rocksdb/db/job_context.h
Yu Zhang f2546b6623 Support returning write unix time in iterator property (#12428)
Summary:
This PR adds support to return data's approximate unix write time in the iterator property API. The general implementation is:
1) If the entry comes from a SST file, the sequence number to time mapping recorded in that file's table properties will be used to deduce the entry's write time from its sequence number. If no such recording is available, `std::numeric_limits<uint64_t>::max()` is returned to indicate the write time is unknown except if the entry's sequence number is zero, in which case, 0 is returned. This also means that even if `preclude_last_level_data_seconds` and `preserve_internal_time_seconds` can be toggled off between DB reopens, as long as the SST file's table property has the mapping available, the entry's write time can be deduced and returned.

2) If the entry comes from memtable, we will use the DB's sequence number to write time mapping to do similar things. A copy of the DB's seqno to write time mapping is kept in SuperVersion to allow iterators to have lock free access. This also means a new `SuperVersion` is installed each time DB's seqno to time mapping updates, which is originally proposed by Peter in  https://github.com/facebook/rocksdb/issues/11928 . Similarly, if the feature is not enabled, `std::numeric_limits<uint64_t>::max()` is returned to indicate the write time is unknown.

Needed follow up:
1) The write time for `kTypeValuePreferredSeqno` should be special cased, where it's already specified by the user, so we can directly return it.

2) Flush job can be updated to use DB's seqno to time mapping copy in the SuperVersion.

3) Handle the case when `TimedPut` is called with a write time that is `std::numeric_limits<uint64_t>::max()`. We can make it a regular `Put`.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12428

Test Plan: Added unit test

Reviewed By: pdillinger

Differential Revision: D54967067

Pulled By: jowlyzhang

fbshipit-source-id: c795b1b7ec142e09e53f2ed3461cf719833cb37a
2024-03-15 15:37:37 -07:00

255 lines
8.4 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <string>
#include <vector>
#include "db/column_family.h"
#include "db/log_writer.h"
#include "db/version_set.h"
#include "util/autovector.h"
namespace ROCKSDB_NAMESPACE {
class MemTable;
struct SuperVersion;
struct SuperVersionContext {
struct WriteStallNotification {
WriteStallInfo write_stall_info;
const ImmutableOptions* immutable_options;
};
autovector<SuperVersion*> superversions_to_free;
#ifndef ROCKSDB_DISABLE_STALL_NOTIFICATION
autovector<WriteStallNotification> write_stall_notifications;
#endif
std::unique_ptr<SuperVersion>
new_superversion; // if nullptr no new superversion
// If not nullptr, a new seqno to time mapping is available to be installed.
// Otherwise, make a shared copy of the one in the existing SuperVersion and
// carry it over to the new SuperVersion. This is moved to the SuperVersion
// during installation.
std::shared_ptr<const SeqnoToTimeMapping> new_seqno_to_time_mapping{nullptr};
explicit SuperVersionContext(bool create_superversion = false)
: new_superversion(create_superversion ? new SuperVersion() : nullptr) {}
explicit SuperVersionContext(SuperVersionContext&& other) noexcept
: superversions_to_free(std::move(other.superversions_to_free)),
#ifndef ROCKSDB_DISABLE_STALL_NOTIFICATION
write_stall_notifications(std::move(other.write_stall_notifications)),
#endif
new_superversion(std::move(other.new_superversion)) {
}
// No copies
SuperVersionContext(const SuperVersionContext& other) = delete;
void operator=(const SuperVersionContext& other) = delete;
void NewSuperVersion() {
new_superversion = std::unique_ptr<SuperVersion>(new SuperVersion());
}
inline bool HaveSomethingToDelete() const {
#ifndef ROCKSDB_DISABLE_STALL_NOTIFICATION
return !superversions_to_free.empty() || !write_stall_notifications.empty();
#else
return !superversions_to_free.empty();
#endif
}
void PushWriteStallNotification(WriteStallCondition old_cond,
WriteStallCondition new_cond,
const std::string& name,
const ImmutableOptions* ioptions) {
#if !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
WriteStallNotification notif;
notif.write_stall_info.cf_name = name;
notif.write_stall_info.condition.prev = old_cond;
notif.write_stall_info.condition.cur = new_cond;
notif.immutable_options = ioptions;
write_stall_notifications.push_back(notif);
#else
(void)old_cond;
(void)new_cond;
(void)name;
(void)ioptions;
#endif // !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
}
void Clean() {
#if !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
// notify listeners on changed write stall conditions
for (auto& notif : write_stall_notifications) {
for (auto& listener : notif.immutable_options->listeners) {
listener->OnStallConditionsChanged(notif.write_stall_info);
}
}
write_stall_notifications.clear();
#endif
// free superversions
for (auto s : superversions_to_free) {
delete s;
}
superversions_to_free.clear();
}
~SuperVersionContext() {
#ifndef ROCKSDB_DISABLE_STALL_NOTIFICATION
assert(write_stall_notifications.empty());
#endif
assert(superversions_to_free.empty());
}
};
struct JobContext {
inline bool HaveSomethingToDelete() const {
return !(full_scan_candidate_files.empty() && sst_delete_files.empty() &&
blob_delete_files.empty() && log_delete_files.empty() &&
manifest_delete_files.empty());
}
inline bool HaveSomethingToClean() const {
bool sv_have_sth = false;
for (const auto& sv_ctx : superversion_contexts) {
if (sv_ctx.HaveSomethingToDelete()) {
sv_have_sth = true;
break;
}
}
return memtables_to_free.size() > 0 || logs_to_free.size() > 0 ||
job_snapshot != nullptr || sv_have_sth;
}
SequenceNumber GetJobSnapshotSequence() const {
if (job_snapshot) {
assert(job_snapshot->snapshot());
return job_snapshot->snapshot()->GetSequenceNumber();
}
return kMaxSequenceNumber;
}
// Structure to store information for candidate files to delete.
struct CandidateFileInfo {
std::string file_name;
std::string file_path;
CandidateFileInfo(std::string name, std::string path)
: file_name(std::move(name)), file_path(std::move(path)) {}
bool operator==(const CandidateFileInfo& other) const {
return file_name == other.file_name && file_path == other.file_path;
}
};
// Unique job id
int job_id;
// a list of all files that we'll consider deleting
// (every once in a while this is filled up with all files
// in the DB directory)
// (filled only if we're doing full scan)
std::vector<CandidateFileInfo> full_scan_candidate_files;
// the list of all live sst files that cannot be deleted
std::vector<uint64_t> sst_live;
// the list of sst files that we need to delete
std::vector<ObsoleteFileInfo> sst_delete_files;
// the list of all live blob files that cannot be deleted
std::vector<uint64_t> blob_live;
// the list of blob files that we need to delete
std::vector<ObsoleteBlobFileInfo> blob_delete_files;
// a list of log files that we need to delete
std::vector<uint64_t> log_delete_files;
// a list of log files that we need to preserve during full purge since they
// will be reused later
std::vector<uint64_t> log_recycle_files;
// Files quarantined from deletion. This list contains file numbers for files
// that are in an ambiguous states. This includes newly generated SST files
// and blob files from flush and compaction job whose VersionEdits' persist
// state in Manifest are unclear. An old manifest file whose immediately
// following new manifest file's CURRENT file creation is in an unclear state.
// WAL logs don't have this premature deletion risk since
// min_log_number_to_keep is only updated after successful manifest commits.
// So this data structure doesn't track log files.
autovector<uint64_t> files_to_quarantine;
// a list of manifest files that we need to delete
std::vector<std::string> manifest_delete_files;
// a list of memtables to be free
autovector<MemTable*> memtables_to_free;
// contexts for installing superversions for multiple column families
std::vector<SuperVersionContext> superversion_contexts;
autovector<log::Writer*> logs_to_free;
// the current manifest_file_number, log_number and prev_log_number
// that corresponds to the set of files in 'live'.
uint64_t manifest_file_number;
uint64_t pending_manifest_file_number;
uint64_t log_number;
uint64_t prev_log_number;
uint64_t min_pending_output = 0;
uint64_t prev_total_log_size = 0;
size_t num_alive_log_files = 0;
uint64_t size_log_to_delete = 0;
// Snapshot taken before flush/compaction job.
std::unique_ptr<ManagedSnapshot> job_snapshot;
explicit JobContext(int _job_id, bool create_superversion = false) {
job_id = _job_id;
manifest_file_number = 0;
pending_manifest_file_number = 0;
log_number = 0;
prev_log_number = 0;
superversion_contexts.emplace_back(
SuperVersionContext(create_superversion));
}
// For non-empty JobContext Clean() has to be called at least once before
// before destruction (see asserts in ~JobContext()). Should be called with
// unlocked DB mutex. Destructor doesn't call Clean() to avoid accidentally
// doing potentially slow Clean() with locked DB mutex.
void Clean() {
// free superversions
for (auto& sv_context : superversion_contexts) {
sv_context.Clean();
}
// free pending memtables
for (auto m : memtables_to_free) {
delete m;
}
for (auto l : logs_to_free) {
delete l;
}
memtables_to_free.clear();
logs_to_free.clear();
job_snapshot.reset();
}
~JobContext() {
assert(memtables_to_free.size() == 0);
assert(logs_to_free.size() == 0);
}
};
} // namespace ROCKSDB_NAMESPACE