rocksdb/util/timer.h
Yanqin Jin f15414b656 Timer should run scheduled function without mutex (#7228)
Summary:
Timer (defined in timer.h) schedules and runs user-specified fuctions
regularly. Current implementation holds the mutex while running user
function, which will lead to contention and waiting.
To fix, Timer::Run releases mutex before running user function, and
re-acquires it afterwards.
This fix will impact how we can cancel a task. If the task is running,
it is not holding the mutex. The thread calling Cancel() should wait
until the current task finishes.

Test Plan (devserver):
make check
COMPILE_WITH_ASAN=1 make check

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7228

Reviewed By: jay-zhuang

Differential Revision: D23065487

Pulled By: riversand963

fbshipit-source-id: 07cb59741f506d3eb875c8ab90f73437568d3724
2020-08-11 22:37:39 -07:00

262 lines
6.9 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#pragma once
#include <functional>
#include <memory>
#include <queue>
#include <unordered_map>
#include <utility>
#include <vector>
#include "monitoring/instrumented_mutex.h"
#include "rocksdb/env.h"
#include "test_util/sync_point.h"
#include "util/mutexlock.h"
namespace ROCKSDB_NAMESPACE {
// A Timer class to handle repeated work.
//
// A single timer instance can handle multiple functions via a single thread.
// It is better to leave long running work to a dedicated thread pool.
//
// Timer can be started by calling `Start()`, and ended by calling `Shutdown()`.
// Work (in terms of a `void function`) can be scheduled by calling `Add` with
// a unique function name and de-scheduled by calling `Cancel`.
// Many functions can be added.
//
// Impl Details:
// A heap is used to keep track of when the next timer goes off.
// A map from a function name to the function keeps track of all the functions.
class Timer {
public:
explicit Timer(Env* env)
: env_(env),
mutex_(env),
cond_var_(&mutex_),
running_(false),
executing_task_(false) {}
~Timer() {}
// repeat_every_us == 0 means do not repeat
void Add(std::function<void()> fn,
const std::string& fn_name,
uint64_t start_after_us,
uint64_t repeat_every_us) {
std::unique_ptr<FunctionInfo> fn_info(new FunctionInfo(
std::move(fn),
fn_name,
env_->NowMicros() + start_after_us,
repeat_every_us));
InstrumentedMutexLock l(&mutex_);
heap_.push(fn_info.get());
map_.emplace(std::make_pair(fn_name, std::move(fn_info)));
cond_var_.Signal();
}
void Cancel(const std::string& fn_name) {
InstrumentedMutexLock l(&mutex_);
// Mark the function with fn_name as invalid so that it will not be
// requeued.
auto it = map_.find(fn_name);
if (it != map_.end() && it->second) {
it->second->Cancel();
}
// If the currently running function is fn_name, then we need to wait
// until it finishes before returning to caller.
while (!heap_.empty() && executing_task_) {
FunctionInfo* func_info = heap_.top();
assert(func_info);
if (func_info->name == fn_name) {
WaitForTaskCompleteIfNecessary();
} else {
break;
}
}
}
void CancelAll() {
InstrumentedMutexLock l(&mutex_);
CancelAllWithLock();
}
// Start the Timer
bool Start() {
InstrumentedMutexLock l(&mutex_);
if (running_) {
return false;
}
running_ = true;
thread_.reset(new port::Thread(&Timer::Run, this));
return true;
}
// Shutdown the Timer
bool Shutdown() {
{
InstrumentedMutexLock l(&mutex_);
if (!running_) {
return false;
}
running_ = false;
CancelAllWithLock();
cond_var_.SignalAll();
}
if (thread_) {
thread_->join();
}
return true;
}
private:
void Run() {
InstrumentedMutexLock l(&mutex_);
while (running_) {
if (heap_.empty()) {
// wait
TEST_SYNC_POINT("Timer::Run::Waiting");
cond_var_.Wait();
continue;
}
FunctionInfo* current_fn = heap_.top();
assert(current_fn);
if (!current_fn->IsValid()) {
heap_.pop();
map_.erase(current_fn->name);
continue;
}
if (current_fn->next_run_time_us <= env_->NowMicros()) {
executing_task_ = true;
mutex_.Unlock();
// Execute the work
current_fn->fn();
mutex_.Lock();
executing_task_ = false;
cond_var_.SignalAll();
// Remove the work from the heap once it is done executing.
// Note that we are just removing the pointer from the heap. Its
// memory is still managed in the map (as it holds a unique ptr).
// So current_fn is still a valid ptr.
heap_.pop();
// current_fn may be cancelled already.
if (current_fn->IsValid() && current_fn->repeat_every_us > 0) {
assert(running_);
current_fn->next_run_time_us = env_->NowMicros() +
current_fn->repeat_every_us;
// Schedule new work into the heap with new time.
heap_.push(current_fn);
}
} else {
cond_var_.TimedWait(current_fn->next_run_time_us);
}
}
}
void CancelAllWithLock() {
mutex_.AssertHeld();
if (map_.empty() && heap_.empty()) {
return;
}
// With mutex_ held, set all tasks to invalid so that they will not be
// re-queued.
for (auto& elem : map_) {
auto& func_info = elem.second;
assert(func_info);
func_info->Cancel();
}
// WaitForTaskCompleteIfNecessary() may release mutex_
WaitForTaskCompleteIfNecessary();
while (!heap_.empty()) {
heap_.pop();
}
map_.clear();
}
// A wrapper around std::function to keep track when it should run next
// and at what frequency.
struct FunctionInfo {
// the actual work
std::function<void()> fn;
// name of the function
std::string name;
// when the function should run next
uint64_t next_run_time_us;
// repeat interval
uint64_t repeat_every_us;
// controls whether this function is valid.
// A function is valid upon construction and until someone explicitly
// calls `Cancel()`.
bool valid;
FunctionInfo(std::function<void()>&& _fn, const std::string& _name,
const uint64_t _next_run_time_us, uint64_t _repeat_every_us)
: fn(std::move(_fn)),
name(_name),
next_run_time_us(_next_run_time_us),
repeat_every_us(_repeat_every_us),
valid(true) {}
void Cancel() {
valid = false;
}
bool IsValid() const { return valid; }
};
void WaitForTaskCompleteIfNecessary() {
mutex_.AssertHeld();
while (executing_task_) {
TEST_SYNC_POINT("Timer::WaitForTaskCompleteIfNecessary:TaskExecuting");
cond_var_.Wait();
}
}
struct RunTimeOrder {
bool operator()(const FunctionInfo* f1,
const FunctionInfo* f2) {
return f1->next_run_time_us > f2->next_run_time_us;
}
};
Env* const env_;
// This mutex controls both the heap_ and the map_. It needs to be held for
// making any changes in them.
InstrumentedMutex mutex_;
InstrumentedCondVar cond_var_;
std::unique_ptr<port::Thread> thread_;
bool running_;
bool executing_task_;
std::priority_queue<FunctionInfo*,
std::vector<FunctionInfo*>,
RunTimeOrder> heap_;
// In addition to providing a mapping from a function name to a function,
// it is also responsible for memory management.
std::unordered_map<std::string, std::unique_ptr<FunctionInfo>> map_;
};
} // namespace ROCKSDB_NAMESPACE