5GB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 115298 114864 5833 783.2MB/s pdf (82.13 %) [ +1.5%]
BM_ZFlat/4 913440 899743 778 434.2MB/s html4 (23.55 %) [ +0.3%]
BM_ZFlat/5 110302 108571 7000 216.1MB/s cp (48.12 %) [ +0.0%]
BM_ZFlat/6 44409 43372 15909 245.2MB/s c (42.40 %) [ +0.8%]
BM_ZFlat/7 15713 15643 46667 226.9MB/s lsp (48.37 %) [ +2.7%]
BM_ZFlat/8 2625539 2602230 269 377.4MB/s xls (41.34 %) [ +1.4%]
BM_ZFlat/9 808884 811429 875 178.8MB/s txt1 (59.81 %) [ -3.9%]
BM_ZFlat/10 709532 700000 1000 170.5MB/s txt2 (64.07 %) [ +0.0%]
BM_ZFlat/11 2177682 2162162 333 188.2MB/s txt3 (57.11 %) [ -1.4%]
BM_ZFlat/12 2849640 2840000 250 161.8MB/s txt4 (68.35 %) [ -1.4%]
BM_ZFlat/13 849760 835476 778 585.8MB/s bin (18.21 %) [ +1.2%]
BM_ZFlat/14 165940 164571 4375 221.6MB/s sum (51.88 %) [ +1.4%]
BM_ZFlat/15 20939 20571 35000 196.0MB/s man (59.36 %) [ +2.1%]
BM_ZFlat/16 239209 236544 2917 478.1MB/s pb (23.15 %) [ +4.2%]
BM_ZFlat/17 616206 610000 1000 288.2MB/s gaviota (38.27 %) [ -1.6%]
R=sanjay
git-svn-id: https://snappy.googlecode.com/svn/trunk@60 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-02-23 17:00:36 +00:00
|
|
|
EightBytesReference input_bytes;
|
2011-03-18 17:14:15 +00:00
|
|
|
uint32 candidate_bytes = 0;
|
|
|
|
|
|
|
|
do {
|
|
|
|
// We have a 4-byte match at ip, and no need to emit any
|
|
|
|
// "literal bytes" prior to ip.
|
|
|
|
const char* base = ip;
|
|
|
|
int matched = 4 + FindMatchLength(candidate + 4, ip + 4, ip_end);
|
|
|
|
ip += matched;
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t offset = base - candidate;
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(0 == memcmp(base, candidate, matched));
|
2011-03-18 17:14:15 +00:00
|
|
|
op = EmitCopy(op, offset, matched);
|
|
|
|
// We could immediately start working at ip now, but to improve
|
|
|
|
// compression we first update table[Hash(ip - 1, ...)].
|
|
|
|
const char* insert_tail = ip - 1;
|
|
|
|
next_emit = ip;
|
|
|
|
if (PREDICT_FALSE(ip >= ip_limit)) {
|
|
|
|
goto emit_remainder;
|
|
|
|
}
|
For 32-bit platforms, do not try to accelerate multiple neighboring
32-bit loads with a 64-bit load during compression (it's not a win).
The main target for this optimization is ARM, but 32-bit x86 gets
a small gain, too, although there is noise in the microbenchmarks.
It's a no-op for 64-bit x86. It does not affect decompression.
Microbenchmark results on a Cortex-A9 1GHz, using g++ 4.6.2 (from
Ubuntu/Linaro), -O2 -DNDEBUG -Wa,-march=armv7a -mtune=cortex-a9
-mthumb-interwork, minimum 1000 iterations:
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 1158277 1160000 1000 84.2MB/s html (23.57 %) [ +4.3%]
BM_ZFlat/1 14861782 14860000 1000 45.1MB/s urls (50.89 %) [ +1.1%]
BM_ZFlat/2 393595 390000 1000 310.5MB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 650583 650000 1000 138.4MB/s pdf (82.13 %) [ +3.1%]
BM_ZFlat/4 4661480 4660000 1000 83.8MB/s html4 (23.55 %) [ +4.3%]
BM_ZFlat/5 491973 490000 1000 47.9MB/s cp (48.12 %) [ +2.0%]
BM_ZFlat/6 193575 192678 1038 55.2MB/s c (42.40 %) [ +9.0%]
BM_ZFlat/7 62343 62754 3187 56.5MB/s lsp (48.37 %) [ +2.6%]
BM_ZFlat/8 17708468 17710000 1000 55.5MB/s xls (41.34 %) [ -0.3%]
BM_ZFlat/9 3755345 3760000 1000 38.6MB/s txt1 (59.81 %) [ +8.2%]
BM_ZFlat/10 3324217 3320000 1000 36.0MB/s txt2 (64.07 %) [ +4.2%]
BM_ZFlat/11 10139932 10140000 1000 40.1MB/s txt3 (57.11 %) [ +6.4%]
BM_ZFlat/12 13532109 13530000 1000 34.0MB/s txt4 (68.35 %) [ +5.0%]
BM_ZFlat/13 4690847 4690000 1000 104.4MB/s bin (18.21 %) [ +4.1%]
BM_ZFlat/14 830682 830000 1000 43.9MB/s sum (51.88 %) [ +1.2%]
BM_ZFlat/15 84784 85011 2235 47.4MB/s man (59.36 %) [ +1.1%]
BM_ZFlat/16 1293254 1290000 1000 87.7MB/s pb (23.15 %) [ +2.3%]
BM_ZFlat/17 2775155 2780000 1000 63.2MB/s gaviota (38.27 %) [+12.2%]
Core i7 in 32-bit mode (only one run and 100 iterations, though, so noisy):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_ZFlat/0 227582 223464 3043 437.0MB/s html (23.57 %) [ +7.4%]
BM_ZFlat/1 2982430 2918455 233 229.4MB/s urls (50.89 %) [ +2.9%]
BM_ZFlat/2 46967 46658 15217 2.5GB/s jpg (99.88 %) [ +0.0%]
BM_ZFlat/3 115298 114864 5833 783.2MB/s pdf (82.13 %) [ +1.5%]
BM_ZFlat/4 913440 899743 778 434.2MB/s html4 (23.55 %) [ +0.3%]
BM_ZFlat/5 110302 108571 7000 216.1MB/s cp (48.12 %) [ +0.0%]
BM_ZFlat/6 44409 43372 15909 245.2MB/s c (42.40 %) [ +0.8%]
BM_ZFlat/7 15713 15643 46667 226.9MB/s lsp (48.37 %) [ +2.7%]
BM_ZFlat/8 2625539 2602230 269 377.4MB/s xls (41.34 %) [ +1.4%]
BM_ZFlat/9 808884 811429 875 178.8MB/s txt1 (59.81 %) [ -3.9%]
BM_ZFlat/10 709532 700000 1000 170.5MB/s txt2 (64.07 %) [ +0.0%]
BM_ZFlat/11 2177682 2162162 333 188.2MB/s txt3 (57.11 %) [ -1.4%]
BM_ZFlat/12 2849640 2840000 250 161.8MB/s txt4 (68.35 %) [ -1.4%]
BM_ZFlat/13 849760 835476 778 585.8MB/s bin (18.21 %) [ +1.2%]
BM_ZFlat/14 165940 164571 4375 221.6MB/s sum (51.88 %) [ +1.4%]
BM_ZFlat/15 20939 20571 35000 196.0MB/s man (59.36 %) [ +2.1%]
BM_ZFlat/16 239209 236544 2917 478.1MB/s pb (23.15 %) [ +4.2%]
BM_ZFlat/17 616206 610000 1000 288.2MB/s gaviota (38.27 %) [ -1.6%]
R=sanjay
git-svn-id: https://snappy.googlecode.com/svn/trunk@60 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2012-02-23 17:00:36 +00:00
|
|
|
input_bytes = GetEightBytesAt(insert_tail);
|
2011-03-18 17:14:15 +00:00
|
|
|
uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
|
|
|
|
table[prev_hash] = ip - base_ip - 1;
|
|
|
|
uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
|
|
|
|
candidate = base_ip + table[cur_hash];
|
|
|
|
candidate_bytes = UNALIGNED_LOAD32(candidate);
|
|
|
|
table[cur_hash] = ip - base_ip;
|
|
|
|
} while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
|
|
|
|
|
|
|
|
next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
|
|
|
|
++ip;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
emit_remainder:
|
|
|
|
// Emit the remaining bytes as a literal
|
|
|
|
if (next_emit < ip_end) {
|
|
|
|
op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
return op;
|
|
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
|
|
// Signature of output types needed by decompression code.
|
|
|
|
// The decompression code is templatized on a type that obeys this
|
|
|
|
// signature so that we do not pay virtual function call overhead in
|
|
|
|
// the middle of a tight decompression loop.
|
|
|
|
//
|
|
|
|
// class DecompressionWriter {
|
|
|
|
// public:
|
|
|
|
// // Called before decompression
|
|
|
|
// void SetExpectedLength(size_t length);
|
|
|
|
//
|
|
|
|
// // Called after decompression
|
|
|
|
// bool CheckLength() const;
|
|
|
|
//
|
|
|
|
// // Called repeatedly during decompression
|
2012-01-04 13:10:46 +00:00
|
|
|
// bool Append(const char* ip, size_t length);
|
|
|
|
// bool AppendFromSelf(uint32 offset, size_t length);
|
2011-03-18 17:14:15 +00:00
|
|
|
//
|
2011-11-23 11:14:17 +00:00
|
|
|
// // The difference between TryFastAppend and Append is that TryFastAppend
|
|
|
|
// // is allowed to read up to <available> bytes from the input buffer,
|
|
|
|
// // whereas Append is allowed to read <length>.
|
|
|
|
// //
|
|
|
|
// // Also, TryFastAppend is allowed to return false, declining the append,
|
|
|
|
// // without it being a fatal error -- just "return false" would be
|
|
|
|
// // a perfectly legal implementation of TryFastAppend. The intention
|
|
|
|
// // is for TryFastAppend to allow a fast path in the common case of
|
|
|
|
// // a small append.
|
|
|
|
// //
|
|
|
|
// // NOTE(user): TryFastAppend must always return decline (return false)
|
|
|
|
// // if <length> is 61 or more, as in this case the literal length is not
|
|
|
|
// // decoded fully. In practice, this should not be a big problem,
|
|
|
|
// // as it is unlikely that one would implement a fast path accepting
|
|
|
|
// // this much data.
|
2012-01-04 13:10:46 +00:00
|
|
|
// bool TryFastAppend(const char* ip, size_t available, size_t length);
|
2011-11-23 11:14:17 +00:00
|
|
|
// };
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
// Lookup table for decompression code. Generated by ComputeTable() below.
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits
|
|
|
|
static const uint32 wordmask[] = {
|
|
|
|
0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu
|
|
|
|
};
|
|
|
|
|
|
|
|
// Data stored per entry in lookup table:
|
|
|
|
// Range Bits-used Description
|
|
|
|
// ------------------------------------
|
|
|
|
// 1..64 0..7 Literal/copy length encoded in opcode byte
|
|
|
|
// 0..7 8..10 Copy offset encoded in opcode byte / 256
|
|
|
|
// 0..4 11..13 Extra bytes after opcode
|
|
|
|
//
|
|
|
|
// We use eight bits for the length even though 7 would have sufficed
|
|
|
|
// because of efficiency reasons:
|
|
|
|
// (1) Extracting a byte is faster than a bit-field
|
|
|
|
// (2) It properly aligns copy offset so we do not need a <<8
|
|
|
|
static const uint16 char_table[256] = {
|
|
|
|
0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002,
|
|
|
|
0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004,
|
|
|
|
0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006,
|
|
|
|
0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008,
|
|
|
|
0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a,
|
|
|
|
0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c,
|
|
|
|
0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e,
|
|
|
|
0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010,
|
|
|
|
0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012,
|
|
|
|
0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014,
|
|
|
|
0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016,
|
|
|
|
0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018,
|
|
|
|
0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a,
|
|
|
|
0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c,
|
|
|
|
0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e,
|
|
|
|
0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020,
|
|
|
|
0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022,
|
|
|
|
0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024,
|
|
|
|
0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026,
|
|
|
|
0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028,
|
|
|
|
0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a,
|
|
|
|
0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c,
|
|
|
|
0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e,
|
|
|
|
0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030,
|
|
|
|
0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032,
|
|
|
|
0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034,
|
|
|
|
0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036,
|
|
|
|
0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038,
|
|
|
|
0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a,
|
|
|
|
0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c,
|
|
|
|
0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e,
|
|
|
|
0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040
|
|
|
|
};
|
|
|
|
|
|
|
|
// In debug mode, allow optional computation of the table at startup.
|
|
|
|
// Also, check that the decompression table is correct.
|
|
|
|
#ifndef NDEBUG
|
|
|
|
DEFINE_bool(snappy_dump_decompression_table, false,
|
|
|
|
"If true, we print the decompression table at startup.");
|
|
|
|
|
|
|
|
static uint16 MakeEntry(unsigned int extra,
|
|
|
|
unsigned int len,
|
|
|
|
unsigned int copy_offset) {
|
|
|
|
// Check that all of the fields fit within the allocated space
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(extra == (extra & 0x7)); // At most 3 bits
|
|
|
|
assert(copy_offset == (copy_offset & 0x7)); // At most 3 bits
|
|
|
|
assert(len == (len & 0x7f)); // At most 7 bits
|
2011-03-18 17:14:15 +00:00
|
|
|
return len | (copy_offset << 8) | (extra << 11);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ComputeTable() {
|
|
|
|
uint16 dst[256];
|
|
|
|
|
|
|
|
// Place invalid entries in all places to detect missing initialization
|
|
|
|
int assigned = 0;
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
|
|
dst[i] = 0xffff;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Small LITERAL entries. We store (len-1) in the top 6 bits.
|
|
|
|
for (unsigned int len = 1; len <= 60; len++) {
|
|
|
|
dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0);
|
|
|
|
assigned++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Large LITERAL entries. We use 60..63 in the high 6 bits to
|
|
|
|
// encode the number of bytes of length info that follow the opcode.
|
|
|
|
for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) {
|
|
|
|
// We set the length field in the lookup table to 1 because extra
|
|
|
|
// bytes encode len-1.
|
|
|
|
dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0);
|
|
|
|
assigned++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// COPY_1_BYTE_OFFSET.
|
|
|
|
//
|
|
|
|
// The tag byte in the compressed data stores len-4 in 3 bits, and
|
|
|
|
// offset/256 in 5 bits. offset%256 is stored in the next byte.
|
|
|
|
//
|
|
|
|
// This format is used for length in range [4..11] and offset in
|
|
|
|
// range [0..2047]
|
|
|
|
for (unsigned int len = 4; len < 12; len++) {
|
|
|
|
for (unsigned int offset = 0; offset < 2048; offset += 256) {
|
|
|
|
dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] =
|
|
|
|
MakeEntry(1, len, offset>>8);
|
|
|
|
assigned++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// COPY_2_BYTE_OFFSET.
|
|
|
|
// Tag contains len-1 in top 6 bits, and offset in next two bytes.
|
|
|
|
for (unsigned int len = 1; len <= 64; len++) {
|
|
|
|
dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0);
|
|
|
|
assigned++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// COPY_4_BYTE_OFFSET.
|
|
|
|
// Tag contents len-1 in top 6 bits, and offset in next four bytes.
|
|
|
|
for (unsigned int len = 1; len <= 64; len++) {
|
|
|
|
dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0);
|
|
|
|
assigned++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that each entry was initialized exactly once.
|
2012-05-22 09:32:50 +00:00
|
|
|
if (assigned != 256) {
|
|
|
|
fprintf(stderr, "ComputeTable: assigned only %d of 256\n", assigned);
|
|
|
|
abort();
|
|
|
|
}
|
2011-03-18 17:14:15 +00:00
|
|
|
for (int i = 0; i < 256; i++) {
|
2012-05-22 09:32:50 +00:00
|
|
|
if (dst[i] == 0xffff) {
|
|
|
|
fprintf(stderr, "ComputeTable: did not assign byte %d\n", i);
|
|
|
|
abort();
|
|
|
|
}
|
2011-03-18 17:14:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (FLAGS_snappy_dump_decompression_table) {
|
|
|
|
printf("static const uint16 char_table[256] = {\n ");
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
|
|
printf("0x%04x%s",
|
|
|
|
dst[i],
|
|
|
|
((i == 255) ? "\n" : (((i%8) == 7) ? ",\n " : ", ")));
|
|
|
|
}
|
|
|
|
printf("};\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that computed table matched recorded table
|
|
|
|
for (int i = 0; i < 256; i++) {
|
2012-05-22 09:32:50 +00:00
|
|
|
if (dst[i] != char_table[i]) {
|
|
|
|
fprintf(stderr, "ComputeTable: byte %d: computed (%x), expect (%x)\n",
|
|
|
|
i, static_cast<int>(dst[i]), static_cast<int>(char_table[i]));
|
|
|
|
abort();
|
|
|
|
}
|
2011-03-18 17:14:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* !NDEBUG */
|
|
|
|
|
|
|
|
// Helper class for decompression
|
|
|
|
class SnappyDecompressor {
|
|
|
|
private:
|
|
|
|
Source* reader_; // Underlying source of bytes to decompress
|
|
|
|
const char* ip_; // Points to next buffered byte
|
|
|
|
const char* ip_limit_; // Points just past buffered bytes
|
|
|
|
uint32 peeked_; // Bytes peeked from reader (need to skip)
|
|
|
|
bool eof_; // Hit end of input without an error?
|
|
|
|
char scratch_[5]; // Temporary buffer for PeekFast() boundaries
|
|
|
|
|
|
|
|
// Ensure that all of the tag metadata for the next tag is available
|
|
|
|
// in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
|
|
|
|
// if (ip_limit_ - ip_ < 5).
|
|
|
|
//
|
|
|
|
// Returns true on success, false on error or end of input.
|
|
|
|
bool RefillTag();
|
|
|
|
|
|
|
|
public:
|
|
|
|
explicit SnappyDecompressor(Source* reader)
|
|
|
|
: reader_(reader),
|
|
|
|
ip_(NULL),
|
|
|
|
ip_limit_(NULL),
|
|
|
|
peeked_(0),
|
|
|
|
eof_(false) {
|
|
|
|
}
|
|
|
|
|
|
|
|
~SnappyDecompressor() {
|
|
|
|
// Advance past any bytes we peeked at from the reader
|
|
|
|
reader_->Skip(peeked_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns true iff we have hit the end of the input without an error.
|
|
|
|
bool eof() const {
|
|
|
|
return eof_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read the uncompressed length stored at the start of the compressed data.
|
|
|
|
// On succcess, stores the length in *result and returns true.
|
|
|
|
// On failure, returns false.
|
|
|
|
bool ReadUncompressedLength(uint32* result) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(ip_ == NULL); // Must not have read anything yet
|
2011-03-18 17:14:15 +00:00
|
|
|
// Length is encoded in 1..5 bytes
|
|
|
|
*result = 0;
|
|
|
|
uint32 shift = 0;
|
|
|
|
while (true) {
|
|
|
|
if (shift >= 32) return false;
|
|
|
|
size_t n;
|
|
|
|
const char* ip = reader_->Peek(&n);
|
|
|
|
if (n == 0) return false;
|
|
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
|
|
|
|
reader_->Skip(1);
|
|
|
|
*result |= static_cast<uint32>(c & 0x7f) << shift;
|
|
|
|
if (c < 128) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
shift += 7;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Process the next item found in the input.
|
|
|
|
// Returns true if successful, false on error or end of input.
|
|
|
|
template <class Writer>
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
void DecompressAllTags(Writer* writer) {
|
2011-03-18 17:14:15 +00:00
|
|
|
const char* ip = ip_;
|
|
|
|
|
2011-12-05 21:27:26 +00:00
|
|
|
// We could have put this refill fragment only at the beginning of the loop.
|
|
|
|
// However, duplicating it at the end of each branch gives the compiler more
|
|
|
|
// scope to optimize the <ip_limit_ - ip> expression based on the local
|
|
|
|
// context, which overall increases speed.
|
|
|
|
#define MAYBE_REFILL() \
|
|
|
|
if (ip_limit_ - ip < 5) { \
|
|
|
|
ip_ = ip; \
|
|
|
|
if (!RefillTag()) return; \
|
|
|
|
ip = ip_; \
|
|
|
|
}
|
|
|
|
|
|
|
|
MAYBE_REFILL();
|
|
|
|
for ( ;; ) {
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
|
|
|
|
|
|
|
|
if ((c & 0x3) == LITERAL) {
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t literal_length = (c >> 2) + 1u;
|
2011-11-23 11:14:17 +00:00
|
|
|
if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(literal_length < 61);
|
2011-11-23 11:14:17 +00:00
|
|
|
ip += literal_length;
|
2011-12-05 21:27:26 +00:00
|
|
|
MAYBE_REFILL();
|
2011-11-23 11:14:17 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (PREDICT_FALSE(literal_length >= 61)) {
|
2011-06-03 20:47:14 +00:00
|
|
|
// Long literal.
|
2012-01-04 13:10:46 +00:00
|
|
|
const size_t literal_length_length = literal_length - 60;
|
2011-06-03 20:47:14 +00:00
|
|
|
literal_length =
|
2011-11-23 11:14:17 +00:00
|
|
|
(LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1;
|
2011-06-03 20:47:14 +00:00
|
|
|
ip += literal_length_length;
|
|
|
|
}
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t avail = ip_limit_ - ip;
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
while (avail < literal_length) {
|
2011-11-23 11:14:17 +00:00
|
|
|
if (!writer->Append(ip, avail)) return;
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
literal_length -= avail;
|
|
|
|
reader_->Skip(peeked_);
|
|
|
|
size_t n;
|
|
|
|
ip = reader_->Peek(&n);
|
|
|
|
avail = n;
|
|
|
|
peeked_ = avail;
|
2011-06-02 18:06:54 +00:00
|
|
|
if (avail == 0) return; // Premature end of input
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
ip_limit_ = ip + avail;
|
|
|
|
}
|
2011-11-23 11:14:17 +00:00
|
|
|
if (!writer->Append(ip, literal_length)) {
|
2011-06-02 18:06:54 +00:00
|
|
|
return;
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
}
|
|
|
|
ip += literal_length;
|
2011-12-05 21:27:26 +00:00
|
|
|
MAYBE_REFILL();
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
} else {
|
2011-06-03 20:47:14 +00:00
|
|
|
const uint32 entry = char_table[c];
|
|
|
|
const uint32 trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11];
|
|
|
|
const uint32 length = entry & 0xff;
|
|
|
|
ip += entry >> 11;
|
|
|
|
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
// copy_offset/256 is encoded in bits 8..10. By just fetching
|
|
|
|
// those bits, we get copy_offset (since the bit-field starts at
|
|
|
|
// bit 8).
|
|
|
|
const uint32 copy_offset = entry & 0x700;
|
|
|
|
if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
|
2011-06-02 18:06:54 +00:00
|
|
|
return;
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
}
|
2011-12-05 21:27:26 +00:00
|
|
|
MAYBE_REFILL();
|
2011-03-18 17:14:15 +00:00
|
|
|
}
|
|
|
|
}
|
2011-12-05 21:27:26 +00:00
|
|
|
|
|
|
|
#undef MAYBE_REFILL
|
2011-03-18 17:14:15 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
bool SnappyDecompressor::RefillTag() {
|
|
|
|
const char* ip = ip_;
|
|
|
|
if (ip == ip_limit_) {
|
|
|
|
// Fetch a new fragment from the reader
|
|
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
|
|
size_t n;
|
|
|
|
ip = reader_->Peek(&n);
|
|
|
|
peeked_ = n;
|
|
|
|
if (n == 0) {
|
|
|
|
eof_ = true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
ip_limit_ = ip + n;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read the tag character
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(ip < ip_limit_);
|
2011-03-18 17:14:15 +00:00
|
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
|
|
|
|
const uint32 entry = char_table[c];
|
|
|
|
const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(needed <= sizeof(scratch_));
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
// Read more bytes from reader if needed
|
|
|
|
uint32 nbuf = ip_limit_ - ip;
|
|
|
|
if (nbuf < needed) {
|
|
|
|
// Stitch together bytes from ip and reader to form the word
|
|
|
|
// contents. We store the needed bytes in "scratch_". They
|
|
|
|
// will be consumed immediately by the caller since we do not
|
|
|
|
// read more than we need.
|
|
|
|
memmove(scratch_, ip, nbuf);
|
|
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
|
|
peeked_ = 0;
|
|
|
|
while (nbuf < needed) {
|
|
|
|
size_t length;
|
|
|
|
const char* src = reader_->Peek(&length);
|
|
|
|
if (length == 0) return false;
|
|
|
|
uint32 to_add = min<uint32>(needed - nbuf, length);
|
|
|
|
memcpy(scratch_ + nbuf, src, to_add);
|
|
|
|
nbuf += to_add;
|
|
|
|
reader_->Skip(to_add);
|
|
|
|
}
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(nbuf == needed);
|
2011-03-18 17:14:15 +00:00
|
|
|
ip_ = scratch_;
|
|
|
|
ip_limit_ = scratch_ + needed;
|
|
|
|
} else if (nbuf < 5) {
|
|
|
|
// Have enough bytes, but move into scratch_ so that we do not
|
|
|
|
// read past end of input
|
|
|
|
memmove(scratch_, ip, nbuf);
|
|
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
|
|
peeked_ = 0;
|
|
|
|
ip_ = scratch_;
|
|
|
|
ip_limit_ = scratch_ + nbuf;
|
|
|
|
} else {
|
|
|
|
// Pass pointer to buffer returned by reader_.
|
|
|
|
ip_ = ip;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Writer>
|
|
|
|
static bool InternalUncompress(Source* r,
|
|
|
|
Writer* writer,
|
|
|
|
uint32 max_len) {
|
|
|
|
// Read the uncompressed length from the front of the compressed input
|
|
|
|
SnappyDecompressor decompressor(r);
|
|
|
|
uint32 uncompressed_len = 0;
|
|
|
|
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
|
2012-01-08 17:55:48 +00:00
|
|
|
return InternalUncompressAllTags(
|
|
|
|
&decompressor, writer, uncompressed_len, max_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Writer>
|
|
|
|
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
|
|
|
|
Writer* writer,
|
|
|
|
uint32 uncompressed_len,
|
|
|
|
uint32 max_len) {
|
2011-03-18 17:14:15 +00:00
|
|
|
// Protect against possible DoS attack
|
|
|
|
if (static_cast<uint64>(uncompressed_len) > max_len) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
writer->SetExpectedLength(uncompressed_len);
|
|
|
|
|
|
|
|
// Process the entire input
|
2012-01-08 17:55:48 +00:00
|
|
|
decompressor->DecompressAllTags(writer);
|
|
|
|
return (decompressor->eof() && writer->CheckLength());
|
2011-03-18 17:14:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool GetUncompressedLength(Source* source, uint32* result) {
|
|
|
|
SnappyDecompressor decompressor(source);
|
|
|
|
return decompressor.ReadUncompressedLength(result);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t Compress(Source* reader, Sink* writer) {
|
|
|
|
size_t written = 0;
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t N = reader->Available();
|
2011-03-18 17:14:15 +00:00
|
|
|
char ulength[Varint::kMax32];
|
|
|
|
char* p = Varint::Encode32(ulength, N);
|
|
|
|
writer->Append(ulength, p-ulength);
|
|
|
|
written += (p - ulength);
|
|
|
|
|
|
|
|
internal::WorkingMemory wmem;
|
|
|
|
char* scratch = NULL;
|
|
|
|
char* scratch_output = NULL;
|
|
|
|
|
|
|
|
while (N > 0) {
|
|
|
|
// Get next block to compress (without copying if possible)
|
|
|
|
size_t fragment_size;
|
|
|
|
const char* fragment = reader->Peek(&fragment_size);
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(fragment_size != 0); // premature end of input
|
2012-01-04 13:10:46 +00:00
|
|
|
const size_t num_to_read = min(N, kBlockSize);
|
2011-03-18 17:14:15 +00:00
|
|
|
size_t bytes_read = fragment_size;
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
size_t pending_advance = 0;
|
2011-03-18 17:14:15 +00:00
|
|
|
if (bytes_read >= num_to_read) {
|
|
|
|
// Buffer returned by reader is large enough
|
|
|
|
pending_advance = num_to_read;
|
|
|
|
fragment_size = num_to_read;
|
|
|
|
} else {
|
|
|
|
// Read into scratch buffer
|
|
|
|
if (scratch == NULL) {
|
|
|
|
// If this is the last iteration, we want to allocate N bytes
|
|
|
|
// of space, otherwise the max possible kBlockSize space.
|
|
|
|
// num_to_read contains exactly the correct value
|
|
|
|
scratch = new char[num_to_read];
|
|
|
|
}
|
|
|
|
memcpy(scratch, fragment, bytes_read);
|
|
|
|
reader->Skip(bytes_read);
|
|
|
|
|
|
|
|
while (bytes_read < num_to_read) {
|
|
|
|
fragment = reader->Peek(&fragment_size);
|
|
|
|
size_t n = min<size_t>(fragment_size, num_to_read - bytes_read);
|
|
|
|
memcpy(scratch + bytes_read, fragment, n);
|
|
|
|
bytes_read += n;
|
|
|
|
reader->Skip(n);
|
|
|
|
}
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(bytes_read == num_to_read);
|
2011-03-18 17:14:15 +00:00
|
|
|
fragment = scratch;
|
|
|
|
fragment_size = num_to_read;
|
|
|
|
}
|
2012-05-22 09:32:50 +00:00
|
|
|
assert(fragment_size == num_to_read);
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
// Get encoding table for compression
|
|
|
|
int table_size;
|
|
|
|
uint16* table = wmem.GetHashTable(num_to_read, &table_size);
|
|
|
|
|
|
|
|
// Compress input_fragment and append to dest
|
|
|
|
const int max_output = MaxCompressedLength(num_to_read);
|
|
|
|
|
|
|
|
// Need a scratch buffer for the output, in case the byte sink doesn't
|
|
|
|
// have room for us directly.
|
|
|
|
if (scratch_output == NULL) {
|
|
|
|
scratch_output = new char[max_output];
|
|
|
|
} else {
|
|
|
|
// Since we encode kBlockSize regions followed by a region
|
|
|
|
// which is <= kBlockSize in length, a previously allocated
|
|
|
|
// scratch_output[] region is big enough for this iteration.
|
|
|
|
}
|
|
|
|
char* dest = writer->GetAppendBuffer(max_output, scratch_output);
|
|
|
|
char* end = internal::CompressFragment(fragment, fragment_size,
|
|
|
|
dest, table, table_size);
|
|
|
|
writer->Append(dest, end - dest);
|
|
|
|
written += (end - dest);
|
|
|
|
|
|
|
|
N -= num_to_read;
|
|
|
|
reader->Skip(pending_advance);
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] scratch;
|
|
|
|
delete[] scratch_output;
|
|
|
|
|
|
|
|
return written;
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
// Flat array interfaces
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
|
|
|
|
// A type that writes to a flat array.
|
|
|
|
// Note that this is not a "ByteSink", but a type that matches the
|
Speed up decompression by caching ip_.
It is seemingly hard for the compiler to understand that ip_, the current input
pointer into the compressed data stream, can not alias on anything else, and
thus using it directly will incur memory traffic as it cannot be kept in a
register. The code already knew about this and cached it into a local
variable, but since Step() only decoded one tag, it had to move ip_ back into
place between every tag. This seems to have cost us a significant amount of
performance, so changing Step() into a function that decodes as much as it can
before it saves ip_ back and returns. (Note that Step() was already inlined,
so it is not the manual inlining that buys the performance here.)
The wins are about 3-6% for Core 2, 6-13% on Core i7 and 5-12% on Opteron
(for plain array-to-array decompression, in 64-bit opt mode).
There is a tiny difference in the behavior here; if an invalid literal is
encountered (ie., the writer refuses the Append() operation), ip_ will now
point to the byte past the tag byte, instead of where the literal was
originally thought to end. However, we don't use ip_ for anything after
DecompressAllTags() has returned, so this should not change external behavior
in any way.
Microbenchmark results for Core i7, 64-bit (Opteron results are similar):
Benchmark Time(ns) CPU(ns) Iterations
---------------------------------------------------
BM_UFlat/0 79134 79110 8835 1.2GB/s html [ +6.2%]
BM_UFlat/1 786126 786096 891 851.8MB/s urls [+10.0%]
BM_UFlat/2 9948 9948 69125 11.9GB/s jpg [ -1.3%]
BM_UFlat/3 31999 31998 21898 2.7GB/s pdf [ +6.5%]
BM_UFlat/4 318909 318829 2204 1.2GB/s html4 [ +6.5%]
BM_UFlat/5 31384 31390 22363 747.5MB/s cp [ +9.2%]
BM_UFlat/6 14037 14034 49858 757.7MB/s c [+10.6%]
BM_UFlat/7 4612 4612 151395 769.5MB/s lsp [ +9.5%]
BM_UFlat/8 1203174 1203007 582 816.3MB/s xls [+19.3%]
BM_UFlat/9 253869 253955 2757 571.1MB/s txt1 [+11.4%]
BM_UFlat/10 219292 219290 3194 544.4MB/s txt2 [+12.1%]
BM_UFlat/11 672135 672131 1000 605.5MB/s txt3 [+11.2%]
BM_UFlat/12 902512 902492 776 509.2MB/s txt4 [+12.5%]
BM_UFlat/13 372110 371998 1881 1.3GB/s bin [ +5.8%]
BM_UFlat/14 50407 50407 10000 723.5MB/s sum [+13.5%]
BM_UFlat/15 5699 5701 100000 707.2MB/s man [+12.4%]
BM_UFlat/16 83448 83424 8383 1.3GB/s pb [ +5.7%]
BM_UFlat/17 256958 256963 2723 684.1MB/s gaviota [ +7.9%]
BM_UValidate/0 42795 42796 16351 2.2GB/s html [+25.8%]
BM_UValidate/1 490672 490622 1427 1.3GB/s urls [+22.7%]
BM_UValidate/2 237 237 2950297 499.0GB/s jpg [+24.9%]
BM_UValidate/3 14610 14611 47901 6.0GB/s pdf [+26.8%]
BM_UValidate/4 171973 171990 4071 2.2GB/s html4 [+25.7%]
git-svn-id: https://snappy.googlecode.com/svn/trunk@38 03e5f5b5-db94-4691-08a0-1a8bf15f6143
2011-06-02 17:59:40 +00:00
|
|
|
// Writer template argument to SnappyDecompressor::DecompressAllTags().
|
2011-03-18 17:14:15 +00:00
|
|
|
class SnappyArrayWriter {
|
|
|
|
private:
|
|
|
|
char* base_;
|
|
|
|
char* op_;
|
|
|
|
char* op_limit_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
inline explicit SnappyArrayWriter(char* dst)
|
|
|
|
: base_(dst),
|
|
|
|
op_(dst) {
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
|
|
op_limit_ = op_ + len;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool CheckLength() const {
|
|
|
|
return op_ == op_limit_;
|
|
|
|
}
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
inline bool Append(const char* ip, size_t len) {
|
2011-03-18 17:14:15 +00:00
|
|
|
char* op = op_;
|
2012-01-04 13:10:46 +00:00
|
|
|
const size_t space_left = op_limit_ - op;
|
2011-11-23 11:14:17 +00:00
|
|
|
if (space_left < len) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
memcpy(op, ip, len);
|
|
|
|
op_ = op + len;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
|
2011-11-23 11:14:17 +00:00
|
|
|
char* op = op_;
|
2012-01-04 13:10:46 +00:00
|
|
|
const size_t space_left = op_limit_ - op;
|
2011-11-23 11:14:17 +00:00
|
|
|
if (len <= 16 && available >= 16 && space_left >= 16) {
|
|
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
2012-02-21 17:02:17 +00:00
|
|
|
UnalignedCopy64(ip, op);
|
|
|
|
UnalignedCopy64(ip + 8, op + 8);
|
2011-11-23 11:14:17 +00:00
|
|
|
op_ = op + len;
|
|
|
|
return true;
|
2011-03-18 17:14:15 +00:00
|
|
|
} else {
|
2011-11-23 11:14:17 +00:00
|
|
|
return false;
|
2011-03-18 17:14:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-01-04 13:10:46 +00:00
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
2011-03-18 17:14:15 +00:00
|
|
|
char* op = op_;
|
2012-01-04 13:10:46 +00:00
|
|
|
const size_t space_left = op_limit_ - op;
|
2011-03-18 17:14:15 +00:00
|
|
|
|
|
|
|
if (op - base_ <= offset - 1u) { // -1u catches offset==0
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (len <= 16 && offset >= 8 && space_left >= 16) {
|
|
|
|
// Fast path, used for the majority (70-80%) of dynamic invocations.
|
2012-02-21 17:02:17 +00:00
|
|
|
UnalignedCopy64(op - offset, op);
|
|
|
|
UnalignedCopy64(op - offset + 8, op + 8);
|
2011-03-18 17:14:15 +00:00
|
|
|
} else {
|
|
|
|
if (space_left >= len + kMaxIncrementCopyOverflow) {
|
|
|
|
IncrementalCopyFastPath(op - offset, op, len);
|
|
|
|
} else {
|
|
|
|
if (space_left < len) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
IncrementalCopy(op - offset, op, len);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
op_ = op + len;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
|
|
|
|
ByteArraySource reader(compressed, n);
|
|
|
|
return RawUncompress(&reader, uncompressed);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool RawUncompress(Source* compressed, char* uncompressed) {
|
|
|
|
SnappyArrayWriter output(uncompressed);
|
|
|
|
return InternalUncompress(compressed, &output, kuint32max);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
|
|
|
|
size_t ulength;
|
|
|
|
if (!GetUncompressedLength(compressed, n, &ulength)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// Protect against possible DoS attack
|
|
|
|
if ((static_cast<uint64>(ulength) + uncompressed->size()) >
|
|
|
|
uncompressed->max_size()) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
STLStringResizeUninitialized(uncompressed, ulength);
|
|
|
|
return RawUncompress(compressed, n, string_as_array(uncompressed));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// A Writer that drops everything on the floor and just does validation
|
|
|
|
class SnappyDecompressionValidator {
|
|
|
|
private:
|
|
|
|
size_t expected_;
|
|
|
|
size_t produced_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
inline SnappyDecompressionValidator() : produced_(0) { }
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
|
|
expected_ = len;
|
|
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
|
|
return expected_ == produced_;
|
|
|
|
}
|
2012-01-04 13:10:46 +00:00
|
|
|
inline bool Append(const char* ip, size_t len) {
|
2011-03-18 17:14:15 +00:00
|
|
|
produced_ += len;
|
|
|
|
return produced_ <= expected_;
|
|
|
|
}
|
2012-01-04 13:10:46 +00:00
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
|
2011-11-23 11:14:17 +00:00
|
|
|
return false;
|
|
|
|
}
|
2012-01-04 13:10:46 +00:00
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
2011-03-18 17:14:15 +00:00
|
|
|
if (produced_ <= offset - 1u) return false; // -1u catches offset==0
|
|
|
|
produced_ += len;
|
|
|
|
return produced_ <= expected_;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
bool IsValidCompressedBuffer(const char* compressed, size_t n) {
|
|
|
|
ByteArraySource reader(compressed, n);
|
|
|
|
SnappyDecompressionValidator writer;
|
|
|
|
return InternalUncompress(&reader, &writer, kuint32max);
|
|
|
|
}
|
|
|
|
|
|
|
|
void RawCompress(const char* input,
|
|
|
|
size_t input_length,
|
|
|
|
char* compressed,
|
|
|
|
size_t* compressed_length) {
|
|
|
|
ByteArraySource reader(input, input_length);
|
|
|
|
UncheckedByteArraySink writer(compressed);
|
|
|
|
Compress(&reader, &writer);
|
|
|
|
|
|
|
|
// Compute how many bytes were added
|
|
|
|
*compressed_length = (writer.CurrentDestination() - compressed);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t Compress(const char* input, size_t input_length, string* compressed) {
|
|
|
|
// Pre-grow the buffer to the max length of the compressed output
|
|
|
|
compressed->resize(MaxCompressedLength(input_length));
|
|
|
|
|
|
|
|
size_t compressed_length;
|
|
|
|
RawCompress(input, input_length, string_as_array(compressed),
|
|
|
|
&compressed_length);
|
|
|
|
compressed->resize(compressed_length);
|
|
|
|
return compressed_length;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // end namespace snappy
|
|
|
|
|