mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 02:44:18 +00:00
5ad3227650
Summary: Some bits are mutated and read while holding a lock, other immutable bits (esp. secondary cache compatibility) can be read by arbitrary threads without holding a lock. AFAIK, this doesn't cause an issue on any architecture we care about, because you will get some legitimate version of the value that includes the initialization, as long as synchronization guarantees the initialization happens before the read. I've only seen this in https://github.com/facebook/rocksdb/issues/8538 so far, but it should be fixed regardless. Otherwise, we'll surely get these false reports again some time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8539 Test Plan: some local TSAN test runs and in CircleCI Reviewed By: zhichao-cao Differential Revision: D29720262 Pulled By: pdillinger fbshipit-source-id: 365fd7e565577c648815161f71b339bcb5ce12d5
792 lines
25 KiB
C++
792 lines
25 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "cache/lru_cache.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
|
|
#include "util/mutexlock.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
LRUHandleTable::LRUHandleTable(int max_upper_hash_bits)
|
|
: length_bits_(/* historical starting size*/ 4),
|
|
list_(new LRUHandle* [size_t{1} << length_bits_] {}),
|
|
elems_(0),
|
|
max_length_bits_(max_upper_hash_bits) {}
|
|
|
|
LRUHandleTable::~LRUHandleTable() {
|
|
ApplyToEntriesRange(
|
|
[](LRUHandle* h) {
|
|
if (!h->HasRefs()) {
|
|
h->Free();
|
|
}
|
|
},
|
|
0, uint32_t{1} << length_bits_);
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
|
|
return *FindPointer(key, hash);
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Insert(LRUHandle* h) {
|
|
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
|
LRUHandle* old = *ptr;
|
|
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
|
|
*ptr = h;
|
|
if (old == nullptr) {
|
|
++elems_;
|
|
if ((elems_ >> length_bits_) > 0) { // elems_ >= length
|
|
// Since each cache entry is fairly large, we aim for a small
|
|
// average linked list length (<= 1).
|
|
Resize();
|
|
}
|
|
}
|
|
return old;
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = FindPointer(key, hash);
|
|
LRUHandle* result = *ptr;
|
|
if (result != nullptr) {
|
|
*ptr = result->next_hash;
|
|
--elems_;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) {
|
|
LRUHandle** ptr = &list_[hash >> (32 - length_bits_)];
|
|
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
|
|
ptr = &(*ptr)->next_hash;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void LRUHandleTable::Resize() {
|
|
if (length_bits_ >= max_length_bits_) {
|
|
// Due to reaching limit of hash information, if we made the table
|
|
// bigger, we would allocate more addresses but only the same
|
|
// number would be used.
|
|
return;
|
|
}
|
|
if (length_bits_ >= 31) {
|
|
// Avoid undefined behavior shifting uint32_t by 32
|
|
return;
|
|
}
|
|
|
|
uint32_t old_length = uint32_t{1} << length_bits_;
|
|
int new_length_bits = length_bits_ + 1;
|
|
std::unique_ptr<LRUHandle* []> new_list {
|
|
new LRUHandle* [size_t{1} << new_length_bits] {}
|
|
};
|
|
uint32_t count = 0;
|
|
for (uint32_t i = 0; i < old_length; i++) {
|
|
LRUHandle* h = list_[i];
|
|
while (h != nullptr) {
|
|
LRUHandle* next = h->next_hash;
|
|
uint32_t hash = h->hash;
|
|
LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)];
|
|
h->next_hash = *ptr;
|
|
*ptr = h;
|
|
h = next;
|
|
count++;
|
|
}
|
|
}
|
|
assert(elems_ == count);
|
|
list_ = std::move(new_list);
|
|
length_bits_ = new_length_bits;
|
|
}
|
|
|
|
LRUCacheShard::LRUCacheShard(
|
|
size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio,
|
|
bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy,
|
|
int max_upper_hash_bits,
|
|
const std::shared_ptr<SecondaryCache>& secondary_cache)
|
|
: capacity_(0),
|
|
high_pri_pool_usage_(0),
|
|
strict_capacity_limit_(strict_capacity_limit),
|
|
high_pri_pool_ratio_(high_pri_pool_ratio),
|
|
high_pri_pool_capacity_(0),
|
|
table_(max_upper_hash_bits),
|
|
usage_(0),
|
|
lru_usage_(0),
|
|
mutex_(use_adaptive_mutex),
|
|
secondary_cache_(secondary_cache) {
|
|
set_metadata_charge_policy(metadata_charge_policy);
|
|
// Make empty circular linked list
|
|
lru_.next = &lru_;
|
|
lru_.prev = &lru_;
|
|
lru_low_pri_ = &lru_;
|
|
SetCapacity(capacity);
|
|
}
|
|
|
|
void LRUCacheShard::EraseUnRefEntries() {
|
|
autovector<LRUHandle*> last_reference_list;
|
|
{
|
|
MutexLock l(&mutex_);
|
|
while (lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
// LRU list contains only elements which can be evicted
|
|
assert(old->InCache() && !old->HasRefs());
|
|
LRU_Remove(old);
|
|
table_.Remove(old->key(), old->hash);
|
|
old->SetInCache(false);
|
|
size_t total_charge = old->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(usage_ >= total_charge);
|
|
usage_ -= total_charge;
|
|
last_reference_list.push_back(old);
|
|
}
|
|
}
|
|
|
|
for (auto entry : last_reference_list) {
|
|
entry->Free();
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
uint32_t average_entries_per_lock, uint32_t* state) {
|
|
// The state is essentially going to be the starting hash, which works
|
|
// nicely even if we resize between calls because we use upper-most
|
|
// hash bits for table indexes.
|
|
MutexLock l(&mutex_);
|
|
uint32_t length_bits = table_.GetLengthBits();
|
|
uint32_t length = uint32_t{1} << length_bits;
|
|
|
|
assert(average_entries_per_lock > 0);
|
|
// Assuming we are called with same average_entries_per_lock repeatedly,
|
|
// this simplifies some logic (index_end will not overflow)
|
|
assert(average_entries_per_lock < length || *state == 0);
|
|
|
|
uint32_t index_begin = *state >> (32 - length_bits);
|
|
uint32_t index_end = index_begin + average_entries_per_lock;
|
|
if (index_end >= length) {
|
|
// Going to end
|
|
index_end = length;
|
|
*state = UINT32_MAX;
|
|
} else {
|
|
*state = index_end << (32 - length_bits);
|
|
}
|
|
|
|
table_.ApplyToEntriesRange(
|
|
[callback](LRUHandle* h) {
|
|
DeleterFn deleter = h->IsSecondaryCacheCompatible()
|
|
? h->info_.helper->del_cb
|
|
: h->info_.deleter;
|
|
callback(h->key(), h->value, h->charge, deleter);
|
|
},
|
|
index_begin, index_end);
|
|
}
|
|
|
|
void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri) {
|
|
MutexLock l(&mutex_);
|
|
*lru = &lru_;
|
|
*lru_low_pri = lru_low_pri_;
|
|
}
|
|
|
|
size_t LRUCacheShard::TEST_GetLRUSize() {
|
|
MutexLock l(&mutex_);
|
|
LRUHandle* lru_handle = lru_.next;
|
|
size_t lru_size = 0;
|
|
while (lru_handle != &lru_) {
|
|
lru_size++;
|
|
lru_handle = lru_handle->next;
|
|
}
|
|
return lru_size;
|
|
}
|
|
|
|
double LRUCacheShard::GetHighPriPoolRatio() {
|
|
MutexLock l(&mutex_);
|
|
return high_pri_pool_ratio_;
|
|
}
|
|
|
|
void LRUCacheShard::LRU_Remove(LRUHandle* e) {
|
|
assert(e->next != nullptr);
|
|
assert(e->prev != nullptr);
|
|
if (lru_low_pri_ == e) {
|
|
lru_low_pri_ = e->prev;
|
|
}
|
|
e->next->prev = e->prev;
|
|
e->prev->next = e->next;
|
|
e->prev = e->next = nullptr;
|
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(lru_usage_ >= total_charge);
|
|
lru_usage_ -= total_charge;
|
|
if (e->InHighPriPool()) {
|
|
assert(high_pri_pool_usage_ >= total_charge);
|
|
high_pri_pool_usage_ -= total_charge;
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::LRU_Insert(LRUHandle* e) {
|
|
assert(e->next == nullptr);
|
|
assert(e->prev == nullptr);
|
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
|
if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) {
|
|
// Inset "e" to head of LRU list.
|
|
e->next = &lru_;
|
|
e->prev = lru_.prev;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
e->SetInHighPriPool(true);
|
|
high_pri_pool_usage_ += total_charge;
|
|
MaintainPoolSize();
|
|
} else {
|
|
// Insert "e" to the head of low-pri pool. Note that when
|
|
// high_pri_pool_ratio is 0, head of low-pri pool is also head of LRU list.
|
|
e->next = lru_low_pri_->next;
|
|
e->prev = lru_low_pri_;
|
|
e->prev->next = e;
|
|
e->next->prev = e;
|
|
e->SetInHighPriPool(false);
|
|
lru_low_pri_ = e;
|
|
}
|
|
lru_usage_ += total_charge;
|
|
}
|
|
|
|
void LRUCacheShard::MaintainPoolSize() {
|
|
while (high_pri_pool_usage_ > high_pri_pool_capacity_) {
|
|
// Overflow last entry in high-pri pool to low-pri pool.
|
|
lru_low_pri_ = lru_low_pri_->next;
|
|
assert(lru_low_pri_ != &lru_);
|
|
lru_low_pri_->SetInHighPriPool(false);
|
|
size_t total_charge =
|
|
lru_low_pri_->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(high_pri_pool_usage_ >= total_charge);
|
|
high_pri_pool_usage_ -= total_charge;
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::EvictFromLRU(size_t charge,
|
|
autovector<LRUHandle*>* deleted) {
|
|
while ((usage_ + charge) > capacity_ && lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
// LRU list contains only elements which can be evicted
|
|
assert(old->InCache() && !old->HasRefs());
|
|
LRU_Remove(old);
|
|
table_.Remove(old->key(), old->hash);
|
|
old->SetInCache(false);
|
|
size_t old_total_charge = old->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(usage_ >= old_total_charge);
|
|
usage_ -= old_total_charge;
|
|
deleted->push_back(old);
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::SetCapacity(size_t capacity) {
|
|
autovector<LRUHandle*> last_reference_list;
|
|
{
|
|
MutexLock l(&mutex_);
|
|
capacity_ = capacity;
|
|
high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
|
|
EvictFromLRU(0, &last_reference_list);
|
|
}
|
|
|
|
// Try to insert the evicted entries into tiered cache
|
|
// Free the entries outside of mutex for performance reasons
|
|
for (auto entry : last_reference_list) {
|
|
if (secondary_cache_ && entry->IsSecondaryCacheCompatible() &&
|
|
!entry->IsPromoted()) {
|
|
secondary_cache_->Insert(entry->key(), entry->value, entry->info_.helper)
|
|
.PermitUncheckedError();
|
|
}
|
|
entry->Free();
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
|
|
MutexLock l(&mutex_);
|
|
strict_capacity_limit_ = strict_capacity_limit;
|
|
}
|
|
|
|
Status LRUCacheShard::InsertItem(LRUHandle* e, Cache::Handle** handle,
|
|
bool free_handle_on_fail) {
|
|
Status s = Status::OK();
|
|
autovector<LRUHandle*> last_reference_list;
|
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
|
|
|
{
|
|
MutexLock l(&mutex_);
|
|
|
|
// Free the space following strict LRU policy until enough space
|
|
// is freed or the lru list is empty
|
|
EvictFromLRU(total_charge, &last_reference_list);
|
|
|
|
if ((usage_ + total_charge) > capacity_ &&
|
|
(strict_capacity_limit_ || handle == nullptr)) {
|
|
e->SetInCache(false);
|
|
if (handle == nullptr) {
|
|
// Don't insert the entry but still return ok, as if the entry inserted
|
|
// into cache and get evicted immediately.
|
|
last_reference_list.push_back(e);
|
|
} else {
|
|
if (free_handle_on_fail) {
|
|
delete[] reinterpret_cast<char*>(e);
|
|
*handle = nullptr;
|
|
}
|
|
s = Status::Incomplete("Insert failed due to LRU cache being full.");
|
|
}
|
|
} else {
|
|
// Insert into the cache. Note that the cache might get larger than its
|
|
// capacity if not enough space was freed up.
|
|
LRUHandle* old = table_.Insert(e);
|
|
usage_ += total_charge;
|
|
if (old != nullptr) {
|
|
s = Status::OkOverwritten();
|
|
assert(old->InCache());
|
|
old->SetInCache(false);
|
|
if (!old->HasRefs()) {
|
|
// old is on LRU because it's in cache and its reference count is 0
|
|
LRU_Remove(old);
|
|
size_t old_total_charge =
|
|
old->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(usage_ >= old_total_charge);
|
|
usage_ -= old_total_charge;
|
|
last_reference_list.push_back(old);
|
|
}
|
|
}
|
|
if (handle == nullptr) {
|
|
LRU_Insert(e);
|
|
} else {
|
|
e->Ref();
|
|
*handle = reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to insert the evicted entries into the secondary cache
|
|
// Free the entries here outside of mutex for performance reasons
|
|
for (auto entry : last_reference_list) {
|
|
if (secondary_cache_ && entry->IsSecondaryCacheCompatible() &&
|
|
!entry->IsPromoted()) {
|
|
secondary_cache_->Insert(entry->key(), entry->value, entry->info_.helper)
|
|
.PermitUncheckedError();
|
|
}
|
|
entry->Free();
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
void LRUCacheShard::Promote(LRUHandle* e) {
|
|
SecondaryCacheResultHandle* secondary_handle = e->sec_handle;
|
|
|
|
assert(secondary_handle->IsReady());
|
|
e->SetIncomplete(false);
|
|
e->SetInCache(true);
|
|
e->SetPromoted(true);
|
|
e->value = secondary_handle->Value();
|
|
e->charge = secondary_handle->Size();
|
|
delete secondary_handle;
|
|
|
|
// This call could fail if the cache is over capacity and
|
|
// strict_capacity_limit_ is true. In such a case, we don't want
|
|
// InsertItem() to free the handle, since the item is already in memory
|
|
// and the caller will most likely just read from disk if we erase it here.
|
|
if (e->value) {
|
|
Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(e);
|
|
Status s = InsertItem(e, &handle, /*free_handle_on_fail=*/false);
|
|
if (s.ok()) {
|
|
// InsertItem would have taken a reference on the item, so decrement it
|
|
// here as we expect the caller to already hold a reference
|
|
e->Unref();
|
|
} else {
|
|
// Item is in memory, but not accounted against the cache capacity.
|
|
// When the handle is released, the item should get deleted
|
|
assert(!e->InCache());
|
|
}
|
|
} else {
|
|
// Since the secondary cache lookup failed, mark the item as not in cache
|
|
// Don't charge the cache as its only metadata that'll shortly be released
|
|
MutexLock l(&mutex_);
|
|
e->charge = 0;
|
|
e->SetInCache(false);
|
|
}
|
|
}
|
|
|
|
Cache::Handle* LRUCacheShard::Lookup(
|
|
const Slice& key, uint32_t hash,
|
|
const ShardedCache::CacheItemHelper* helper,
|
|
const ShardedCache::CreateCallback& create_cb, Cache::Priority priority,
|
|
bool wait) {
|
|
LRUHandle* e = nullptr;
|
|
{
|
|
MutexLock l(&mutex_);
|
|
e = table_.Lookup(key, hash);
|
|
if (e != nullptr) {
|
|
assert(e->InCache());
|
|
if (!e->HasRefs()) {
|
|
// The entry is in LRU since it's in hash and has no external references
|
|
LRU_Remove(e);
|
|
}
|
|
e->Ref();
|
|
e->SetHit();
|
|
}
|
|
}
|
|
|
|
// If handle table lookup failed, then allocate a handle outside the
|
|
// mutex if we're going to lookup in the secondary cache
|
|
// Only support synchronous for now
|
|
// TODO: Support asynchronous lookup in secondary cache
|
|
if (!e && secondary_cache_ && helper && helper->saveto_cb) {
|
|
// For objects from the secondary cache, we expect the caller to provide
|
|
// a way to create/delete the primary cache object. The only case where
|
|
// a deleter would not be required is for dummy entries inserted for
|
|
// accounting purposes, which we won't demote to the secondary cache
|
|
// anyway.
|
|
assert(create_cb && helper->del_cb);
|
|
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle =
|
|
secondary_cache_->Lookup(key, create_cb, wait);
|
|
if (secondary_handle != nullptr) {
|
|
e = reinterpret_cast<LRUHandle*>(
|
|
new char[sizeof(LRUHandle) - 1 + key.size()]);
|
|
|
|
e->flags = 0;
|
|
e->SetSecondaryCacheCompatible(true);
|
|
e->info_.helper = helper;
|
|
e->key_length = key.size();
|
|
e->hash = hash;
|
|
e->refs = 0;
|
|
e->next = e->prev = nullptr;
|
|
e->SetPriority(priority);
|
|
memcpy(e->key_data, key.data(), key.size());
|
|
e->value = nullptr;
|
|
e->sec_handle = secondary_handle.release();
|
|
e->Ref();
|
|
|
|
if (wait) {
|
|
Promote(e);
|
|
if (!e->value) {
|
|
// The secondary cache returned a handle, but the lookup failed
|
|
e->Unref();
|
|
e->Free();
|
|
e = nullptr;
|
|
}
|
|
} else {
|
|
// If wait is false, we always return a handle and let the caller
|
|
// release the handle after checking for success or failure
|
|
e->SetIncomplete(true);
|
|
}
|
|
}
|
|
}
|
|
return reinterpret_cast<Cache::Handle*>(e);
|
|
}
|
|
|
|
bool LRUCacheShard::Ref(Cache::Handle* h) {
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(h);
|
|
MutexLock l(&mutex_);
|
|
// To create another reference - entry must be already externally referenced
|
|
assert(e->HasRefs());
|
|
e->Ref();
|
|
return true;
|
|
}
|
|
|
|
void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) {
|
|
MutexLock l(&mutex_);
|
|
high_pri_pool_ratio_ = high_pri_pool_ratio;
|
|
high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
|
|
MaintainPoolSize();
|
|
}
|
|
|
|
bool LRUCacheShard::Release(Cache::Handle* handle, bool force_erase) {
|
|
if (handle == nullptr) {
|
|
return false;
|
|
}
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
|
|
bool last_reference = false;
|
|
{
|
|
MutexLock l(&mutex_);
|
|
last_reference = e->Unref();
|
|
if (last_reference && e->InCache()) {
|
|
// The item is still in cache, and nobody else holds a reference to it
|
|
if (usage_ > capacity_ || force_erase) {
|
|
// The LRU list must be empty since the cache is full
|
|
assert(lru_.next == &lru_ || force_erase);
|
|
// Take this opportunity and remove the item
|
|
table_.Remove(e->key(), e->hash);
|
|
e->SetInCache(false);
|
|
} else {
|
|
// Put the item back on the LRU list, and don't free it
|
|
LRU_Insert(e);
|
|
last_reference = false;
|
|
}
|
|
}
|
|
// If it was the last reference, and the entry is either not secondary
|
|
// cache compatible (i.e a dummy entry for accounting), or is secondary
|
|
// cache compatible and has a non-null value, then decrement the cache
|
|
// usage. If value is null in the latter case, taht means the lookup
|
|
// failed and we didn't charge the cache.
|
|
if (last_reference && (!e->IsSecondaryCacheCompatible() || e->value)) {
|
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(usage_ >= total_charge);
|
|
usage_ -= total_charge;
|
|
}
|
|
}
|
|
|
|
// Free the entry here outside of mutex for performance reasons
|
|
if (last_reference) {
|
|
e->Free();
|
|
}
|
|
return last_reference;
|
|
}
|
|
|
|
Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge,
|
|
void (*deleter)(const Slice& key, void* value),
|
|
const Cache::CacheItemHelper* helper,
|
|
Cache::Handle** handle, Cache::Priority priority) {
|
|
// Allocate the memory here outside of the mutex
|
|
// If the cache is full, we'll have to release it
|
|
// It shouldn't happen very often though.
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(
|
|
new char[sizeof(LRUHandle) - 1 + key.size()]);
|
|
|
|
e->value = value;
|
|
e->flags = 0;
|
|
if (helper) {
|
|
e->SetSecondaryCacheCompatible(true);
|
|
e->info_.helper = helper;
|
|
} else {
|
|
#ifdef __SANITIZE_THREAD__
|
|
e->is_secondary_cache_compatible_for_tsan = false;
|
|
#endif // __SANITIZE_THREAD__
|
|
e->info_.deleter = deleter;
|
|
}
|
|
e->charge = charge;
|
|
e->key_length = key.size();
|
|
e->hash = hash;
|
|
e->refs = 0;
|
|
e->next = e->prev = nullptr;
|
|
e->SetInCache(true);
|
|
e->SetPriority(priority);
|
|
memcpy(e->key_data, key.data(), key.size());
|
|
|
|
return InsertItem(e, handle, /* free_handle_on_fail */ true);
|
|
}
|
|
|
|
void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
|
|
LRUHandle* e;
|
|
bool last_reference = false;
|
|
{
|
|
MutexLock l(&mutex_);
|
|
e = table_.Remove(key, hash);
|
|
if (e != nullptr) {
|
|
assert(e->InCache());
|
|
e->SetInCache(false);
|
|
if (!e->HasRefs()) {
|
|
// The entry is in LRU since it's in hash and has no external references
|
|
LRU_Remove(e);
|
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
|
assert(usage_ >= total_charge);
|
|
usage_ -= total_charge;
|
|
last_reference = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Free the entry here outside of mutex for performance reasons
|
|
// last_reference will only be true if e != nullptr
|
|
if (last_reference) {
|
|
e->Free();
|
|
}
|
|
}
|
|
|
|
bool LRUCacheShard::IsReady(Cache::Handle* handle) {
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
|
|
MutexLock l(&mutex_);
|
|
bool ready = true;
|
|
if (e->IsPending()) {
|
|
assert(secondary_cache_);
|
|
assert(e->sec_handle);
|
|
ready = e->sec_handle->IsReady();
|
|
}
|
|
return ready;
|
|
}
|
|
|
|
size_t LRUCacheShard::GetUsage() const {
|
|
MutexLock l(&mutex_);
|
|
return usage_;
|
|
}
|
|
|
|
size_t LRUCacheShard::GetPinnedUsage() const {
|
|
MutexLock l(&mutex_);
|
|
assert(usage_ >= lru_usage_);
|
|
return usage_ - lru_usage_;
|
|
}
|
|
|
|
std::string LRUCacheShard::GetPrintableOptions() const {
|
|
const int kBufferSize = 200;
|
|
char buffer[kBufferSize];
|
|
{
|
|
MutexLock l(&mutex_);
|
|
snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n",
|
|
high_pri_pool_ratio_);
|
|
}
|
|
return std::string(buffer);
|
|
}
|
|
|
|
LRUCache::LRUCache(size_t capacity, int num_shard_bits,
|
|
bool strict_capacity_limit, double high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> allocator,
|
|
bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy,
|
|
const std::shared_ptr<SecondaryCache>& secondary_cache)
|
|
: ShardedCache(capacity, num_shard_bits, strict_capacity_limit,
|
|
std::move(allocator)) {
|
|
num_shards_ = 1 << num_shard_bits;
|
|
shards_ = reinterpret_cast<LRUCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_));
|
|
size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_;
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
new (&shards_[i]) LRUCacheShard(
|
|
per_shard, strict_capacity_limit, high_pri_pool_ratio,
|
|
use_adaptive_mutex, metadata_charge_policy,
|
|
/* max_upper_hash_bits */ 32 - num_shard_bits, secondary_cache);
|
|
}
|
|
secondary_cache_ = secondary_cache;
|
|
}
|
|
|
|
LRUCache::~LRUCache() {
|
|
if (shards_ != nullptr) {
|
|
assert(num_shards_ > 0);
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
shards_[i].~LRUCacheShard();
|
|
}
|
|
port::cacheline_aligned_free(shards_);
|
|
}
|
|
}
|
|
|
|
CacheShard* LRUCache::GetShard(uint32_t shard) {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
const CacheShard* LRUCache::GetShard(uint32_t shard) const {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
void* LRUCache::Value(Handle* handle) {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->value;
|
|
}
|
|
|
|
size_t LRUCache::GetCharge(Handle* handle) const {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->charge;
|
|
}
|
|
|
|
Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const {
|
|
auto h = reinterpret_cast<const LRUHandle*>(handle);
|
|
if (h->IsSecondaryCacheCompatible()) {
|
|
return h->info_.helper->del_cb;
|
|
} else {
|
|
return h->info_.deleter;
|
|
}
|
|
}
|
|
|
|
uint32_t LRUCache::GetHash(Handle* handle) const {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->hash;
|
|
}
|
|
|
|
void LRUCache::DisownData() {
|
|
// Do not drop data if compile with ASAN to suppress leak warning.
|
|
#ifndef MUST_FREE_HEAP_ALLOCATIONS
|
|
shards_ = nullptr;
|
|
num_shards_ = 0;
|
|
#endif
|
|
}
|
|
|
|
size_t LRUCache::TEST_GetLRUSize() {
|
|
size_t lru_size_of_all_shards = 0;
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
lru_size_of_all_shards += shards_[i].TEST_GetLRUSize();
|
|
}
|
|
return lru_size_of_all_shards;
|
|
}
|
|
|
|
double LRUCache::GetHighPriPoolRatio() {
|
|
double result = 0.0;
|
|
if (num_shards_ > 0) {
|
|
result = shards_[0].GetHighPriPoolRatio();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void LRUCache::WaitAll(std::vector<Handle*>& handles) {
|
|
if (secondary_cache_) {
|
|
std::vector<SecondaryCacheResultHandle*> sec_handles;
|
|
sec_handles.reserve(handles.size());
|
|
for (Handle* handle : handles) {
|
|
if (!handle) {
|
|
continue;
|
|
}
|
|
LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
|
|
if (!lru_handle->IsPending()) {
|
|
continue;
|
|
}
|
|
sec_handles.emplace_back(lru_handle->sec_handle);
|
|
}
|
|
secondary_cache_->WaitAll(sec_handles);
|
|
for (Handle* handle : handles) {
|
|
if (!handle) {
|
|
continue;
|
|
}
|
|
LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
|
|
if (!lru_handle->IsPending()) {
|
|
continue;
|
|
}
|
|
uint32_t hash = GetHash(handle);
|
|
LRUCacheShard* shard = static_cast<LRUCacheShard*>(GetShard(Shard(hash)));
|
|
shard->Promote(lru_handle);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewLRUCache(
|
|
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
|
double high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy,
|
|
const std::shared_ptr<SecondaryCache>& secondary_cache) {
|
|
if (num_shard_bits >= 20) {
|
|
return nullptr; // the cache cannot be sharded into too many fine pieces
|
|
}
|
|
if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) {
|
|
// invalid high_pri_pool_ratio
|
|
return nullptr;
|
|
}
|
|
if (num_shard_bits < 0) {
|
|
num_shard_bits = GetDefaultCacheShardBits(capacity);
|
|
}
|
|
return std::make_shared<LRUCache>(
|
|
capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio,
|
|
std::move(memory_allocator), use_adaptive_mutex, metadata_charge_policy,
|
|
secondary_cache);
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewLRUCache(const LRUCacheOptions& cache_opts) {
|
|
return NewLRUCache(
|
|
cache_opts.capacity, cache_opts.num_shard_bits,
|
|
cache_opts.strict_capacity_limit, cache_opts.high_pri_pool_ratio,
|
|
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
|
|
cache_opts.metadata_charge_policy, cache_opts.secondary_cache);
|
|
}
|
|
|
|
std::shared_ptr<Cache> NewLRUCache(
|
|
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
|
double high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
|
|
high_pri_pool_ratio, memory_allocator, use_adaptive_mutex,
|
|
metadata_charge_policy, nullptr);
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|