rocksdb/utilities/transactions/transaction_test.cc

7043 lines
202 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "utilities/transactions/transaction_test.h"
#include <algorithm>
#include <functional>
#include <string>
#include <thread>
#include "db/db_impl/db_impl.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/utilities/transaction.h"
#include "rocksdb/utilities/transaction_db.h"
#include "table/mock_table.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "test_util/transaction_test_util.h"
#include "util/random.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
#include "utilities/merge_operators/string_append/stringappend.h"
#include "utilities/transactions/pessimistic_transaction_db.h"
namespace ROCKSDB_NAMESPACE {
INSTANTIATE_TEST_CASE_P(
DBAsBaseDB, TransactionTest,
::testing::Values(
std::make_tuple(false, false, WRITE_COMMITTED, kOrderedWrite),
std::make_tuple(false, true, WRITE_COMMITTED, kOrderedWrite),
std::make_tuple(false, false, WRITE_PREPARED, kOrderedWrite),
std::make_tuple(false, true, WRITE_PREPARED, kOrderedWrite),
std::make_tuple(false, true, WRITE_PREPARED, kUnorderedWrite),
std::make_tuple(false, false, WRITE_UNPREPARED, kOrderedWrite),
std::make_tuple(false, true, WRITE_UNPREPARED, kOrderedWrite)));
INSTANTIATE_TEST_CASE_P(
DBAsBaseDB, TransactionStressTest,
::testing::Values(
std::make_tuple(false, false, WRITE_COMMITTED, kOrderedWrite),
std::make_tuple(false, true, WRITE_COMMITTED, kOrderedWrite),
std::make_tuple(false, false, WRITE_PREPARED, kOrderedWrite),
std::make_tuple(false, true, WRITE_PREPARED, kOrderedWrite),
std::make_tuple(false, true, WRITE_PREPARED, kUnorderedWrite),
std::make_tuple(false, false, WRITE_UNPREPARED, kOrderedWrite),
std::make_tuple(false, true, WRITE_UNPREPARED, kOrderedWrite)));
INSTANTIATE_TEST_CASE_P(
StackableDBAsBaseDB, TransactionTest,
::testing::Values(
std::make_tuple(true, true, WRITE_COMMITTED, kOrderedWrite),
std::make_tuple(true, true, WRITE_PREPARED, kOrderedWrite),
std::make_tuple(true, true, WRITE_UNPREPARED, kOrderedWrite)));
// MySQLStyleTransactionTest takes far too long for valgrind to run. Only do it
// in full mode (`ROCKSDB_FULL_VALGRIND_RUN` compiler flag is set).
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
INSTANTIATE_TEST_CASE_P(
MySQLStyleTransactionTest, MySQLStyleTransactionTest,
::testing::Values(
std::make_tuple(false, false, WRITE_COMMITTED, kOrderedWrite, false),
std::make_tuple(false, true, WRITE_COMMITTED, kOrderedWrite, false),
std::make_tuple(false, false, WRITE_PREPARED, kOrderedWrite, false),
std::make_tuple(false, false, WRITE_PREPARED, kOrderedWrite, true),
std::make_tuple(false, true, WRITE_PREPARED, kOrderedWrite, false),
std::make_tuple(false, true, WRITE_PREPARED, kOrderedWrite, true),
std::make_tuple(false, false, WRITE_UNPREPARED, kOrderedWrite, false),
std::make_tuple(false, false, WRITE_UNPREPARED, kOrderedWrite, true),
std::make_tuple(false, true, WRITE_UNPREPARED, kOrderedWrite, false),
std::make_tuple(false, true, WRITE_UNPREPARED, kOrderedWrite, true),
std::make_tuple(false, true, WRITE_PREPARED, kUnorderedWrite, false),
std::make_tuple(false, true, WRITE_PREPARED, kUnorderedWrite, true)));
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionTest, TestUpperBoundUponDeletion) {
// Reproduction from the original bug report, 11606
// This test does writes without snapshot validation, and then tries to create
// iterator later, which is unsupported in write unprepared.
if (txn_db_options.write_policy == WRITE_UNPREPARED) {
return;
}
WriteOptions write_options;
ReadOptions read_options;
Status s;
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
// Write some keys in a txn
s = txn->Put("2", "2");
ASSERT_OK(s);
s = txn->Put("1", "1");
ASSERT_OK(s);
s = txn->Delete("2");
ASSERT_OK(s);
read_options.iterate_upper_bound = new Slice("2", 1);
Iterator* iter = txn->GetIterator(read_options);
ASSERT_OK(iter->status());
iter->SeekToFirst();
while (iter->Valid()) {
ASSERT_EQ("1", iter->key().ToString());
iter->Next();
}
delete iter;
delete txn;
delete read_options.iterate_upper_bound;
}
TEST_P(TransactionTest, TestTxnRespectBoundsInReadOption) {
if (txn_db_options.write_policy == WRITE_UNPREPARED) {
return;
}
WriteOptions write_options;
{
std::unique_ptr<Transaction> txn(db->BeginTransaction(write_options));
// writes that should be observed by base_iterator_ in BaseDeltaIterator
ASSERT_OK(txn->Put("a", "aa"));
ASSERT_OK(txn->Put("c", "cc"));
ASSERT_OK(txn->Put("e", "ee"));
ASSERT_OK(txn->Put("f", "ff"));
ASSERT_TRUE(txn->Commit().ok());
}
std::unique_ptr<Transaction> txn2(db->BeginTransaction(write_options));
// writes that should be observed by delta_iterator_ in BaseDeltaIterator
ASSERT_OK(txn2->Put("b", "bb"));
ASSERT_OK(txn2->Put("c", "cc"));
ASSERT_OK(txn2->Put("f", "ff"));
// delta_iterator_: b c f
// base_iterator_: a c e f
//
// given range [c, f)
// assert only {c, e} can be seen
ReadOptions ro;
ro.iterate_lower_bound = new Slice("c");
ro.iterate_upper_bound = new Slice("f");
std::unique_ptr<Iterator> iter(txn2->GetIterator(ro));
iter->Seek(Slice("b"));
ASSERT_EQ("c", iter->key()); // lower bound capping
iter->Seek(Slice("f"));
ASSERT_FALSE(iter->Valid()); // out of bound
iter->SeekForPrev(Slice("f"));
ASSERT_EQ("e", iter->key()); // upper bound capping
iter->SeekForPrev(Slice("b"));
ASSERT_FALSE(iter->Valid()); // out of bound
// move to the lower bound
iter->SeekToFirst();
ASSERT_EQ("c", iter->key());
iter->Prev();
ASSERT_FALSE(iter->Valid());
// move to the upper bound
iter->SeekToLast();
ASSERT_EQ("e", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
// reversely walk to the beginning
iter->SeekToLast();
ASSERT_EQ("e", iter->key());
iter->Prev();
ASSERT_EQ("c", iter->key());
iter->Prev();
ASSERT_FALSE(iter->Valid());
delete ro.iterate_lower_bound;
delete ro.iterate_upper_bound;
}
TEST_P(TransactionTest, DoubleEmptyWrite) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
WriteBatch batch;
ASSERT_OK(db->Write(write_options, &batch));
ASSERT_OK(db->Write(write_options, &batch));
// Also test committing empty transactions in 2PC
TransactionOptions txn_options;
Transaction* txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Prepare());
ASSERT_OK(txn0->Commit());
delete txn0;
// Also test that it works during recovery
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid2"));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0a")));
ASSERT_OK(txn0->Prepare());
delete txn0;
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete());
assert(db != nullptr);
txn0 = db->GetTransactionByName("xid2");
ASSERT_OK(txn0->Commit());
delete txn0;
}
TEST_P(TransactionTest, SuccessTest) {
ASSERT_OK(db->ResetStats());
WriteOptions write_options;
ReadOptions read_options;
std::string value;
ASSERT_OK(db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = db->BeginTransaction(write_options, TransactionOptions());
ASSERT_TRUE(txn);
ASSERT_EQ(0, txn->GetNumPuts());
ASSERT_LE(0, txn->GetID());
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Put(Slice("foo"), Slice("bar2")));
ASSERT_EQ(1, txn->GetNumPuts());
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn->Commit());
ASSERT_OK(db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
// Test the basic API of the pinnable slice overload of GetForUpdate()
TEST_P(TransactionTest, SuccessTestPinnable) {
ASSERT_OK(db->ResetStats());
WriteOptions write_options;
ReadOptions read_options;
PinnableSlice pinnable_val;
ASSERT_OK(db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = db->BeginTransaction(write_options, TransactionOptions());
ASSERT_TRUE(txn);
ASSERT_EQ(0, txn->GetNumPuts());
ASSERT_LE(0, txn->GetID());
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &pinnable_val));
ASSERT_EQ(*pinnable_val.GetSelf(), std::string("bar"));
ASSERT_OK(txn->Put(Slice("foo"), Slice("bar2")));
ASSERT_EQ(1, txn->GetNumPuts());
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &pinnable_val));
ASSERT_EQ(*pinnable_val.GetSelf(), std::string("bar2"));
ASSERT_OK(txn->Commit());
ASSERT_OK(
db->Get(read_options, db->DefaultColumnFamily(), "foo", &pinnable_val));
ASSERT_EQ(*pinnable_val.GetSelf(), std::string("bar2"));
delete txn;
}
TEST_P(TransactionTest, SwitchMemtableDuringPrepareAndCommit_WC) {
const TxnDBWritePolicy write_policy = std::get<2>(GetParam());
if (write_policy != TxnDBWritePolicy::WRITE_COMMITTED) {
ROCKSDB_GTEST_BYPASS("Test applies to write-committed only");
return;
}
ASSERT_OK(db->Put(WriteOptions(), "key0", "value"));
TransactionOptions txn_opts;
txn_opts.use_only_the_last_commit_time_batch_for_recovery = true;
Transaction* txn = db->BeginTransaction(WriteOptions(), txn_opts);
assert(txn);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"FlushJob::WriteLevel0Table", [&](void* arg) {
// db mutex not held.
auto* mems = static_cast<autovector<MemTable*>*>(arg);
assert(mems);
ASSERT_EQ(1, mems->size());
auto* ctwb = txn->GetCommitTimeWriteBatch();
ASSERT_OK(ctwb->Put("gtid", "123"));
ASSERT_OK(txn->Commit());
delete txn;
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(txn->Put("key1", "value"));
ASSERT_OK(txn->SetName("txn1"));
ASSERT_OK(txn->Prepare());
auto dbimpl = static_cast_with_check<DBImpl>(db->GetRootDB());
ASSERT_OK(dbimpl->TEST_SwitchMemtable(nullptr));
ASSERT_OK(dbimpl->TEST_FlushMemTable(
/*wait=*/false, /*allow_write_stall=*/true, /*cfh=*/nullptr));
ASSERT_OK(dbimpl->TEST_WaitForFlushMemTable());
{
std::string value;
ASSERT_OK(db->Get(ReadOptions(), "key1", &value));
ASSERT_EQ("value", value);
}
ASSERT_OK(dbimpl->SyncWAL());
delete db;
db = nullptr;
Status s;
if (use_stackable_db_ == false) {
s = TransactionDB::Open(options, txn_db_options, dbname, &db);
} else {
s = OpenWithStackableDB();
}
ASSERT_OK(s);
assert(db);
{
std::string value;
ASSERT_OK(db->Get(ReadOptions(), "gtid", &value));
ASSERT_EQ("123", value);
ASSERT_OK(db->Get(ReadOptions(), "key1", &value));
ASSERT_EQ("value", value);
}
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
// The test clarifies the contract of do_validate and assume_tracked
// in GetForUpdate and Put/Merge/Delete
TEST_P(TransactionTest, AssumeExclusiveTracked) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
TransactionOptions txn_options;
txn_options.lock_timeout = 1;
const bool EXCLUSIVE = true;
const bool DO_VALIDATE = true;
const bool ASSUME_LOCKED = true;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn);
txn->SetSnapshot();
// commit a value after the snapshot is taken
ASSERT_OK(db->Put(write_options, Slice("foo"), Slice("bar")));
// By default write should fail to the commit after our snapshot
s = txn->GetForUpdate(read_options, "foo", &value, EXCLUSIVE);
ASSERT_TRUE(s.IsBusy());
// But the user could direct the db to skip validating the snapshot. The read
// value then should be the most recently committed
ASSERT_OK(
txn->GetForUpdate(read_options, "foo", &value, EXCLUSIVE, !DO_VALIDATE));
ASSERT_EQ(value, "bar");
// Although ValidateSnapshot is skipped the key must have still got locked
s = db->Put(write_options, Slice("foo"), Slice("bar"));
ASSERT_TRUE(s.IsTimedOut());
// By default the write operations should fail due to the commit after the
// snapshot
s = txn->Put(Slice("foo"), Slice("bar1"));
ASSERT_TRUE(s.IsBusy());
s = txn->Put(db->DefaultColumnFamily(), Slice("foo"), Slice("bar1"),
!ASSUME_LOCKED);
ASSERT_TRUE(s.IsBusy());
// But the user could direct the db that it already assumes exclusive lock on
// the key due to the previous GetForUpdate call.
ASSERT_OK(txn->Put(db->DefaultColumnFamily(), Slice("foo"), Slice("bar1"),
ASSUME_LOCKED));
ASSERT_OK(txn->Merge(db->DefaultColumnFamily(), Slice("foo"), Slice("bar2"),
ASSUME_LOCKED));
ASSERT_OK(
txn->Delete(db->DefaultColumnFamily(), Slice("foo"), ASSUME_LOCKED));
ASSERT_OK(txn->SingleDelete(db->DefaultColumnFamily(), Slice("foo"),
ASSUME_LOCKED));
ASSERT_OK(txn->Rollback());
delete txn;
}
// This test clarifies the contract of ValidateSnapshot
TEST_P(TransactionTest, ValidateSnapshotTest) {
for (bool with_flush : {true}) {
for (bool with_2pc : {true}) {
ASSERT_OK(ReOpen());
WriteOptions write_options;
ReadOptions read_options;
std::string value;
assert(db != nullptr);
Transaction* txn1 =
db->BeginTransaction(write_options, TransactionOptions());
ASSERT_TRUE(txn1);
ASSERT_OK(txn1->Put(Slice("foo"), Slice("bar1")));
if (with_2pc) {
ASSERT_OK(txn1->SetName("xid1"));
ASSERT_OK(txn1->Prepare());
}
if (with_flush) {
auto db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
// Make sure the flushed memtable is not kept in memory
int max_memtable_in_history =
std::max(
options.max_write_buffer_number,
static_cast<int>(options.max_write_buffer_size_to_maintain) /
static_cast<int>(options.write_buffer_size)) +
1;
for (int i = 0; i < max_memtable_in_history; i++) {
ASSERT_OK(db->Put(write_options, Slice("key"), Slice("value")));
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
}
}
Transaction* txn2 =
db->BeginTransaction(write_options, TransactionOptions());
ASSERT_TRUE(txn2);
txn2->SetSnapshot();
ASSERT_OK(txn1->Commit());
delete txn1;
auto pes_txn2 = dynamic_cast<PessimisticTransaction*>(txn2);
// Test the simple case where the key is not tracked yet
auto trakced_seq = kMaxSequenceNumber;
auto s = pes_txn2->ValidateSnapshot(db->DefaultColumnFamily(), "foo",
&trakced_seq);
ASSERT_TRUE(s.IsBusy());
delete txn2;
}
}
}
TEST_P(TransactionTest, WaitingTxn) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
txn_options.lock_timeout = 1;
s = db->Put(write_options, Slice("foo"), Slice("bar"));
ASSERT_OK(s);
/* create second cf */
ColumnFamilyHandle* cfa;
ColumnFamilyOptions cf_options;
s = db->CreateColumnFamily(cf_options, "CFA", &cfa);
ASSERT_OK(s);
s = db->Put(write_options, cfa, Slice("foo"), Slice("bar"));
ASSERT_OK(s);
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
TransactionID id1 = txn1->GetID();
ASSERT_TRUE(txn1);
ASSERT_TRUE(txn2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PointLockManager::AcquireWithTimeout:WaitingTxn", [&](void* /*arg*/) {
std::string key;
uint32_t cf_id;
std::vector<TransactionID> wait = txn2->GetWaitingTxns(&cf_id, &key);
ASSERT_EQ(key, "foo");
ASSERT_EQ(wait.size(), 1);
ASSERT_EQ(wait[0], id1);
ASSERT_EQ(cf_id, 0U);
});
get_perf_context()->Reset();
// lock key in default cf
s = txn1->GetForUpdate(read_options, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
ASSERT_EQ(get_perf_context()->key_lock_wait_count, 0);
// lock key in cfa
s = txn1->GetForUpdate(read_options, cfa, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
ASSERT_EQ(get_perf_context()->key_lock_wait_count, 0);
auto lock_data = db->GetLockStatusData();
// Locked keys exist in both column family.
ASSERT_EQ(lock_data.size(), 2);
auto cf_iterator = lock_data.begin();
// The iterator points to an unordered_multimap
// thus the test can not assume any particular order.
// Column family is 1 or 0 (cfa).
if (cf_iterator->first != 1 && cf_iterator->first != 0) {
FAIL();
}
// The locked key is "foo" and is locked by txn1
ASSERT_EQ(cf_iterator->second.key, "foo");
ASSERT_EQ(cf_iterator->second.ids.size(), 1);
ASSERT_EQ(cf_iterator->second.ids[0], txn1->GetID());
cf_iterator++;
// Column family is 0 (default) or 1.
if (cf_iterator->first != 1 && cf_iterator->first != 0) {
FAIL();
}
// The locked key is "foo" and is locked by txn1
ASSERT_EQ(cf_iterator->second.key, "foo");
ASSERT_EQ(cf_iterator->second.ids.size(), 1);
ASSERT_EQ(cf_iterator->second.ids[0], txn1->GetID());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
s = txn2->GetForUpdate(read_options, "foo", &value);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
ASSERT_EQ(get_perf_context()->key_lock_wait_count, 1);
ASSERT_GE(get_perf_context()->key_lock_wait_time, 0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
delete cfa;
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, SharedLocks) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
Status s;
txn_options.lock_timeout = 1;
s = db->Put(write_options, Slice("foo"), Slice("bar"));
ASSERT_OK(s);
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
Transaction* txn3 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
ASSERT_TRUE(txn2);
ASSERT_TRUE(txn3);
// Test shared access between txns
s = txn1->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn3->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
auto lock_data = db->GetLockStatusData();
ASSERT_EQ(lock_data.size(), 1);
auto cf_iterator = lock_data.begin();
ASSERT_EQ(cf_iterator->second.key, "foo");
// We compare whether the set of txns locking this key is the same. To do
// this, we need to sort both vectors so that the comparison is done
// correctly.
std::vector<TransactionID> expected_txns = {txn1->GetID(), txn2->GetID(),
txn3->GetID()};
std::vector<TransactionID> lock_txns = cf_iterator->second.ids;
ASSERT_EQ(expected_txns, lock_txns);
ASSERT_FALSE(cf_iterator->second.exclusive);
ASSERT_OK(txn1->Rollback());
ASSERT_OK(txn2->Rollback());
ASSERT_OK(txn3->Rollback());
// Test txn1 and txn2 sharing a lock and txn3 trying to obtain it.
s = txn1->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn3->GetForUpdate(read_options, "foo", (std::string*)nullptr);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
txn1->UndoGetForUpdate("foo");
s = txn3->GetForUpdate(read_options, "foo", (std::string*)nullptr);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
txn2->UndoGetForUpdate("foo");
s = txn3->GetForUpdate(read_options, "foo", (std::string*)nullptr);
ASSERT_OK(s);
ASSERT_OK(txn1->Rollback());
ASSERT_OK(txn2->Rollback());
ASSERT_OK(txn3->Rollback());
// Test txn1 and txn2 sharing a lock and txn2 trying to upgrade lock.
s = txn1->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
txn1->UndoGetForUpdate("foo");
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr);
ASSERT_OK(s);
ASSERT_OK(txn1->Rollback());
ASSERT_OK(txn2->Rollback());
// Test txn1 trying to downgrade its lock.
s = txn1->GetForUpdate(read_options, "foo", (std::string*)nullptr,
true /* exclusive */);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
// Should still fail after "downgrading".
s = txn1->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
ASSERT_OK(txn1->Rollback());
ASSERT_OK(txn2->Rollback());
// Test txn1 holding an exclusive lock and txn2 trying to obtain shared
// access.
s = txn1->GetForUpdate(read_options, "foo", (std::string*)nullptr);
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
txn1->UndoGetForUpdate("foo");
s = txn2->GetForUpdate(read_options, "foo", (std::string*)nullptr,
false /* exclusive */);
ASSERT_OK(s);
delete txn1;
delete txn2;
delete txn3;
}
TEST_P(TransactionTest, DeadlockCycleShared) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
txn_options.lock_timeout = 1000000;
txn_options.deadlock_detect = true;
// Set up a wait for chain like this:
//
// Tn -> T(n*2)
// Tn -> T(n*2 + 1)
//
// So we have:
// T1 -> T2 -> T4 ...
// | |> T5 ...
// |> T3 -> T6 ...
// |> T7 ...
// up to T31, then T[16 - 31] -> T1.
// Note that Tn holds lock on floor(n / 2).
std::vector<Transaction*> txns(31);
for (uint32_t i = 0; i < 31; i++) {
txns[i] = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txns[i]);
auto s =
txns[i]->GetForUpdate(read_options, std::to_string((i + 1) / 2),
(std::string*)nullptr, false /* exclusive */);
ASSERT_OK(s);
}
std::atomic<uint32_t> checkpoints(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PointLockManager::AcquireWithTimeout:WaitingTxn",
[&](void* /*arg*/) { checkpoints.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// We want the leaf transactions to block and hold everyone back.
std::vector<port::Thread> threads;
for (uint32_t i = 0; i < 15; i++) {
std::function<void()> blocking_thread = [&, i] {
auto s =
txns[i]->GetForUpdate(read_options, std::to_string(i + 1),
(std::string*)nullptr, true /* exclusive */);
ASSERT_OK(s);
ASSERT_OK(txns[i]->Rollback());
delete txns[i];
};
threads.emplace_back(blocking_thread);
}
// Wait until all threads are waiting on each other.
while (checkpoints.load() != 15) {
/* sleep override */
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
// Complete the cycle T[16 - 31] -> T1
for (uint32_t i = 15; i < 31; i++) {
auto s = txns[i]->GetForUpdate(read_options, "0", (std::string*)nullptr,
true /* exclusive */);
ASSERT_TRUE(s.IsDeadlock());
// Calculate next buffer len, plateau at 5 when 5 records are inserted.
const uint32_t curr_dlock_buffer_len_ =
(i - 14 > kInitialMaxDeadlocks) ? kInitialMaxDeadlocks : (i - 14);
auto dlock_buffer = db->GetDeadlockInfoBuffer();
ASSERT_EQ(dlock_buffer.size(), curr_dlock_buffer_len_);
auto dlock_entry = dlock_buffer[0].path;
ASSERT_EQ(dlock_entry.size(), kInitialMaxDeadlocks);
int64_t pre_deadlock_time = dlock_buffer[0].deadlock_time;
int64_t cur_deadlock_time = 0;
for (auto const& dl_path_rec : dlock_buffer) {
cur_deadlock_time = dl_path_rec.deadlock_time;
ASSERT_NE(cur_deadlock_time, 0);
ASSERT_TRUE(cur_deadlock_time <= pre_deadlock_time);
pre_deadlock_time = cur_deadlock_time;
}
int64_t curr_waiting_key = 0;
// Offset of each txn id from the root of the shared dlock tree's txn id.
int64_t offset_root = dlock_entry[0].m_txn_id - 1;
// Offset of the final entry in the dlock path from the root's txn id.
TransactionID leaf_id =
dlock_entry[dlock_entry.size() - 1].m_txn_id - offset_root;
for (auto it = dlock_entry.rbegin(); it != dlock_entry.rend(); ++it) {
auto dl_node = *it;
ASSERT_EQ(dl_node.m_txn_id, offset_root + leaf_id);
ASSERT_EQ(dl_node.m_cf_id, 0U);
ASSERT_EQ(dl_node.m_waiting_key, std::to_string(curr_waiting_key));
ASSERT_EQ(dl_node.m_exclusive, true);
if (curr_waiting_key == 0) {
curr_waiting_key = leaf_id;
}
curr_waiting_key /= 2;
leaf_id /= 2;
}
}
// Rollback the leaf transaction.
for (uint32_t i = 15; i < 31; i++) {
ASSERT_OK(txns[i]->Rollback());
delete txns[i];
}
for (auto& t : threads) {
t.join();
}
// Downsize the buffer and verify the 3 latest deadlocks are preserved.
auto dlock_buffer_before_resize = db->GetDeadlockInfoBuffer();
db->SetDeadlockInfoBufferSize(3);
auto dlock_buffer_after_resize = db->GetDeadlockInfoBuffer();
ASSERT_EQ(dlock_buffer_after_resize.size(), 3);
for (uint32_t i = 0; i < dlock_buffer_after_resize.size(); i++) {
for (uint32_t j = 0; j < dlock_buffer_after_resize[i].path.size(); j++) {
ASSERT_EQ(dlock_buffer_after_resize[i].path[j].m_txn_id,
dlock_buffer_before_resize[i].path[j].m_txn_id);
}
}
// Upsize the buffer and verify the 3 latest dealocks are preserved.
dlock_buffer_before_resize = db->GetDeadlockInfoBuffer();
db->SetDeadlockInfoBufferSize(5);
dlock_buffer_after_resize = db->GetDeadlockInfoBuffer();
ASSERT_EQ(dlock_buffer_after_resize.size(), 3);
for (uint32_t i = 0; i < dlock_buffer_before_resize.size(); i++) {
for (uint32_t j = 0; j < dlock_buffer_before_resize[i].path.size(); j++) {
ASSERT_EQ(dlock_buffer_after_resize[i].path[j].m_txn_id,
dlock_buffer_before_resize[i].path[j].m_txn_id);
}
}
// Downsize to 0 and verify the size is consistent.
dlock_buffer_before_resize = db->GetDeadlockInfoBuffer();
db->SetDeadlockInfoBufferSize(0);
dlock_buffer_after_resize = db->GetDeadlockInfoBuffer();
ASSERT_EQ(dlock_buffer_after_resize.size(), 0);
// Upsize from 0 to verify the size is persistent.
dlock_buffer_before_resize = db->GetDeadlockInfoBuffer();
db->SetDeadlockInfoBufferSize(3);
dlock_buffer_after_resize = db->GetDeadlockInfoBuffer();
ASSERT_EQ(dlock_buffer_after_resize.size(), 0);
// Contrived case of shared lock of cycle size 2 to verify that a shared
// lock causing a deadlock is correctly reported as "shared" in the buffer.
std::vector<Transaction*> txns_shared(2);
// Create a cycle of size 2.
for (uint32_t i = 0; i < 2; i++) {
txns_shared[i] = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txns_shared[i]);
auto s = txns_shared[i]->GetForUpdate(read_options, std::to_string(i),
(std::string*)nullptr);
ASSERT_OK(s);
}
std::atomic<uint32_t> checkpoints_shared(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PointLockManager::AcquireWithTimeout:WaitingTxn",
[&](void* /*arg*/) { checkpoints_shared.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<port::Thread> threads_shared;
for (uint32_t i = 0; i < 1; i++) {
std::function<void()> blocking_thread = [&, i] {
auto s = txns_shared[i]->GetForUpdate(read_options, std::to_string(i + 1),
(std::string*)nullptr);
ASSERT_OK(s);
ASSERT_OK(txns_shared[i]->Rollback());
delete txns_shared[i];
};
threads_shared.emplace_back(blocking_thread);
}
// Wait until all threads are waiting on each other.
while (checkpoints_shared.load() != 1) {
/* sleep override */
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
// Complete the cycle T2 -> T1 with a shared lock.
auto s = txns_shared[1]->GetForUpdate(read_options, "0",
(std::string*)nullptr, false);
ASSERT_TRUE(s.IsDeadlock());
auto dlock_buffer = db->GetDeadlockInfoBuffer();
// Verify the size of the buffer and the single path.
ASSERT_EQ(dlock_buffer.size(), 1);
ASSERT_EQ(dlock_buffer[0].path.size(), 2);
// Verify the exclusivity field of the transactions in the deadlock path.
ASSERT_TRUE(dlock_buffer[0].path[0].m_exclusive);
ASSERT_FALSE(dlock_buffer[0].path[1].m_exclusive);
ASSERT_OK(txns_shared[1]->Rollback());
delete txns_shared[1];
for (auto& t : threads_shared) {
t.join();
}
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionStressTest, DeadlockCycle) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
// offset by 2 from the max depth to test edge case
const uint32_t kMaxCycleLength = 52;
txn_options.lock_timeout = 1000000;
txn_options.deadlock_detect = true;
for (uint32_t len = 2; len < kMaxCycleLength; len++) {
// Set up a long wait for chain like this:
//
// T1 -> T2 -> T3 -> ... -> Tlen
std::vector<Transaction*> txns(len);
for (uint32_t i = 0; i < len; i++) {
txns[i] = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txns[i]);
auto s = txns[i]->GetForUpdate(read_options, std::to_string(i),
(std::string*)nullptr);
ASSERT_OK(s);
}
std::atomic<uint32_t> checkpoints(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PointLockManager::AcquireWithTimeout:WaitingTxn",
[&](void* /*arg*/) { checkpoints.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// We want the last transaction in the chain to block and hold everyone
// back.
std::vector<port::Thread> threads;
for (uint32_t i = 0; i + 1 < len; i++) {
std::function<void()> blocking_thread = [&, i] {
auto s = txns[i]->GetForUpdate(read_options, std::to_string(i + 1),
(std::string*)nullptr);
ASSERT_OK(s);
ASSERT_OK(txns[i]->Rollback());
delete txns[i];
};
threads.emplace_back(blocking_thread);
}
// Wait until all threads are waiting on each other.
while (checkpoints.load() != len - 1) {
/* sleep override */
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
// Complete the cycle Tlen -> T1
auto s =
txns[len - 1]->GetForUpdate(read_options, "0", (std::string*)nullptr);
ASSERT_TRUE(s.IsDeadlock());
const uint32_t dlock_buffer_size_ = (len - 1 > 5) ? 5 : (len - 1);
uint32_t curr_waiting_key = 0;
TransactionID curr_txn_id = txns[0]->GetID();
auto dlock_buffer = db->GetDeadlockInfoBuffer();
ASSERT_EQ(dlock_buffer.size(), dlock_buffer_size_);
uint32_t check_len = len;
bool check_limit_flag = false;
// Special case for a deadlock path that exceeds the maximum depth.
if (len > 50) {
check_len = 0;
check_limit_flag = true;
}
auto dlock_entry = dlock_buffer[0].path;
ASSERT_EQ(dlock_entry.size(), check_len);
ASSERT_EQ(dlock_buffer[0].limit_exceeded, check_limit_flag);
int64_t pre_deadlock_time = dlock_buffer[0].deadlock_time;
int64_t cur_deadlock_time = 0;
for (auto const& dl_path_rec : dlock_buffer) {
cur_deadlock_time = dl_path_rec.deadlock_time;
ASSERT_NE(cur_deadlock_time, 0);
ASSERT_TRUE(cur_deadlock_time <= pre_deadlock_time);
pre_deadlock_time = cur_deadlock_time;
}
// Iterates backwards over path verifying decreasing txn_ids.
for (auto it = dlock_entry.rbegin(); it != dlock_entry.rend(); ++it) {
auto dl_node = *it;
ASSERT_EQ(dl_node.m_txn_id, len + curr_txn_id - 1);
ASSERT_EQ(dl_node.m_cf_id, 0u);
ASSERT_EQ(dl_node.m_waiting_key, std::to_string(curr_waiting_key));
ASSERT_EQ(dl_node.m_exclusive, true);
curr_txn_id--;
if (curr_waiting_key == 0) {
curr_waiting_key = len;
}
curr_waiting_key--;
}
// Rollback the last transaction.
ASSERT_OK(txns[len - 1]->Rollback());
delete txns[len - 1];
for (auto& t : threads) {
t.join();
}
}
}
TEST_P(TransactionStressTest, DeadlockStress) {
const uint32_t NUM_TXN_THREADS = 10;
const uint32_t NUM_KEYS = 100;
const uint32_t NUM_ITERS = 1000;
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
txn_options.lock_timeout = 1000000;
txn_options.deadlock_detect = true;
std::vector<std::string> keys;
for (uint32_t i = 0; i < NUM_KEYS; i++) {
ASSERT_OK(db->Put(write_options, Slice(std::to_string(i)), Slice("")));
keys.push_back(std::to_string(i));
}
size_t tid = std::hash<std::thread::id>()(std::this_thread::get_id());
Random rnd(static_cast<uint32_t>(tid));
std::function<void(uint32_t)> stress_thread = [&](uint32_t seed) {
std::default_random_engine g(seed);
Transaction* txn;
for (uint32_t i = 0; i < NUM_ITERS; i++) {
txn = db->BeginTransaction(write_options, txn_options);
auto random_keys = keys;
std::shuffle(random_keys.begin(), random_keys.end(), g);
// Lock keys in random order.
for (const auto& k : random_keys) {
// Lock mostly for shared access, but exclusive 1/4 of the time.
auto s = txn->GetForUpdate(read_options, k, (std::string*)nullptr,
txn->GetID() % 4 == 0);
if (!s.ok()) {
ASSERT_TRUE(s.IsDeadlock());
ASSERT_OK(txn->Rollback());
break;
}
}
delete txn;
}
};
std::vector<port::Thread> threads;
for (uint32_t i = 0; i < NUM_TXN_THREADS; i++) {
threads.emplace_back(stress_thread, rnd.Next());
}
for (auto& t : threads) {
t.join();
}
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionTest, CommitTimeBatchFailTest) {
WriteOptions write_options;
TransactionOptions txn_options;
std::string value;
Status s;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
ASSERT_OK(txn1->GetCommitTimeWriteBatch()->Put("cat", "dog"));
s = txn1->Put("foo", "bar");
ASSERT_OK(s);
// fails due to non-empty commit-time batch
s = txn1->Commit();
ASSERT_EQ(s, Status::InvalidArgument());
delete txn1;
}
TEST_P(TransactionTest, LogMarkLeakTest) {
TransactionOptions txn_options;
WriteOptions write_options;
options.write_buffer_size = 1024;
ASSERT_OK(ReOpenNoDelete());
assert(db != nullptr);
Random rnd(47);
std::vector<Transaction*> txns;
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
// At the beginning there should be no log containing prepare data
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
for (size_t i = 0; i < 100; i++) {
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn->SetName("xid" + std::to_string(i)));
ASSERT_OK(txn->Put(Slice("foo" + std::to_string(i)), Slice("bar")));
ASSERT_OK(txn->Prepare());
ASSERT_GT(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
if (rnd.OneIn(5)) {
txns.push_back(txn);
} else {
ASSERT_OK(txn->Commit());
delete txn;
}
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
}
for (auto txn : txns) {
ASSERT_OK(txn->Commit());
delete txn;
}
// At the end there should be no log left containing prepare data
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
// Make sure that the underlying data structures are properly truncated and
// cause not leak
ASSERT_EQ(db_impl->TEST_PreparedSectionCompletedSize(), 0);
ASSERT_EQ(db_impl->TEST_LogsWithPrepSize(), 0);
}
TEST_P(TransactionTest, SimpleTwoPhaseTransactionTest) {
for (bool cwb4recovery : {true, false}) {
ASSERT_OK(ReOpen());
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
txn_options.use_only_the_last_commit_time_batch_for_recovery = cwb4recovery;
std::string value;
Status s;
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
Transaction* txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("xid");
ASSERT_OK(s);
ASSERT_EQ(db->GetTransactionByName("xid"), txn);
// transaction put
s = txn->Put(Slice("foo"), Slice("bar"));
ASSERT_OK(s);
ASSERT_EQ(1, txn->GetNumPuts());
// regular db put
s = db->Put(write_options, Slice("foo2"), Slice("bar2"));
ASSERT_OK(s);
ASSERT_EQ(1, txn->GetNumPuts());
// regular db read
ASSERT_OK(db->Get(read_options, "foo2", &value));
ASSERT_EQ(value, "bar2");
// commit time put
if (cwb4recovery) {
ASSERT_OK(
txn->GetCommitTimeWriteBatch()->Put(Slice("gtid"), Slice("dogs")));
ASSERT_OK(
txn->GetCommitTimeWriteBatch()->Put(Slice("gtid2"), Slice("cats")));
}
// nothing has been prepped yet
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
s = txn->Prepare();
ASSERT_OK(s);
// data not im mem yet
s = db->Get(read_options, Slice("foo"), &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, Slice("gtid"), &value);
ASSERT_TRUE(s.IsNotFound());
// find trans in list of prepared transactions
std::vector<Transaction*> prepared_trans;
db->GetAllPreparedTransactions(&prepared_trans);
ASSERT_EQ(prepared_trans.size(), 1);
ASSERT_EQ(prepared_trans.front()->GetName(), "xid");
auto log_containing_prep =
db_impl->TEST_FindMinLogContainingOutstandingPrep();
ASSERT_GT(log_containing_prep, 0);
// make commit
s = txn->Commit();
ASSERT_OK(s);
// value is now available
s = db->Get(read_options, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
// we already committed
s = txn->Commit();
ASSERT_EQ(s, Status::InvalidArgument());
// no longer is prepared results
db->GetAllPreparedTransactions(&prepared_trans);
ASSERT_EQ(prepared_trans.size(), 0);
ASSERT_EQ(db->GetTransactionByName("xid"), nullptr);
// heap should not care about prepared section anymore
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// but now our memtable should be referencing the prep section
ASSERT_GE(log_containing_prep, db_impl->MinLogNumberToKeep());
ASSERT_EQ(log_containing_prep,
db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// In these modes memtable do not ref the prep sections
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
default:
assert(false);
}
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
// After flush the recoverable state must be visible
if (cwb4recovery) {
s = db->Get(read_options, "gtid", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "dogs");
s = db->Get(read_options, "gtid2", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "cats");
}
// after memtable flush we can now relese the log
ASSERT_GT(db_impl->MinLogNumberToKeep(), log_containing_prep);
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
delete txn;
if (cwb4recovery) {
// kill and reopen to trigger recovery
s = ReOpenNoDelete();
ASSERT_OK(s);
assert(db != nullptr);
s = db->Get(read_options, "gtid", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "dogs");
s = db->Get(read_options, "gtid2", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "cats");
}
}
}
TEST_P(TransactionTest, TwoPhaseNameTest) {
Status s;
WriteOptions write_options;
TransactionOptions txn_options;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
Transaction* txn3 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn3);
delete txn3;
// cant prepare txn without name
s = txn1->Prepare();
ASSERT_EQ(s, Status::InvalidArgument());
// name too short
s = txn1->SetName("");
ASSERT_EQ(s, Status::InvalidArgument());
// name too long
s = txn1->SetName(std::string(513, 'x'));
ASSERT_EQ(s, Status::InvalidArgument());
// valid set name
s = txn1->SetName("name1");
ASSERT_OK(s);
// cant have duplicate name
s = txn2->SetName("name1");
ASSERT_EQ(s, Status::InvalidArgument());
// shouldn't be able to prepare
s = txn2->Prepare();
ASSERT_EQ(s, Status::InvalidArgument());
// valid name set
s = txn2->SetName("name2");
ASSERT_OK(s);
// cant reset name
s = txn2->SetName("name3");
ASSERT_EQ(s, Status::InvalidArgument());
ASSERT_EQ(txn1->GetName(), "name1");
ASSERT_EQ(txn2->GetName(), "name2");
s = txn1->Prepare();
ASSERT_OK(s);
// can't rename after prepare
s = txn1->SetName("name4");
ASSERT_EQ(s, Status::InvalidArgument());
ASSERT_OK(txn1->Rollback());
ASSERT_OK(txn2->Rollback());
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, TwoPhaseEmptyWriteTest) {
for (bool cwb4recovery : {true, false}) {
for (bool test_with_empty_wal : {true, false}) {
if (!cwb4recovery && test_with_empty_wal) {
continue;
}
ASSERT_OK(ReOpen());
Status s;
std::string value;
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
txn_options.use_only_the_last_commit_time_batch_for_recovery =
cwb4recovery;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
s = txn1->SetName("joe");
ASSERT_OK(s);
s = txn2->SetName("bob");
ASSERT_OK(s);
s = txn1->Prepare();
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
if (cwb4recovery) {
ASSERT_OK(
txn2->GetCommitTimeWriteBatch()->Put(Slice("foo"), Slice("bar")));
}
s = txn2->Prepare();
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
if (cwb4recovery) {
if (test_with_empty_wal) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
// After flush the state must be visible
s = db->Get(read_options, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
}
ASSERT_OK(db->FlushWAL(true));
// kill and reopen to trigger recovery
s = ReOpenNoDelete();
ASSERT_OK(s);
assert(db != nullptr);
s = db->Get(read_options, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
}
}
}
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionStressTest, TwoPhaseExpirationTest) {
Status s;
WriteOptions write_options;
TransactionOptions txn_options;
txn_options.expiration = 500; // 500ms
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
ASSERT_TRUE(txn1);
s = txn1->SetName("joe");
ASSERT_OK(s);
s = txn2->SetName("bob");
ASSERT_OK(s);
s = txn1->Prepare();
ASSERT_OK(s);
/* sleep override */
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->Prepare();
ASSERT_EQ(s, Status::Expired());
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, TwoPhaseRollbackTest) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
Transaction* txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("xid");
ASSERT_OK(s);
// transaction put
s = txn->Put(Slice("tfoo"), Slice("tbar"));
ASSERT_OK(s);
// value is readable form txn
s = txn->Get(read_options, Slice("tfoo"), &value);
ASSERT_OK(s);
ASSERT_EQ(value, "tbar");
// issue rollback
s = txn->Rollback();
ASSERT_OK(s);
// value is nolonger readable
s = txn->Get(read_options, Slice("tfoo"), &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(txn->GetNumPuts(), 0);
// put new txn values
s = txn->Put(Slice("tfoo2"), Slice("tbar2"));
ASSERT_OK(s);
// new value is readable from txn
s = txn->Get(read_options, Slice("tfoo2"), &value);
ASSERT_OK(s);
ASSERT_EQ(value, "tbar2");
s = txn->Prepare();
ASSERT_OK(s);
// flush to next wal
s = db->Put(write_options, Slice("foo"), Slice("bar"));
ASSERT_OK(s);
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
// issue rollback (marker written to WAL)
s = txn->Rollback();
ASSERT_OK(s);
// value is nolonger readable
s = txn->Get(read_options, Slice("tfoo2"), &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(txn->GetNumPuts(), 0);
// make commit
s = txn->Commit();
ASSERT_EQ(s, Status::InvalidArgument());
// try rollback again
s = txn->Rollback();
ASSERT_EQ(s, Status::InvalidArgument());
delete txn;
}
TEST_P(TransactionTest, PersistentTwoPhaseTransactionTest) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
Transaction* txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("xid");
ASSERT_OK(s);
ASSERT_EQ(db->GetTransactionByName("xid"), txn);
// transaction put
s = txn->Put(Slice("foo"), Slice("bar"));
ASSERT_OK(s);
ASSERT_EQ(1, txn->GetNumPuts());
// txn read
s = txn->Get(read_options, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
// regular db put
s = db->Put(write_options, Slice("foo2"), Slice("bar2"));
ASSERT_OK(s);
ASSERT_EQ(1, txn->GetNumPuts());
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
// regular db read
ASSERT_OK(db->Get(read_options, "foo2", &value));
ASSERT_EQ(value, "bar2");
// nothing has been prepped yet
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
// prepare
s = txn->Prepare();
ASSERT_OK(s);
// still not available to db
s = db->Get(read_options, Slice("foo"), &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(db->FlushWAL(false));
delete txn;
// kill and reopen
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
s = ReOpenNoDelete();
ASSERT_OK(s);
assert(db != nullptr);
db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
// find trans in list of prepared transactions
std::vector<Transaction*> prepared_trans;
db->GetAllPreparedTransactions(&prepared_trans);
ASSERT_EQ(prepared_trans.size(), 1);
txn = prepared_trans.front();
ASSERT_TRUE(txn);
ASSERT_EQ(txn->GetName(), "xid");
ASSERT_EQ(db->GetTransactionByName("xid"), txn);
// log has been marked
auto log_containing_prep =
db_impl->TEST_FindMinLogContainingOutstandingPrep();
ASSERT_GT(log_containing_prep, 0);
// value is readable from txn
s = txn->Get(read_options, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar");
// make commit
s = txn->Commit();
ASSERT_OK(s);
// value is now available
ASSERT_OK(db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar");
// we already committed
s = txn->Commit();
ASSERT_EQ(s, Status::InvalidArgument());
// no longer is prepared results
prepared_trans.clear();
db->GetAllPreparedTransactions(&prepared_trans);
ASSERT_EQ(prepared_trans.size(), 0);
// transaction should no longer be visible
ASSERT_EQ(db->GetTransactionByName("xid"), nullptr);
// heap should not care about prepared section anymore
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// but now our memtable should be referencing the prep section
ASSERT_EQ(log_containing_prep,
db_impl->TEST_FindMinPrepLogReferencedByMemTable());
ASSERT_GE(log_containing_prep, db_impl->MinLogNumberToKeep());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// In these modes memtable do not ref the prep sections
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
default:
assert(false);
}
// Add a dummy record to memtable before a flush. Otherwise, the
// memtable will be empty and flush will be skipped.
s = db->Put(write_options, Slice("foo3"), Slice("bar3"));
ASSERT_OK(s);
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
// after memtable flush we can now release the log
ASSERT_GT(db_impl->MinLogNumberToKeep(), log_containing_prep);
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
delete txn;
// deleting transaction should unregister transaction
ASSERT_EQ(db->GetTransactionByName("xid"), nullptr);
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
// TODO this test needs to be updated with serial commits
TEST_P(TransactionTest, DISABLED_TwoPhaseMultiThreadTest) {
// mix transaction writes and regular writes
const uint32_t NUM_TXN_THREADS = 50;
std::atomic<uint32_t> txn_thread_num(0);
std::function<void()> txn_write_thread = [&]() {
uint32_t id = txn_thread_num.fetch_add(1);
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
TransactionOptions txn_options;
txn_options.lock_timeout = 1000000;
if (id % 2 == 0) {
txn_options.expiration = 1000000;
}
TransactionName name("xid_" + std::string(1, 'A' + static_cast<char>(id)));
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn->SetName(name));
for (int i = 0; i < 10; i++) {
std::string key(name + "_" + std::string(1, static_cast<char>('A' + i)));
ASSERT_OK(txn->Put(key, "val"));
}
ASSERT_OK(txn->Prepare());
ASSERT_OK(txn->Commit());
delete txn;
};
// assure that all thread are in the same write group
std::atomic<uint32_t> t_wait_on_prepare(0);
std::atomic<uint32_t> t_wait_on_commit(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"WriteThread::JoinBatchGroup:Wait", [&](void* arg) {
auto* writer = static_cast<WriteThread::Writer*>(arg);
if (writer->ShouldWriteToWAL()) {
t_wait_on_prepare.fetch_add(1);
// wait for friends
while (t_wait_on_prepare.load() < NUM_TXN_THREADS) {
env->SleepForMicroseconds(10);
}
} else if (writer->ShouldWriteToMemtable()) {
t_wait_on_commit.fetch_add(1);
// wait for friends
while (t_wait_on_commit.load() < NUM_TXN_THREADS) {
env->SleepForMicroseconds(10);
}
} else {
FAIL();
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// do all the writes
std::vector<port::Thread> threads;
for (uint32_t i = 0; i < NUM_TXN_THREADS; i++) {
threads.emplace_back(txn_write_thread);
}
for (auto& t : threads) {
t.join();
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
ReadOptions read_options;
std::string value;
Status s;
for (uint32_t t = 0; t < NUM_TXN_THREADS; t++) {
TransactionName name("xid_" + std::string(1, 'A' + static_cast<char>(t)));
for (int i = 0; i < 10; i++) {
std::string key(name + "_" + std::string(1, static_cast<char>('A' + i)));
s = db->Get(read_options, key, &value);
ASSERT_OK(s);
ASSERT_EQ(value, "val");
}
}
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionStressTest, TwoPhaseLongPrepareTest) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("bob");
ASSERT_OK(s);
// transaction put
s = txn->Put(Slice("foo"), Slice("bar"));
ASSERT_OK(s);
// prepare
s = txn->Prepare();
ASSERT_OK(s);
delete txn;
for (int i = 0; i < 1000; i++) {
std::string key(i, 'k');
std::string val(1000, 'v');
assert(db != nullptr);
s = db->Put(write_options, key, val);
ASSERT_OK(s);
if (i % 29 == 0) {
// crash
fault_fs->SetFilesystemActive(false);
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete());
} else if (i % 37 == 0) {
// close
ASSERT_OK(ReOpenNoDelete());
}
}
// commit old txn
txn = db->GetTransactionByName("bob");
ASSERT_TRUE(txn);
s = txn->Commit();
ASSERT_OK(s);
// verify data txn data
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(s, Status::OK());
ASSERT_EQ(value, "bar");
// verify non txn data
for (int i = 0; i < 1000; i++) {
std::string key(i, 'k');
std::string val(1000, 'v');
s = db->Get(read_options, key, &value);
ASSERT_EQ(s, Status::OK());
ASSERT_EQ(value, val);
}
delete txn;
}
TEST_P(TransactionTest, TwoPhaseSequenceTest) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("xid");
ASSERT_OK(s);
// transaction put
s = txn->Put(Slice("foo"), Slice("bar"));
ASSERT_OK(s);
s = txn->Put(Slice("foo2"), Slice("bar2"));
ASSERT_OK(s);
s = txn->Put(Slice("foo3"), Slice("bar3"));
ASSERT_OK(s);
s = txn->Put(Slice("foo4"), Slice("bar4"));
ASSERT_OK(s);
// prepare
s = txn->Prepare();
ASSERT_OK(s);
// make commit
s = txn->Commit();
ASSERT_OK(s);
delete txn;
// kill and reopen
fault_fs->SetFilesystemActive(false);
ASSERT_OK(ReOpenNoDelete());
assert(db != nullptr);
// value is now available
s = db->Get(read_options, "foo4", &value);
ASSERT_EQ(s, Status::OK());
ASSERT_EQ(value, "bar4");
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionTest, TwoPhaseDoubleRecoveryTest) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("a");
ASSERT_OK(s);
// transaction put
s = txn->Put(Slice("foo"), Slice("bar"));
ASSERT_OK(s);
// prepare
s = txn->Prepare();
ASSERT_OK(s);
delete txn;
// kill and reopen
fault_fs->SetFilesystemActive(false);
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete());
// commit old txn
assert(db != nullptr); // Make clang analyze happy.
txn = db->GetTransactionByName("a");
assert(txn != nullptr);
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(s, Status::OK());
ASSERT_EQ(value, "bar");
delete txn;
txn = db->BeginTransaction(write_options, txn_options);
s = txn->SetName("b");
ASSERT_OK(s);
s = txn->Put(Slice("foo2"), Slice("bar2"));
ASSERT_OK(s);
s = txn->Prepare();
ASSERT_OK(s);
s = txn->Commit();
ASSERT_OK(s);
delete txn;
// kill and reopen
fault_fs->SetFilesystemActive(false);
ASSERT_OK(ReOpenNoDelete());
assert(db != nullptr);
// value is now available
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(s, Status::OK());
ASSERT_EQ(value, "bar");
s = db->Get(read_options, "foo2", &value);
ASSERT_EQ(s, Status::OK());
ASSERT_EQ(value, "bar2");
}
TEST_P(TransactionTest, TwoPhaseLogRollingTest) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
Status s;
std::string v;
ColumnFamilyHandle *cfa, *cfb;
// Create 2 new column families
ColumnFamilyOptions cf_options;
s = db->CreateColumnFamily(cf_options, "CFA", &cfa);
ASSERT_OK(s);
s = db->CreateColumnFamily(cf_options, "CFB", &cfb);
ASSERT_OK(s);
WriteOptions wopts;
wopts.disableWAL = false;
wopts.sync = true;
TransactionOptions topts1;
Transaction* txn1 = db->BeginTransaction(wopts, topts1);
s = txn1->SetName("xid1");
ASSERT_OK(s);
TransactionOptions topts2;
Transaction* txn2 = db->BeginTransaction(wopts, topts2);
s = txn2->SetName("xid2");
ASSERT_OK(s);
// transaction put in two column families
s = txn1->Put(cfa, "ka1", "va1");
ASSERT_OK(s);
// transaction put in two column families
s = txn2->Put(cfa, "ka2", "va2");
ASSERT_OK(s);
s = txn2->Put(cfb, "kb2", "vb2");
ASSERT_OK(s);
// write prep section to wal
s = txn1->Prepare();
ASSERT_OK(s);
// our log should be in the heap
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(),
txn1->GetLogNumber());
ASSERT_EQ(db_impl->TEST_LogfileNumber(), txn1->GetLastLogNumber());
// flush default cf to crate new log
s = db->Put(wopts, "foo", "bar");
ASSERT_OK(s);
s = db_impl->TEST_FlushMemTable(true);
ASSERT_OK(s);
// make sure we are on a new log
ASSERT_GT(db_impl->TEST_LogfileNumber(), txn1->GetLastLogNumber());
// put txn2 prep section in this log
s = txn2->Prepare();
ASSERT_OK(s);
ASSERT_EQ(db_impl->TEST_LogfileNumber(), txn2->GetLastLogNumber());
// heap should still see first log
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(),
txn1->GetLogNumber());
// commit txn1
s = txn1->Commit();
ASSERT_OK(s);
// heap should now show txn2s log
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(),
txn2->GetLogNumber());
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// we should see txn1s log refernced by the memtables
ASSERT_EQ(txn1->GetLogNumber(),
db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// In these modes memtable do not ref the prep sections
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
default:
assert(false);
}
// flush default cf to crate new log
s = db->Put(wopts, "foo", "bar2");
ASSERT_OK(s);
s = db_impl->TEST_FlushMemTable(true);
ASSERT_OK(s);
// make sure we are on a new log
ASSERT_GT(db_impl->TEST_LogfileNumber(), txn2->GetLastLogNumber());
// commit txn2
s = txn2->Commit();
ASSERT_OK(s);
// heap should not show any logs
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// should show the first txn log
ASSERT_EQ(txn1->GetLogNumber(),
db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// In these modes memtable do not ref the prep sections
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
default:
assert(false);
}
// flush only cfa memtable
s = db_impl->TEST_FlushMemTable(true, false, cfa);
ASSERT_OK(s);
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// should show the first txn log
ASSERT_EQ(txn2->GetLogNumber(),
db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// In these modes memtable do not ref the prep sections
ASSERT_EQ(0, db_impl->TEST_FindMinPrepLogReferencedByMemTable());
break;
default:
assert(false);
}
// flush only cfb memtable
s = db_impl->TEST_FlushMemTable(true, false, cfb);
ASSERT_OK(s);
// should show not dependency on logs
ASSERT_EQ(db_impl->TEST_FindMinPrepLogReferencedByMemTable(), 0);
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(), 0);
delete txn1;
delete txn2;
delete cfa;
delete cfb;
}
TEST_P(TransactionTest, TwoPhaseLogRollingTest2) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
Status s;
ColumnFamilyHandle *cfa, *cfb;
ColumnFamilyOptions cf_options;
s = db->CreateColumnFamily(cf_options, "CFA", &cfa);
ASSERT_OK(s);
s = db->CreateColumnFamily(cf_options, "CFB", &cfb);
ASSERT_OK(s);
WriteOptions wopts;
wopts.disableWAL = false;
wopts.sync = true;
auto cfh_a = static_cast_with_check<ColumnFamilyHandleImpl>(cfa);
auto cfh_b = static_cast_with_check<ColumnFamilyHandleImpl>(cfb);
TransactionOptions topts1;
Transaction* txn1 = db->BeginTransaction(wopts, topts1);
s = txn1->SetName("xid1");
ASSERT_OK(s);
s = txn1->Put(cfa, "boys", "girls1");
ASSERT_OK(s);
Transaction* txn2 = db->BeginTransaction(wopts, topts1);
s = txn2->SetName("xid2");
ASSERT_OK(s);
s = txn2->Put(cfb, "up", "down1");
ASSERT_OK(s);
// prepre transaction in LOG A
s = txn1->Prepare();
ASSERT_OK(s);
// prepre transaction in LOG A
s = txn2->Prepare();
ASSERT_OK(s);
// regular put so that mem table can actually be flushed for log rolling
s = db->Put(wopts, "cats", "dogs1");
ASSERT_OK(s);
auto prepare_log_no = txn1->GetLastLogNumber();
// roll to LOG B
s = db_impl->TEST_FlushMemTable(true);
ASSERT_OK(s);
// now we pause background work so that
// imm()s are not flushed before we can check their status
s = db_impl->PauseBackgroundWork();
ASSERT_OK(s);
ASSERT_GT(db_impl->TEST_LogfileNumber(), prepare_log_no);
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// This cf is empty and should ref the latest log
ASSERT_GT(cfh_a->cfd()->GetLogNumber(), prepare_log_no);
ASSERT_EQ(cfh_a->cfd()->GetLogNumber(), db_impl->TEST_LogfileNumber());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// This cf is not flushed yet and should ref the log that has its data
ASSERT_EQ(cfh_a->cfd()->GetLogNumber(), prepare_log_no);
break;
default:
assert(false);
}
ASSERT_EQ(db_impl->TEST_FindMinLogContainingOutstandingPrep(),
txn1->GetLogNumber());
ASSERT_EQ(db_impl->TEST_FindMinPrepLogReferencedByMemTable(), 0);
// commit in LOG B
s = txn1->Commit();
ASSERT_OK(s);
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
ASSERT_EQ(db_impl->TEST_FindMinPrepLogReferencedByMemTable(),
prepare_log_no);
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// In these modes memtable do not ref the prep sections
ASSERT_EQ(db_impl->TEST_FindMinPrepLogReferencedByMemTable(), 0);
break;
default:
assert(false);
}
ASSERT_TRUE(!db_impl->TEST_UnableToReleaseOldestLog());
// request a flush for all column families such that the earliest
// alive log file can be killed
ASSERT_OK(db_impl->TEST_SwitchWAL());
// log cannot be flushed because txn2 has not been commited
ASSERT_TRUE(!db_impl->TEST_IsLogGettingFlushed());
ASSERT_TRUE(db_impl->TEST_UnableToReleaseOldestLog());
// assert that cfa has a flush requested
ASSERT_TRUE(cfh_a->cfd()->imm()->HasFlushRequested());
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
// cfb should not be flushed becuse it has no data from LOG A
ASSERT_TRUE(!cfh_b->cfd()->imm()->HasFlushRequested());
break;
case WRITE_PREPARED:
case WRITE_UNPREPARED:
// cfb should be flushed becuse it has prepared data from LOG A
ASSERT_TRUE(cfh_b->cfd()->imm()->HasFlushRequested());
break;
default:
assert(false);
}
// cfb now has data from LOG A
s = txn2->Commit();
ASSERT_OK(s);
ASSERT_OK(db_impl->TEST_SwitchWAL());
ASSERT_TRUE(!db_impl->TEST_UnableToReleaseOldestLog());
// we should see that cfb now has a flush requested
ASSERT_TRUE(cfh_b->cfd()->imm()->HasFlushRequested());
// all data in LOG A resides in a memtable that has been
// requested for a flush
ASSERT_TRUE(db_impl->TEST_IsLogGettingFlushed());
delete txn1;
delete txn2;
delete cfa;
delete cfb;
}
/*
* 1) use prepare to keep first log around to determine starting sequence
* during recovery.
* 2) insert many values, skipping wal, to increase seqid.
* 3) insert final value into wal
* 4) recover and see that final value was properly recovered - not
* hidden behind improperly summed sequence ids
*/
TEST_P(TransactionTest, TwoPhaseOutOfOrderDelete) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
WriteOptions wal_on, wal_off;
wal_on.sync = true;
wal_on.disableWAL = false;
wal_off.disableWAL = true;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
Transaction* txn1 = db->BeginTransaction(wal_on, txn_options);
s = txn1->SetName("1");
ASSERT_OK(s);
s = db->Put(wal_on, "first", "first");
ASSERT_OK(s);
s = txn1->Put(Slice("dummy"), Slice("dummy"));
ASSERT_OK(s);
s = txn1->Prepare();
ASSERT_OK(s);
s = db->Put(wal_off, "cats", "dogs1");
ASSERT_OK(s);
s = db->Put(wal_off, "cats", "dogs2");
ASSERT_OK(s);
s = db->Put(wal_off, "cats", "dogs3");
ASSERT_OK(s);
s = db_impl->TEST_FlushMemTable(true);
ASSERT_OK(s);
s = db->Put(wal_on, "cats", "dogs4");
ASSERT_OK(s);
ASSERT_OK(db->FlushWAL(false));
// kill and reopen
fault_fs->SetFilesystemActive(false);
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete());
assert(db != nullptr);
s = db->Get(read_options, "first", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "first");
s = db->Get(read_options, "cats", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "dogs4");
}
TEST_P(TransactionTest, FirstWriteTest) {
WriteOptions write_options;
// Test conflict checking against the very first write to a db.
// The transaction's snapshot will have seq 1 and the following write
// will have sequence 1.
Status s = db->Put(write_options, "A", "a");
Transaction* txn = db->BeginTransaction(write_options);
txn->SetSnapshot();
ASSERT_OK(s);
s = txn->Put("A", "b");
ASSERT_OK(s);
delete txn;
}
TEST_P(TransactionTest, FirstWriteTest2) {
WriteOptions write_options;
Transaction* txn = db->BeginTransaction(write_options);
txn->SetSnapshot();
// Test conflict checking against the very first write to a db.
// The transaction's snapshot is a seq 0 while the following write
// will have sequence 1.
Status s = db->Put(write_options, "A", "a");
ASSERT_OK(s);
s = txn->Put("A", "b");
ASSERT_TRUE(s.IsBusy());
delete txn;
}
TEST_P(TransactionTest, WriteOptionsTest) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = true;
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
ASSERT_TRUE(txn->GetWriteOptions()->sync);
write_options.sync = false;
txn->SetWriteOptions(write_options);
ASSERT_FALSE(txn->GetWriteOptions()->sync);
ASSERT_TRUE(txn->GetWriteOptions()->disableWAL);
delete txn;
}
TEST_P(TransactionTest, WriteConflictTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
ASSERT_OK(db->Put(write_options, "foo", "A"));
ASSERT_OK(db->Put(write_options, "foo2", "B"));
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = txn->Put("foo", "A2");
ASSERT_OK(s);
s = txn->Put("foo2", "B2");
ASSERT_OK(s);
// This Put outside of a transaction will conflict with the previous write
s = db->Put(write_options, "foo", "xxx");
ASSERT_TRUE(s.IsTimedOut());
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(value, "A");
s = txn->Commit();
ASSERT_OK(s);
ASSERT_OK(db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "A2");
ASSERT_OK(db->Get(read_options, "foo2", &value));
ASSERT_EQ(value, "B2");
delete txn;
}
TEST_P(TransactionTest, WriteConflictTest2) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
ASSERT_OK(db->Put(write_options, "foo", "bar"));
txn_options.set_snapshot = true;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn);
// This Put outside of a transaction will conflict with a later write
s = db->Put(write_options, "foo", "barz");
ASSERT_OK(s);
s = txn->Put("foo2", "X");
ASSERT_OK(s);
s = txn->Put("foo",
"bar2"); // Conflicts with write done after snapshot taken
ASSERT_TRUE(s.IsBusy());
s = txn->Put("foo3", "Y");
ASSERT_OK(s);
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(value, "barz");
ASSERT_EQ(2, txn->GetNumKeys());
s = txn->Commit();
ASSERT_OK(s); // Txn should commit, but only write foo2 and foo3
// Verify that transaction wrote foo2 and foo3 but not foo
ASSERT_OK(db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
ASSERT_OK(db->Get(read_options, "foo2", &value));
ASSERT_EQ(value, "X");
ASSERT_OK(db->Get(read_options, "foo3", &value));
ASSERT_EQ(value, "Y");
delete txn;
}
TEST_P(TransactionTest, ReadConflictTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
TransactionOptions txn_options;
std::string value;
Status s;
ASSERT_OK(db->Put(write_options, "foo", "bar"));
ASSERT_OK(db->Put(write_options, "foo2", "bar"));
txn_options.set_snapshot = true;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn);
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
// This Put outside of a transaction will conflict with the previous read
s = db->Put(write_options, "foo", "barz");
ASSERT_TRUE(s.IsTimedOut());
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(value, "bar");
s = txn->Get(read_options, "foo", &value);
ASSERT_EQ(value, "bar");
s = txn->Commit();
ASSERT_OK(s);
delete txn;
}
TEST_P(TransactionTest, TxnOnlyTest) {
// Test to make sure transactions work when there are no other writes in an
// empty db.
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = txn->Put("x", "y");
ASSERT_OK(s);
s = txn->Commit();
ASSERT_OK(s);
delete txn;
}
TEST_P(TransactionTest, FlushTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
ASSERT_OK(db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
s = txn->Put(Slice("foo"), Slice("bar2"));
ASSERT_OK(s);
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
// Put a random key so we have a memtable to flush
s = db->Put(write_options, "dummy", "dummy");
ASSERT_OK(s);
// force a memtable flush
FlushOptions flush_ops;
ASSERT_OK(db->Flush(flush_ops));
s = txn->Commit();
// txn should commit since the flushed table is still in MemtableList History
ASSERT_OK(s);
ASSERT_OK(db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
TEST_P(TransactionTest, FlushTest2) {
const size_t num_tests = 3;
for (size_t n = 0; n < num_tests; n++) {
// Test different table factories
switch (n) {
case 0:
break;
case 1:
options.table_factory.reset(new mock::MockTableFactory());
break;
case 2: {
PlainTableOptions pt_opts;
pt_opts.hash_table_ratio = 0;
options.table_factory.reset(NewPlainTableFactory(pt_opts));
break;
}
}
Status s = ReOpen();
ASSERT_OK(s);
assert(db != nullptr);
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
TransactionOptions txn_options;
std::string value;
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
ASSERT_OK(db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(db->Put(write_options, Slice("foo2"), Slice("bar2")));
ASSERT_OK(db->Put(write_options, Slice("foo3"), Slice("bar3")));
txn_options.set_snapshot = true;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn);
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
s = txn->Put(Slice("foo"), Slice("bar2"));
ASSERT_OK(s);
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
// verify foo is locked by txn
s = db->Delete(write_options, "foo");
ASSERT_TRUE(s.IsTimedOut());
s = db->Put(write_options, "Z", "z");
ASSERT_OK(s);
s = db->Put(write_options, "dummy", "dummy");
ASSERT_OK(s);
s = db->Put(write_options, "S", "s");
ASSERT_OK(s);
s = db->SingleDelete(write_options, "S");
ASSERT_OK(s);
s = txn->Delete("S");
// Should fail after encountering a write to S in memtable
ASSERT_TRUE(s.IsBusy());
// force a memtable flush
s = db_impl->TEST_FlushMemTable(true);
ASSERT_OK(s);
// Put a random key so we have a MemTable to flush
s = db->Put(write_options, "dummy", "dummy2");
ASSERT_OK(s);
// force a memtable flush
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
s = db->Put(write_options, "dummy", "dummy3");
ASSERT_OK(s);
// force a memtable flush
// Since our test db has max_write_buffer_number=2, this flush will cause
// the first memtable to get purged from the MemtableList history.
ASSERT_OK(db_impl->TEST_FlushMemTable(true));
s = txn->Put("X", "Y");
// Should succeed after verifying there is no write to X in SST file
ASSERT_OK(s);
s = txn->Put("Z", "zz");
// Should fail after encountering a write to Z in SST file
ASSERT_TRUE(s.IsBusy());
s = txn->GetForUpdate(read_options, "foo2", &value);
// should succeed since key was written before txn started
ASSERT_OK(s);
// verify foo2 is locked by txn
s = db->Delete(write_options, "foo2");
ASSERT_TRUE(s.IsTimedOut());
s = txn->Delete("S");
// Should fail after encountering a write to S in SST file
ASSERT_TRUE(s.IsBusy());
// Write a bunch of keys to db to force a compaction
Random rnd(47);
for (int i = 0; i < 1000; i++) {
s = db->Put(write_options, std::to_string(i),
test::CompressibleString(&rnd, 0.8, 100, &value));
ASSERT_OK(s);
}
s = txn->Put("X", "yy");
// Should succeed after verifying there is no write to X in SST file
ASSERT_OK(s);
s = txn->Put("Z", "zzz");
// Should fail after encountering a write to Z in SST file
ASSERT_TRUE(s.IsBusy());
s = txn->Delete("S");
// Should fail after encountering a write to S in SST file
ASSERT_TRUE(s.IsBusy());
s = txn->GetForUpdate(read_options, "foo3", &value);
// should succeed since key was written before txn started
ASSERT_OK(s);
// verify foo3 is locked by txn
s = db->Delete(write_options, "foo3");
ASSERT_TRUE(s.IsTimedOut());
ASSERT_OK(db_impl->TEST_WaitForCompact());
s = txn->Commit();
ASSERT_OK(s);
// Transaction should only write the keys that succeeded.
s = db->Get(read_options, "foo", &value);
ASSERT_EQ(value, "bar2");
s = db->Get(read_options, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("yy", value);
s = db->Get(read_options, "Z", &value);
ASSERT_OK(s);
ASSERT_EQ("z", value);
delete txn;
}
}
TEST_P(TransactionTest, WaitForCompactAbortOnPause) {
Status s = ReOpen();
ASSERT_OK(s);
assert(db != nullptr);
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
// Pause the background jobs.
ASSERT_OK(db_impl->PauseBackgroundWork());
WaitForCompactOptions waitForCompactOptions = WaitForCompactOptions();
waitForCompactOptions.abort_on_pause = true;
s = db->WaitForCompact(waitForCompactOptions);
ASSERT_NOK(s);
ASSERT_FALSE(s.IsNotSupported());
ASSERT_TRUE(s.IsAborted());
}
TEST_P(TransactionTest, NoSnapshotTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
ASSERT_OK(db->Put(write_options, "AAA", "bar"));
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
// Modify key after transaction start
ASSERT_OK(db->Put(write_options, "AAA", "bar1"));
// Read and write without a snap
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar1");
s = txn->Put("AAA", "bar2");
ASSERT_OK(s);
// Should commit since read/write was done after data changed
s = txn->Commit();
ASSERT_OK(s);
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
TEST_P(TransactionTest, MultipleSnapshotTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
ASSERT_OK(db->Put(write_options, "AAA", "bar"));
ASSERT_OK(db->Put(write_options, "BBB", "bar"));
ASSERT_OK(db->Put(write_options, "CCC", "bar"));
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
ASSERT_OK(db->Put(write_options, "AAA", "bar1"));
// Read and write without a snapshot
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar1");
s = txn->Put("AAA", "bar2");
ASSERT_OK(s);
// Modify BBB before snapshot is taken
ASSERT_OK(db->Put(write_options, "BBB", "bar1"));
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
// Read and write with snapshot
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "BBB", &value));
ASSERT_EQ(value, "bar1");
s = txn->Put("BBB", "bar2");
ASSERT_OK(s);
ASSERT_OK(db->Put(write_options, "CCC", "bar1"));
// Set a new snapshot
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
// Read and write with snapshot
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "CCC", &value));
ASSERT_EQ(value, "bar1");
s = txn->Put("CCC", "bar2");
ASSERT_OK(s);
s = txn->GetForUpdate(read_options, "AAA", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar2");
s = txn->GetForUpdate(read_options, "BBB", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar2");
s = txn->GetForUpdate(read_options, "CCC", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar2");
s = db->Get(read_options, "AAA", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar1");
s = db->Get(read_options, "BBB", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar1");
s = db->Get(read_options, "CCC", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar1");
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "AAA", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar2");
s = db->Get(read_options, "BBB", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar2");
s = db->Get(read_options, "CCC", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "bar2");
// verify that we track multiple writes to the same key at different snapshots
delete txn;
txn = db->BeginTransaction(write_options);
// Potentially conflicting writes
ASSERT_OK(db->Put(write_options, "ZZZ", "zzz"));
ASSERT_OK(db->Put(write_options, "XXX", "xxx"));
txn->SetSnapshot();
TransactionOptions txn_options;
txn_options.set_snapshot = true;
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
txn2->SetSnapshot();
// This should not conflict in txn since the snapshot is later than the
// previous write (spoiler alert: it will later conflict with txn2).
s = txn->Put("ZZZ", "zzzz");
ASSERT_OK(s);
s = txn->Commit();
ASSERT_OK(s);
delete txn;
// This will conflict since the snapshot is earlier than another write to ZZZ
s = txn2->Put("ZZZ", "xxxxx");
ASSERT_TRUE(s.IsBusy());
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "ZZZ", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "zzzz");
delete txn2;
}
TEST_P(TransactionTest, ColumnFamiliesTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
TransactionOptions txn_options;
std::string value;
Status s;
ColumnFamilyHandle *cfa, *cfb;
ColumnFamilyOptions cf_options;
// Create 2 new column families
s = db->CreateColumnFamily(cf_options, "CFA", &cfa);
ASSERT_OK(s);
s = db->CreateColumnFamily(cf_options, "CFB", &cfb);
ASSERT_OK(s);
delete cfa;
delete cfb;
delete db;
db = nullptr;
// open DB with three column families
std::vector<ColumnFamilyDescriptor> column_families;
// have to open default column family
column_families.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
// open the new column families
column_families.emplace_back("CFA", ColumnFamilyOptions());
column_families.emplace_back("CFB", ColumnFamilyOptions());
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(ReOpenNoDelete(column_families, &handles));
assert(db != nullptr);
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
txn_options.set_snapshot = true;
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
// Write some data to the db
WriteBatch batch;
ASSERT_OK(batch.Put("foo", "foo"));
ASSERT_OK(batch.Put(handles[1], "AAA", "bar"));
ASSERT_OK(batch.Put(handles[1], "AAAZZZ", "bar"));
s = db->Write(write_options, &batch);
ASSERT_OK(s);
ASSERT_OK(db->Delete(write_options, handles[1], "AAAZZZ"));
// These keys do not conflict with existing writes since they're in
// different column families
s = txn->Delete("AAA");
ASSERT_OK(s);
s = txn->GetForUpdate(snapshot_read_options, handles[1], "foo", &value);
ASSERT_TRUE(s.IsNotFound());
Slice key_slice("AAAZZZ");
Slice value_slices[2] = {Slice("bar"), Slice("bar")};
s = txn->Put(handles[2], SliceParts(&key_slice, 1),
SliceParts(value_slices, 2));
ASSERT_OK(s);
ASSERT_EQ(3, txn->GetNumKeys());
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "AAA", &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, handles[2], "AAAZZZ", &value);
ASSERT_EQ(value, "barbar");
Slice key_slices[3] = {Slice("AAA"), Slice("ZZ"), Slice("Z")};
Slice value_slice("barbarbar");
s = txn2->Delete(handles[2], "XXX");
ASSERT_OK(s);
s = txn2->Delete(handles[1], "XXX");
ASSERT_OK(s);
// This write will cause a conflict with the earlier batch write
s = txn2->Put(handles[1], SliceParts(key_slices, 3),
SliceParts(&value_slice, 1));
ASSERT_TRUE(s.IsBusy());
s = txn2->Commit();
ASSERT_OK(s);
// In the above the latest change to AAAZZZ in handles[1] is delete.
s = db->Get(read_options, handles[1], "AAAZZZ", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
delete txn2;
txn = db->BeginTransaction(write_options, txn_options);
snapshot_read_options.snapshot = txn->GetSnapshot();
txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn);
std::vector<ColumnFamilyHandle*> multiget_cfh = {handles[1], handles[2],
handles[0], handles[2]};
std::vector<Slice> multiget_keys = {"AAA", "AAAZZZ", "foo", "foo"};
std::vector<std::string> values(4);
std::vector<Status> results = txn->MultiGetForUpdate(
snapshot_read_options, multiget_cfh, multiget_keys, &values);
ASSERT_OK(results[0]);
ASSERT_OK(results[1]);
ASSERT_OK(results[2]);
ASSERT_TRUE(results[3].IsNotFound());
ASSERT_EQ(values[0], "bar");
ASSERT_EQ(values[1], "barbar");
ASSERT_EQ(values[2], "foo");
s = txn->SingleDelete(handles[2], "ZZZ");
ASSERT_OK(s);
s = txn->Put(handles[2], "ZZZ", "YYY");
ASSERT_OK(s);
s = txn->Put(handles[2], "ZZZ", "YYYY");
ASSERT_OK(s);
s = txn->Delete(handles[2], "ZZZ");
ASSERT_OK(s);
s = txn->Put(handles[2], "AAAZZZ", "barbarbar");
ASSERT_OK(s);
ASSERT_EQ(5, txn->GetNumKeys());
// Txn should commit
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, handles[2], "ZZZ", &value);
ASSERT_TRUE(s.IsNotFound());
// Put a key which will conflict with the next txn using the previous snapshot
ASSERT_OK(db->Put(write_options, handles[2], "foo", "000"));
results = txn2->MultiGetForUpdate(snapshot_read_options, multiget_cfh,
multiget_keys, &values);
// All results should fail since there was a conflict
ASSERT_TRUE(results[0].IsBusy());
ASSERT_TRUE(results[1].IsBusy());
ASSERT_TRUE(results[2].IsBusy());
ASSERT_TRUE(results[3].IsBusy());
s = db->Get(read_options, handles[2], "foo", &value);
ASSERT_EQ(value, "000");
s = txn2->Commit();
ASSERT_OK(s);
s = db->DropColumnFamily(handles[1]);
ASSERT_OK(s);
s = db->DropColumnFamily(handles[2]);
ASSERT_OK(s);
delete txn;
delete txn2;
for (auto handle : handles) {
delete handle;
}
}
TEST_P(TransactionTest, WriteImportedColumnFamilyTest) {
WriteOptions write_options;
ReadOptions read_options;
ColumnFamilyOptions cf_options;
ImportColumnFamilyOptions import_options;
ExportImportFilesMetaData* metadata_ptr = nullptr;
ColumnFamilyHandle* import_cf = nullptr;
ColumnFamilyHandle* export_cf = nullptr;
std::string export_files_dir = test::PerThreadDBPath(env.get(), "cf_export");
std::string value;
Status s;
{
// Create a column family to export
s = db->CreateColumnFamily(cf_options, "CF_EXPORT", &export_cf);
ASSERT_OK(s);
// Write some data to the db
WriteBatch batch;
ASSERT_OK(batch.Put(export_cf, "K1", "V1"));
ASSERT_OK(batch.Put(export_cf, "K2", "V2"));
s = db->Write(write_options, &batch);
ASSERT_OK(s);
Checkpoint* checkpoint = nullptr;
s = Checkpoint::Create(db, &checkpoint);
ASSERT_OK(s);
s = checkpoint->ExportColumnFamily(export_cf, export_files_dir,
&metadata_ptr);
ASSERT_OK(s);
ASSERT_NE(metadata_ptr, nullptr);
delete checkpoint;
s = db->DropColumnFamily(export_cf);
ASSERT_OK(s);
delete export_cf;
}
{
// Create a new column family with import
s = db->CreateColumnFamilyWithImport(
cf_options, "CF_IMPORT", import_options, *metadata_ptr, &import_cf);
ASSERT_OK(s);
s = db->Get(read_options, import_cf, "K1", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "V1");
s = db->Get(read_options, import_cf, "K2", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "V2");
// Wirte a new key-value pair
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = txn->Put(import_cf, "K3", "V3");
ASSERT_OK(s);
s = txn->Commit();
ASSERT_OK(s);
delete txn;
s = db->Get(read_options, import_cf, "K3", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "V3");
s = db->DropColumnFamily(import_cf);
ASSERT_OK(s);
delete import_cf;
}
delete metadata_ptr;
EXPECT_OK(DestroyDir(env.get(), export_files_dir));
}
TEST_P(TransactionTest, MultiGetBatchedTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
TransactionOptions txn_options;
std::string value;
Status s;
ColumnFamilyHandle* cf;
ColumnFamilyOptions cf_options;
// Create a new column families
s = db->CreateColumnFamily(cf_options, "CF", &cf);
ASSERT_OK(s);
delete cf;
delete db;
db = nullptr;
// open DB with three column families
std::vector<ColumnFamilyDescriptor> column_families;
// have to open default column family
column_families.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
// open the new column families
cf_options.merge_operator = MergeOperators::CreateStringAppendOperator();
column_families.emplace_back("CF", cf_options);
std::vector<ColumnFamilyHandle*> handles;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
ASSERT_OK(ReOpenNoDelete(column_families, &handles));
assert(db != nullptr);
// Write some data to the db
WriteBatch batch;
ASSERT_OK(batch.Put(handles[1], "aaa", "val1"));
ASSERT_OK(batch.Put(handles[1], "bbb", "val2"));
ASSERT_OK(batch.Put(handles[1], "ccc", "val3"));
ASSERT_OK(batch.Put(handles[1], "ddd", "foo"));
ASSERT_OK(batch.Put(handles[1], "eee", "val5"));
ASSERT_OK(batch.Put(handles[1], "fff", "val6"));
ASSERT_OK(batch.Merge(handles[1], "ggg", "foo"));
s = db->Write(write_options, &batch);
ASSERT_OK(s);
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
txn_options.set_snapshot = true;
// Write some data to the db
s = txn->Delete(handles[1], "bbb");
ASSERT_OK(s);
s = txn->Put(handles[1], "ccc", "val3_new");
ASSERT_OK(s);
s = txn->Merge(handles[1], "ddd", "bar");
ASSERT_OK(s);
std::vector<Slice> keys = {"aaa", "bbb", "ccc", "ddd", "eee", "fff", "ggg"};
std::vector<PinnableSlice> values(keys.size());
std::vector<Status> statuses(keys.size());
txn->MultiGet(snapshot_read_options, handles[1], keys.size(), keys.data(),
values.data(), statuses.data());
ASSERT_TRUE(statuses[0].ok());
ASSERT_EQ(values[0], "val1");
ASSERT_TRUE(statuses[1].IsNotFound());
ASSERT_TRUE(statuses[2].ok());
ASSERT_EQ(values[2], "val3_new");
ASSERT_TRUE(statuses[3].ok());
ASSERT_EQ(values[3], "foo,bar");
ASSERT_TRUE(statuses[4].ok());
ASSERT_EQ(values[4], "val5");
ASSERT_TRUE(statuses[5].ok());
ASSERT_EQ(values[5], "val6");
ASSERT_TRUE(statuses[6].ok());
ASSERT_EQ(values[6], "foo");
delete txn;
for (auto handle : handles) {
delete handle;
}
}
// This test calls WriteBatchWithIndex::MultiGetFromBatchAndDB with a large
// number of keys, i.e greater than MultiGetContext::MAX_BATCH_SIZE, which is
// is 32. This forces autovector allocations in the MultiGet code paths
// to use std::vector in addition to stack allocations. The MultiGet keys
// includes Merges, which are handled specially in MultiGetFromBatchAndDB by
// allocating an autovector of MergeContexts
TEST_P(TransactionTest, MultiGetLargeBatchedTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
ColumnFamilyHandle* cf;
ColumnFamilyOptions cf_options;
std::vector<std::string> key_str;
for (int i = 0; i < 100; ++i) {
key_str.emplace_back(std::to_string(i));
}
// Create a new column families
s = db->CreateColumnFamily(cf_options, "CF", &cf);
ASSERT_OK(s);
delete cf;
delete db;
db = nullptr;
// open DB with three column families
std::vector<ColumnFamilyDescriptor> column_families;
// have to open default column family
column_families.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
// open the new column families
cf_options.merge_operator = MergeOperators::CreateStringAppendOperator();
column_families.emplace_back("CF", cf_options);
std::vector<ColumnFamilyHandle*> handles;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
ASSERT_OK(ReOpenNoDelete(column_families, &handles));
assert(db != nullptr);
// Write some data to the db
WriteBatch batch;
for (int i = 0; i < 3 * MultiGetContext::MAX_BATCH_SIZE; ++i) {
std::string val = "val" + std::to_string(i);
ASSERT_OK(batch.Put(handles[1], key_str[i], val));
}
s = db->Write(write_options, &batch);
ASSERT_OK(s);
WriteBatchWithIndex wb;
// Write some data to the db
s = wb.Delete(handles[1], std::to_string(1));
ASSERT_OK(s);
s = wb.Put(handles[1], std::to_string(2), "new_val" + std::to_string(2));
ASSERT_OK(s);
// Write a lot of merges so when we call MultiGetFromBatchAndDB later on,
// it is forced to use std::vector in ROCKSDB_NAMESPACE::autovector to
// allocate MergeContexts. The number of merges needs to be >
// MultiGetContext::MAX_BATCH_SIZE
for (int i = 8; i < MultiGetContext::MAX_BATCH_SIZE + 24; ++i) {
s = wb.Merge(handles[1], std::to_string(i), "merge");
ASSERT_OK(s);
}
// MultiGet a lot of keys in order to force std::vector reallocations
std::vector<Slice> keys;
for (int i = 0; i < MultiGetContext::MAX_BATCH_SIZE + 32; ++i) {
keys.emplace_back(key_str[i]);
}
std::vector<PinnableSlice> values(keys.size());
std::vector<Status> statuses(keys.size());
wb.MultiGetFromBatchAndDB(db, snapshot_read_options, handles[1], keys.size(),
keys.data(), values.data(), statuses.data(), false);
for (size_t i = 0; i < keys.size(); ++i) {
if (i == 1) {
ASSERT_TRUE(statuses[1].IsNotFound());
} else if (i == 2) {
ASSERT_TRUE(statuses[2].ok());
ASSERT_EQ(values[2], "new_val" + std::to_string(2));
} else if (i >= 8 && i < 56) {
ASSERT_TRUE(statuses[i].ok());
ASSERT_EQ(values[i], "val" + std::to_string(i) + ",merge");
} else {
ASSERT_TRUE(statuses[i].ok());
if (values[i] != "val" + std::to_string(i)) {
ASSERT_EQ(values[i], "val" + std::to_string(i));
}
}
}
for (auto handle : handles) {
delete handle;
}
}
TEST_P(TransactionTest, MultiGetSnapshot) {
WriteOptions write_options;
TransactionOptions transaction_options;
Transaction* txn1 = db->BeginTransaction(write_options, transaction_options);
Slice key = "foo";
Status s = txn1->Put(key, "bar");
ASSERT_OK(s);
s = txn1->SetName("test");
ASSERT_OK(s);
s = txn1->Prepare();
ASSERT_OK(s);
// Get snapshot between prepare and commit
// Un-committed data should be invisible to other transactions
const Snapshot* s1 = db->GetSnapshot();
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
Transaction* txn2 = db->BeginTransaction(write_options, transaction_options);
ReadOptions read_options;
read_options.snapshot = s1;
std::vector<Slice> keys;
std::vector<PinnableSlice> values(1);
std::vector<Status> statuses(1);
keys.push_back(key);
auto cfd = db->DefaultColumnFamily();
txn2->MultiGet(read_options, cfd, 1, keys.data(), values.data(),
statuses.data());
ASSERT_TRUE(statuses[0].IsNotFound());
delete txn2;
db->ReleaseSnapshot(s1);
}
TEST_P(TransactionTest, ColumnFamiliesTest2) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
ColumnFamilyHandle *one, *two;
ColumnFamilyOptions cf_options;
// Create 2 new column families
s = db->CreateColumnFamily(cf_options, "ONE", &one);
ASSERT_OK(s);
s = db->CreateColumnFamily(cf_options, "TWO", &two);
ASSERT_OK(s);
Transaction* txn1 = db->BeginTransaction(write_options);
ASSERT_TRUE(txn1);
Transaction* txn2 = db->BeginTransaction(write_options);
ASSERT_TRUE(txn2);
s = txn1->Put(one, "X", "1");
ASSERT_OK(s);
s = txn1->Put(two, "X", "2");
ASSERT_OK(s);
s = txn1->Put("X", "0");
ASSERT_OK(s);
s = txn2->Put(one, "X", "11");
ASSERT_TRUE(s.IsTimedOut());
s = txn1->Commit();
ASSERT_OK(s);
// Drop first column family
s = db->DropColumnFamily(one);
ASSERT_OK(s);
// Should fail since column family was dropped.
s = txn2->Commit();
ASSERT_OK(s);
delete txn1;
txn1 = db->BeginTransaction(write_options);
ASSERT_TRUE(txn1);
// Should fail since column family was dropped
s = txn1->Put(one, "X", "111");
ASSERT_TRUE(s.IsInvalidArgument());
s = txn1->Put(two, "X", "222");
ASSERT_OK(s);
s = txn1->Put("X", "000");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = db->Get(read_options, two, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("222", value);
s = db->Get(read_options, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("000", value);
s = db->DropColumnFamily(two);
ASSERT_OK(s);
delete txn1;
delete txn2;
delete one;
delete two;
}
TEST_P(TransactionTest, EmptyTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
s = db->Put(write_options, "aaa", "aaa");
ASSERT_OK(s);
Transaction* txn = db->BeginTransaction(write_options);
s = txn->Commit();
ASSERT_OK(s);
delete txn;
txn = db->BeginTransaction(write_options);
ASSERT_OK(txn->Rollback());
delete txn;
txn = db->BeginTransaction(write_options);
s = txn->GetForUpdate(read_options, "aaa", &value);
ASSERT_EQ(value, "aaa");
s = txn->Commit();
ASSERT_OK(s);
delete txn;
txn = db->BeginTransaction(write_options);
txn->SetSnapshot();
s = txn->GetForUpdate(read_options, "aaa", &value);
ASSERT_EQ(value, "aaa");
// Conflicts with previous GetForUpdate
s = db->Put(write_options, "aaa", "xxx");
ASSERT_TRUE(s.IsTimedOut());
// transaction expired!
s = txn->Commit();
ASSERT_OK(s);
delete txn;
}
TEST_P(TransactionTest, PredicateManyPreceders) {
WriteOptions write_options;
ReadOptions read_options1, read_options2;
TransactionOptions txn_options;
std::string value;
Status s;
txn_options.set_snapshot = true;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
Transaction* txn2 = db->BeginTransaction(write_options);
txn2->SetSnapshot();
read_options2.snapshot = txn2->GetSnapshot();
std::vector<Slice> multiget_keys = {"1", "2", "3"};
std::vector<std::string> multiget_values;
std::vector<Status> results =
txn1->MultiGetForUpdate(read_options1, multiget_keys, &multiget_values);
ASSERT_EQ(results.size(), 3);
ASSERT_TRUE(results[0].IsNotFound());
ASSERT_TRUE(results[1].IsNotFound());
ASSERT_TRUE(results[2].IsNotFound());
s = txn2->Put("2", "x"); // Conflict's with txn1's MultiGetForUpdate
ASSERT_TRUE(s.IsTimedOut());
ASSERT_OK(txn2->Rollback());
multiget_values.clear();
results =
txn1->MultiGetForUpdate(read_options1, multiget_keys, &multiget_values);
ASSERT_EQ(results.size(), 3);
ASSERT_TRUE(results[0].IsNotFound());
ASSERT_TRUE(results[1].IsNotFound());
ASSERT_TRUE(results[2].IsNotFound());
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
delete txn2;
txn1 = db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
s = txn1->Put("4", "x");
ASSERT_OK(s);
s = txn2->Delete("4"); // conflict
ASSERT_TRUE(s.IsTimedOut());
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->GetForUpdate(read_options2, "4", &value);
ASSERT_TRUE(s.IsBusy());
ASSERT_OK(txn2->Rollback());
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, LostUpdate) {
WriteOptions write_options;
ReadOptions read_options, read_options1, read_options2;
TransactionOptions txn_options;
std::string value;
Status s;
// Test 2 transactions writing to the same key in multiple orders and
// with/without snapshots
Transaction* txn1 = db->BeginTransaction(write_options);
Transaction* txn2 = db->BeginTransaction(write_options);
s = txn1->Put("1", "1");
ASSERT_OK(s);
s = txn2->Put("1", "2"); // conflict
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Commit();
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "1", &value);
ASSERT_OK(s);
ASSERT_EQ("1", value);
delete txn1;
delete txn2;
txn_options.set_snapshot = true;
txn1 = db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
s = txn1->Put("1", "3");
ASSERT_OK(s);
s = txn2->Put("1", "4"); // conflict
ASSERT_TRUE(s.IsTimedOut());
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "1", &value);
ASSERT_OK(s);
ASSERT_EQ("3", value);
delete txn1;
delete txn2;
txn1 = db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
s = txn1->Put("1", "5");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->Put("1", "6");
ASSERT_TRUE(s.IsBusy());
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "1", &value);
ASSERT_OK(s);
ASSERT_EQ("5", value);
delete txn1;
delete txn2;
txn1 = db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
s = txn1->Put("1", "7");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
txn2->SetSnapshot();
s = txn2->Put("1", "8");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "1", &value);
ASSERT_OK(s);
ASSERT_EQ("8", value);
delete txn1;
delete txn2;
txn1 = db->BeginTransaction(write_options);
txn2 = db->BeginTransaction(write_options);
s = txn1->Put("1", "9");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->Put("1", "10");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn1;
delete txn2;
s = db->Get(read_options, "1", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "10");
}
TEST_P(TransactionTest, UntrackedWrites) {
if (txn_db_options.write_policy == WRITE_UNPREPARED) {
// TODO(lth): For WriteUnprepared, validate that untracked writes are
// not supported.
return;
}
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
// Verify transaction rollback works for untracked keys.
Transaction* txn = db->BeginTransaction(write_options);
txn->SetSnapshot();
s = txn->PutUntracked("untracked", "0");
ASSERT_OK(s);
ASSERT_OK(txn->Rollback());
s = db->Get(read_options, "untracked", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
txn = db->BeginTransaction(write_options);
txn->SetSnapshot();
s = db->Put(write_options, "untracked", "x");
ASSERT_OK(s);
// Untracked writes should succeed even though key was written after snapshot
s = txn->PutUntracked("untracked", "1");
ASSERT_OK(s);
s = txn->MergeUntracked("untracked", "2");
ASSERT_OK(s);
s = txn->DeleteUntracked("untracked");
ASSERT_OK(s);
// Conflict
s = txn->Put("untracked", "3");
ASSERT_TRUE(s.IsBusy());
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "untracked", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
}
TEST_P(TransactionTest, ExpiredTransaction) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
// Set txn expiration timeout to 0 microseconds (expires instantly)
txn_options.expiration = 0;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
s = txn1->Put("X", "1");
ASSERT_OK(s);
s = txn1->Put("Y", "1");
ASSERT_OK(s);
Transaction* txn2 = db->BeginTransaction(write_options);
// txn2 should be able to write to X since txn1 has expired
s = txn2->Put("X", "2");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("2", value);
s = txn1->Put("Z", "1");
ASSERT_OK(s);
// txn1 should fail to commit since it is expired
s = txn1->Commit();
ASSERT_TRUE(s.IsExpired());
s = db->Get(read_options, "Y", &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, "Z", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, ReinitializeTest) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
// Set txn expiration timeout to 0 microseconds (expires instantly)
txn_options.expiration = 0;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
// Reinitialize transaction to no long expire
txn_options.expiration = -1;
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
s = txn1->Put("Z", "z");
ASSERT_OK(s);
// Should commit since not expired
s = txn1->Commit();
ASSERT_OK(s);
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
s = txn1->Put("Z", "zz");
ASSERT_OK(s);
// Reinitilize txn1 and verify that Z gets unlocked
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
Transaction* txn2 = db->BeginTransaction(write_options, txn_options, nullptr);
s = txn2->Put("Z", "zzz");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
s = db->Get(read_options, "Z", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "zzz");
// Verify snapshots get reinitialized correctly
txn1->SetSnapshot();
s = txn1->Put("Z", "zzzz");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "Z", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "zzzz");
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
const Snapshot* snapshot = txn1->GetSnapshot();
ASSERT_FALSE(snapshot);
txn_options.set_snapshot = true;
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
snapshot = txn1->GetSnapshot();
ASSERT_TRUE(snapshot);
s = txn1->Put("Z", "a");
ASSERT_OK(s);
ASSERT_OK(txn1->Rollback());
s = txn1->Put("Y", "y");
ASSERT_OK(s);
txn_options.set_snapshot = false;
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
snapshot = txn1->GetSnapshot();
ASSERT_FALSE(snapshot);
s = txn1->Put("X", "x");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "Z", &value);
ASSERT_OK(s);
ASSERT_EQ(value, "zzzz");
s = db->Get(read_options, "Y", &value);
ASSERT_TRUE(s.IsNotFound());
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
s = txn1->SetName("name");
ASSERT_OK(s);
s = txn1->Prepare();
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
txn1 = db->BeginTransaction(write_options, txn_options, txn1);
s = txn1->SetName("name");
ASSERT_OK(s);
delete txn1;
}
TEST_P(TransactionTest, Rollback) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(s);
s = txn1->Put("X", "1");
ASSERT_OK(s);
Transaction* txn2 = db->BeginTransaction(write_options);
// txn2 should not be able to write to X since txn1 has it locked
s = txn2->Put("X", "2");
ASSERT_TRUE(s.IsTimedOut());
ASSERT_OK(txn1->Rollback());
delete txn1;
// txn2 should now be able to write to X
s = txn2->Put("X", "3");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("3", value);
delete txn2;
}
TEST_P(TransactionTest, LockLimitTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
TransactionOptions txn_options;
std::string value;
Status s;
delete db;
db = nullptr;
// Open DB with a lock limit of 3
txn_db_options.max_num_locks = 3;
ASSERT_OK(ReOpen());
assert(db != nullptr);
ASSERT_OK(s);
// Create a txn and verify we can only lock up to 3 keys
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn);
s = txn->Put("X", "x");
ASSERT_OK(s);
s = txn->Put("Y", "y");
ASSERT_OK(s);
s = txn->Put("Z", "z");
ASSERT_OK(s);
// lock limit reached
s = txn->Put("W", "w");
ASSERT_TRUE(s.IsBusy());
// re-locking same key shouldn't put us over the limit
s = txn->Put("X", "xx");
ASSERT_OK(s);
s = txn->GetForUpdate(read_options, "W", &value);
ASSERT_TRUE(s.IsBusy());
s = txn->GetForUpdate(read_options, "V", &value);
ASSERT_TRUE(s.IsBusy());
// re-locking same key shouldn't put us over the limit
s = txn->GetForUpdate(read_options, "Y", &value);
ASSERT_OK(s);
ASSERT_EQ("y", value);
s = txn->Get(read_options, "W", &value);
ASSERT_TRUE(s.IsNotFound());
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
// "X" currently locked
s = txn2->Put("X", "x");
ASSERT_TRUE(s.IsTimedOut());
// lock limit reached
s = txn2->Put("M", "m");
ASSERT_TRUE(s.IsBusy());
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("xx", value);
s = db->Get(read_options, "W", &value);
ASSERT_TRUE(s.IsNotFound());
// Committing txn should release its locks and allow txn2 to proceed
s = txn2->Put("X", "x2");
ASSERT_OK(s);
s = txn2->Delete("X");
ASSERT_OK(s);
s = txn2->Put("M", "m");
ASSERT_OK(s);
s = txn2->Put("Z", "z2");
ASSERT_OK(s);
// lock limit reached
s = txn2->Delete("Y");
ASSERT_TRUE(s.IsBusy());
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "Z", &value);
ASSERT_OK(s);
ASSERT_EQ("z2", value);
s = db->Get(read_options, "Y", &value);
ASSERT_OK(s);
ASSERT_EQ("y", value);
s = db->Get(read_options, "X", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
delete txn2;
}
TEST_P(TransactionTest, IteratorTest) {
// This test does writes without snapshot validation, and then tries to create
// iterator later, which is unsupported in write unprepared.
if (txn_db_options.write_policy == WRITE_UNPREPARED) {
return;
}
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
// Write some keys to the db
s = db->Put(write_options, "A", "a");
ASSERT_OK(s);
s = db->Put(write_options, "G", "g");
ASSERT_OK(s);
s = db->Put(write_options, "F", "f");
ASSERT_OK(s);
s = db->Put(write_options, "C", "c");
ASSERT_OK(s);
s = db->Put(write_options, "D", "d");
ASSERT_OK(s);
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
// Write some keys in a txn
s = txn->Put("B", "b");
ASSERT_OK(s);
s = txn->Put("H", "h");
ASSERT_OK(s);
s = txn->Delete("D");
ASSERT_OK(s);
s = txn->Put("E", "e");
ASSERT_OK(s);
txn->SetSnapshot();
const Snapshot* snapshot = txn->GetSnapshot();
// Write some keys to the db after the snapshot
s = db->Put(write_options, "BB", "xx");
ASSERT_OK(s);
s = db->Put(write_options, "C", "xx");
ASSERT_OK(s);
read_options.snapshot = snapshot;
Iterator* iter = txn->GetIterator(read_options);
ASSERT_OK(iter->status());
iter->SeekToFirst();
// Read all keys via iter and lock them all
std::string results[] = {"a", "b", "c", "e", "f", "g", "h"};
for (int i = 0; i < 7; i++) {
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(results[i], iter->value().ToString());
s = txn->GetForUpdate(read_options, iter->key(), (std::string*)nullptr);
if (i == 2) {
// "C" was modified after txn's snapshot
ASSERT_TRUE(s.IsBusy());
} else {
ASSERT_OK(s);
}
iter->Next();
}
ASSERT_FALSE(iter->Valid());
iter->Seek("G");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("g", iter->value().ToString());
iter->Prev();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("f", iter->value().ToString());
iter->Seek("D");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("e", iter->value().ToString());
iter->Seek("C");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("c", iter->value().ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("e", iter->value().ToString());
iter->Seek("");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->value().ToString());
iter->Seek("X");
ASSERT_OK(iter->status());
ASSERT_FALSE(iter->Valid());
iter->SeekToLast();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("h", iter->value().ToString());
s = txn->Commit();
ASSERT_OK(s);
delete iter;
delete txn;
}
TEST_P(TransactionTest, DisableIndexingTest) {
// Skip this test for write unprepared. It does not solely rely on WBWI for
// read your own writes, so depending on whether batches are flushed or not,
// only some writes will be visible.
//
// Also, write unprepared does not support creating iterators if there has
// been txn->Put() without snapshot validation.
if (txn_db_options.write_policy == WRITE_UNPREPARED) {
return;
}
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = txn->Put("A", "a");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
txn->DisableIndexing();
s = txn->Put("B", "b");
ASSERT_OK(s);
s = txn->Get(read_options, "B", &value);
ASSERT_TRUE(s.IsNotFound());
Iterator* iter = txn->GetIterator(read_options);
ASSERT_OK(iter->status());
iter->Seek("B");
ASSERT_OK(iter->status());
ASSERT_FALSE(iter->Valid());
s = txn->Delete("A");
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
txn->EnableIndexing();
s = txn->Put("B", "bb");
ASSERT_OK(s);
iter->Seek("B");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bb", iter->value().ToString());
s = txn->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("bb", value);
s = txn->Put("A", "aa");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("aa", value);
delete iter;
delete txn;
}
TEST_P(TransactionTest, SavepointTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
ASSERT_EQ(0, txn->GetNumPuts());
s = txn->RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
txn->SetSavePoint(); // 1
ASSERT_OK(txn->RollbackToSavePoint()); // Rollback to beginning of txn
s = txn->RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
s = txn->Put("B", "b");
ASSERT_OK(s);
ASSERT_EQ(1, txn->GetNumPuts());
ASSERT_EQ(0, txn->GetNumDeletes());
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("b", value);
delete txn;
txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = txn->Put("A", "a");
ASSERT_OK(s);
s = txn->Put("B", "bb");
ASSERT_OK(s);
s = txn->Put("C", "c");
ASSERT_OK(s);
txn->SetSavePoint(); // 2
s = txn->Delete("B");
ASSERT_OK(s);
s = txn->Put("C", "cc");
ASSERT_OK(s);
s = txn->Put("D", "d");
ASSERT_OK(s);
ASSERT_EQ(5, txn->GetNumPuts());
ASSERT_EQ(1, txn->GetNumDeletes());
ASSERT_OK(txn->RollbackToSavePoint()); // Rollback to 2
ASSERT_EQ(3, txn->GetNumPuts());
ASSERT_EQ(0, txn->GetNumDeletes());
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
s = txn->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("bb", value);
s = txn->Get(read_options, "C", &value);
ASSERT_OK(s);
ASSERT_EQ("c", value);
s = txn->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Put("A", "a");
ASSERT_OK(s);
s = txn->Put("E", "e");
ASSERT_OK(s);
ASSERT_EQ(5, txn->GetNumPuts());
ASSERT_EQ(0, txn->GetNumDeletes());
// Rollback to beginning of txn
s = txn->RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Rollback());
ASSERT_EQ(0, txn->GetNumPuts());
ASSERT_EQ(0, txn->GetNumDeletes());
s = txn->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("b", value);
s = txn->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "E", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Put("A", "aa");
ASSERT_OK(s);
s = txn->Put("F", "f");
ASSERT_OK(s);
ASSERT_EQ(2, txn->GetNumPuts());
ASSERT_EQ(0, txn->GetNumDeletes());
txn->SetSavePoint(); // 3
txn->SetSavePoint(); // 4
s = txn->Put("G", "g");
ASSERT_OK(s);
s = txn->SingleDelete("F");
ASSERT_OK(s);
s = txn->Delete("B");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("aa", value);
s = txn->Get(read_options, "F", &value);
// According to db.h, doing a SingleDelete on a key that has been
// overwritten will have undefinied behavior. So it is unclear what the
// result of fetching "F" should be. The current implementation will
// return NotFound in this case.
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "B", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(3, txn->GetNumPuts());
ASSERT_EQ(2, txn->GetNumDeletes());
ASSERT_OK(txn->RollbackToSavePoint()); // Rollback to 3
ASSERT_EQ(2, txn->GetNumPuts());
ASSERT_EQ(0, txn->GetNumDeletes());
s = txn->Get(read_options, "F", &value);
ASSERT_OK(s);
ASSERT_EQ("f", value);
s = txn->Get(read_options, "G", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "F", &value);
ASSERT_OK(s);
ASSERT_EQ("f", value);
s = db->Get(read_options, "G", &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("aa", value);
s = db->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("b", value);
s = db->Get(read_options, "C", &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, "E", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
}
TEST_P(TransactionTest, SavepointTest2) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
Status s;
txn_options.lock_timeout = 1; // 1 ms
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
s = txn1->Put("A", "");
ASSERT_OK(s);
txn1->SetSavePoint(); // 1
s = txn1->Put("A", "a");
ASSERT_OK(s);
s = txn1->Put("C", "c");
ASSERT_OK(s);
txn1->SetSavePoint(); // 2
s = txn1->Put("A", "a");
ASSERT_OK(s);
s = txn1->Put("B", "b");
ASSERT_OK(s);
ASSERT_OK(txn1->RollbackToSavePoint()); // Rollback to 2
// Verify that "A" and "C" is still locked while "B" is not
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
s = txn2->Put("A", "a2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b2");
ASSERT_OK(s);
s = txn1->Put("A", "aa");
ASSERT_OK(s);
s = txn1->Put("B", "bb");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
s = txn1->Put("A", "aaa");
ASSERT_OK(s);
s = txn1->Put("B", "bbb");
ASSERT_OK(s);
s = txn1->Put("C", "ccc");
ASSERT_OK(s);
txn1->SetSavePoint(); // 3
ASSERT_OK(txn1->RollbackToSavePoint()); // Rollback to 3
// Verify that "A", "B", "C" are still locked
txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
s = txn2->Put("A", "a2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c2");
ASSERT_TRUE(s.IsTimedOut());
ASSERT_OK(txn1->RollbackToSavePoint()); // Rollback to 1
// Verify that only "A" is locked
s = txn2->Put("A", "a3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b3");
ASSERT_OK(s);
s = txn2->Put("C", "c3po");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
// Verify "A" "C" "B" are no longer locked
s = txn2->Put("A", "a4");
ASSERT_OK(s);
s = txn2->Put("B", "b4");
ASSERT_OK(s);
s = txn2->Put("C", "c4");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
}
TEST_P(TransactionTest, SavepointTest3) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
Status s;
txn_options.lock_timeout = 1; // 1 ms
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
s = txn1->PopSavePoint(); // No SavePoint present
ASSERT_TRUE(s.IsNotFound());
s = txn1->Put("A", "");
ASSERT_OK(s);
s = txn1->PopSavePoint(); // Still no SavePoint present
ASSERT_TRUE(s.IsNotFound());
txn1->SetSavePoint(); // 1
s = txn1->Put("A", "a");
ASSERT_OK(s);
s = txn1->PopSavePoint(); // Remove 1
ASSERT_TRUE(txn1->RollbackToSavePoint().IsNotFound());
// Verify that "A" is still locked
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
s = txn2->Put("A", "a2");
ASSERT_TRUE(s.IsTimedOut());
delete txn2;
txn1->SetSavePoint(); // 2
s = txn1->Put("B", "b");
ASSERT_OK(s);
txn1->SetSavePoint(); // 3
s = txn1->Put("B", "b2");
ASSERT_OK(s);
ASSERT_OK(txn1->RollbackToSavePoint()); // Roll back to 2
s = txn1->PopSavePoint();
ASSERT_OK(s);
s = txn1->PopSavePoint();
ASSERT_TRUE(s.IsNotFound());
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
std::string value;
// tnx1 should have modified "A" to "a"
s = db->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
// tnx1 should have set "B" to just "b"
s = db->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("b", value);
s = db->Get(read_options, "C", &value);
ASSERT_TRUE(s.IsNotFound());
}
TEST_P(TransactionTest, SavepointTest4) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
Status s;
txn_options.lock_timeout = 1; // 1 ms
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
txn1->SetSavePoint(); // 1
s = txn1->Put("A", "a");
ASSERT_OK(s);
txn1->SetSavePoint(); // 2
s = txn1->Put("B", "b");
ASSERT_OK(s);
s = txn1->PopSavePoint(); // Remove 2
ASSERT_OK(s);
// Verify that A/B still exists.
std::string value;
ASSERT_OK(txn1->Get(read_options, "A", &value));
ASSERT_EQ("a", value);
ASSERT_OK(txn1->Get(read_options, "B", &value));
ASSERT_EQ("b", value);
ASSERT_OK(txn1->RollbackToSavePoint()); // Rollback to 1
// Verify that everything was rolled back.
s = txn1->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->Get(read_options, "B", &value);
ASSERT_TRUE(s.IsNotFound());
// Nothing should be locked
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
s = txn2->Put("A", "");
ASSERT_OK(s);
s = txn2->Put("B", "");
ASSERT_OK(s);
delete txn2;
delete txn1;
}
TEST_P(TransactionTest, UndoGetForUpdateTest) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
txn_options.lock_timeout = 1; // 1 ms
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
txn1->UndoGetForUpdate("A");
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
txn1 = db->BeginTransaction(write_options, txn_options);
txn1->UndoGetForUpdate("A");
s = txn1->GetForUpdate(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
// Verify that A is locked
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
s = txn2->Put("A", "a");
ASSERT_TRUE(s.IsTimedOut());
txn1->UndoGetForUpdate("A");
// Verify that A is now unlocked
s = txn2->Put("A", "a2");
ASSERT_OK(s);
ASSERT_OK(txn2->Commit());
delete txn2;
s = db->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a2", value);
s = txn1->Delete("A");
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->Put("B", "b3");
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "B", &value);
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
// Verify that A and B are still locked
txn2 = db->BeginTransaction(write_options, txn_options);
s = txn2->Put("A", "a4");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b4");
ASSERT_TRUE(s.IsTimedOut());
ASSERT_OK(txn1->Rollback());
delete txn1;
// Verify that A and B are no longer locked
s = txn2->Put("A", "a5");
ASSERT_OK(s);
s = txn2->Put("B", "b5");
ASSERT_OK(s);
s = txn2->Commit();
delete txn2;
ASSERT_OK(s);
txn1 = db->BeginTransaction(write_options, txn_options);
s = txn1->GetForUpdate(read_options, "A", &value);
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "A", &value);
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "C", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->GetForUpdate(read_options, "A", &value);
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "C", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->GetForUpdate(read_options, "B", &value);
ASSERT_OK(s);
s = txn1->Put("B", "b5");
s = txn1->GetForUpdate(read_options, "B", &value);
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("X");
// Verify A,B,C are locked
txn2 = db->BeginTransaction(write_options, txn_options);
s = txn2->Put("A", "a6");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Delete("B");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c6");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("X", "x6");
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("X");
// Verify A,B are locked and C is not
s = txn2->Put("A", "a6");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Delete("B");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c6");
ASSERT_OK(s);
s = txn2->Put("X", "x6");
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("X");
// Verify B is locked and A and C are not
s = txn2->Put("A", "a7");
ASSERT_OK(s);
s = txn2->Delete("B");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c7");
ASSERT_OK(s);
s = txn2->Put("X", "x7");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
}
TEST_P(TransactionTest, UndoGetForUpdateTest2) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
std::string value;
Status s;
s = db->Put(write_options, "A", "");
ASSERT_OK(s);
txn_options.lock_timeout = 1; // 1 ms
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn1);
s = txn1->GetForUpdate(read_options, "A", &value);
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "B", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->Put("F", "f");
ASSERT_OK(s);
txn1->SetSavePoint(); // 1
txn1->UndoGetForUpdate("A");
s = txn1->GetForUpdate(read_options, "C", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->GetForUpdate(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn1->Put("E", "e");
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "E", &value);
ASSERT_OK(s);
s = txn1->GetForUpdate(read_options, "F", &value);
ASSERT_OK(s);
// Verify A,B,C,D,E,F are still locked
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
s = txn2->Put("A", "a1");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b1");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c1");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("D", "d1");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("E", "e1");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("F", "f1");
ASSERT_TRUE(s.IsTimedOut());
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("E");
// Verify A,B,D,E,F are still locked and C is not.
s = txn2->Put("A", "a2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("D", "d2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("E", "e2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("F", "f2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c2");
ASSERT_OK(s);
txn1->SetSavePoint(); // 2
s = txn1->Put("H", "h");
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("D");
txn1->UndoGetForUpdate("E");
txn1->UndoGetForUpdate("F");
txn1->UndoGetForUpdate("G");
txn1->UndoGetForUpdate("H");
// Verify A,B,D,E,F,H are still locked and C,G are not.
s = txn2->Put("A", "a3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("D", "d3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("E", "e3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("F", "f3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("H", "h3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c3");
ASSERT_OK(s);
s = txn2->Put("G", "g3");
ASSERT_OK(s);
ASSERT_OK(txn1->RollbackToSavePoint()); // rollback to 2
// Verify A,B,D,E,F are still locked and C,G,H are not.
s = txn2->Put("A", "a3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("D", "d3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("E", "e3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("F", "f3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c3");
ASSERT_OK(s);
s = txn2->Put("G", "g3");
ASSERT_OK(s);
s = txn2->Put("H", "h3");
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("D");
txn1->UndoGetForUpdate("E");
txn1->UndoGetForUpdate("F");
txn1->UndoGetForUpdate("G");
txn1->UndoGetForUpdate("H");
// Verify A,B,E,F are still locked and C,D,G,H are not.
s = txn2->Put("A", "a3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("E", "e3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("F", "f3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c3");
ASSERT_OK(s);
s = txn2->Put("D", "d3");
ASSERT_OK(s);
s = txn2->Put("G", "g3");
ASSERT_OK(s);
s = txn2->Put("H", "h3");
ASSERT_OK(s);
ASSERT_OK(txn1->RollbackToSavePoint()); // rollback to 1
// Verify A,B,F are still locked and C,D,E,G,H are not.
s = txn2->Put("A", "a3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("B", "b3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("F", "f3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("C", "c3");
ASSERT_OK(s);
s = txn2->Put("D", "d3");
ASSERT_OK(s);
s = txn2->Put("E", "e3");
ASSERT_OK(s);
s = txn2->Put("G", "g3");
ASSERT_OK(s);
s = txn2->Put("H", "h3");
ASSERT_OK(s);
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("B");
txn1->UndoGetForUpdate("C");
txn1->UndoGetForUpdate("D");
txn1->UndoGetForUpdate("E");
txn1->UndoGetForUpdate("F");
txn1->UndoGetForUpdate("G");
txn1->UndoGetForUpdate("H");
// Verify F is still locked and A,B,C,D,E,G,H are not.
s = txn2->Put("F", "f3");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Put("A", "a3");
ASSERT_OK(s);
s = txn2->Put("B", "b3");
ASSERT_OK(s);
s = txn2->Put("C", "c3");
ASSERT_OK(s);
s = txn2->Put("D", "d3");
ASSERT_OK(s);
s = txn2->Put("E", "e3");
ASSERT_OK(s);
s = txn2->Put("G", "g3");
ASSERT_OK(s);
s = txn2->Put("H", "h3");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, TimeoutTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
delete db;
db = nullptr;
// transaction writes have an infinite timeout,
// but we will override this when we start a txn
// db writes have infinite timeout
txn_db_options.transaction_lock_timeout = -1;
txn_db_options.default_lock_timeout = -1;
s = TransactionDB::Open(options, txn_db_options, dbname, &db);
assert(db != nullptr);
ASSERT_OK(s);
s = db->Put(write_options, "aaa", "aaa");
ASSERT_OK(s);
TransactionOptions txn_options0;
txn_options0.expiration = 100; // 100ms
txn_options0.lock_timeout = 50; // txn timeout no longer infinite
Transaction* txn1 = db->BeginTransaction(write_options, txn_options0);
s = txn1->GetForUpdate(read_options, "aaa", (std::string*)nullptr);
ASSERT_OK(s);
// Conflicts with previous GetForUpdate.
// Since db writes do not have a timeout, this should eventually succeed when
// the transaction expires.
s = db->Put(write_options, "aaa", "xxx");
ASSERT_OK(s);
ASSERT_GE(txn1->GetElapsedTime(),
static_cast<uint64_t>(txn_options0.expiration));
s = txn1->Commit();
ASSERT_TRUE(s.IsExpired()); // expired!
s = db->Get(read_options, "aaa", &value);
ASSERT_OK(s);
ASSERT_EQ("xxx", value);
delete txn1;
delete db;
// transaction writes have 10ms timeout,
// db writes have infinite timeout
txn_db_options.transaction_lock_timeout = 50;
txn_db_options.default_lock_timeout = -1;
s = TransactionDB::Open(options, txn_db_options, dbname, &db);
ASSERT_OK(s);
s = db->Put(write_options, "aaa", "aaa");
ASSERT_OK(s);
TransactionOptions txn_options;
txn_options.expiration = 100; // 100ms
txn1 = db->BeginTransaction(write_options, txn_options);
s = txn1->GetForUpdate(read_options, "aaa", (std::string*)nullptr);
ASSERT_OK(s);
// Conflicts with previous GetForUpdate.
// Since db writes do not have a timeout, this should eventually succeed when
// the transaction expires.
s = db->Put(write_options, "aaa", "xxx");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_NOK(s); // expired!
s = db->Get(read_options, "aaa", &value);
ASSERT_OK(s);
ASSERT_EQ("xxx", value);
delete txn1;
txn_options.expiration = 6000000; // 100 minutes
txn_options.lock_timeout = 1; // 1ms
txn1 = db->BeginTransaction(write_options, txn_options);
txn1->SetLockTimeout(100);
TransactionOptions txn_options2;
txn_options2.expiration = 10; // 10ms
Transaction* txn2 = db->BeginTransaction(write_options, txn_options2);
ASSERT_OK(s);
s = txn2->Put("a", "2");
ASSERT_OK(s);
// txn1 has a lock timeout longer than txn2's expiration, so it will win
s = txn1->Delete("a");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
// txn2 should be expired out since txn1 waiting until its timeout expired.
s = txn2->Commit();
ASSERT_TRUE(s.IsExpired());
delete txn1;
delete txn2;
txn_options.expiration = 6000000; // 100 minutes
txn1 = db->BeginTransaction(write_options, txn_options);
txn_options2.expiration = 100000000;
txn2 = db->BeginTransaction(write_options, txn_options2);
s = txn1->Delete("asdf");
ASSERT_OK(s);
// txn2 has a smaller lock timeout than txn1's expiration, so it will time out
s = txn2->Delete("asdf");
ASSERT_TRUE(s.IsTimedOut());
ASSERT_EQ(s.ToString(), "Operation timed out: Timeout waiting to lock key");
s = txn1->Commit();
ASSERT_OK(s);
s = txn2->Put("asdf", "asdf");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
s = db->Get(read_options, "asdf", &value);
ASSERT_OK(s);
ASSERT_EQ("asdf", value);
delete txn1;
delete txn2;
}
TEST_P(TransactionTest, SingleDeleteTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = txn->SingleDelete("A");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Commit();
ASSERT_OK(s);
delete txn;
txn = db->BeginTransaction(write_options);
s = txn->SingleDelete("A");
ASSERT_OK(s);
s = txn->Put("A", "a");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
s = txn->Commit();
ASSERT_OK(s);
delete txn;
s = db->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
txn = db->BeginTransaction(write_options);
s = txn->SingleDelete("A");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Commit();
ASSERT_OK(s);
delete txn;
s = db->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
txn = db->BeginTransaction(write_options);
Transaction* txn2 = db->BeginTransaction(write_options);
txn2->SetSnapshot();
s = txn->Put("A", "a");
ASSERT_OK(s);
s = txn->Put("A", "a2");
ASSERT_OK(s);
s = txn->SingleDelete("A");
ASSERT_OK(s);
s = txn->SingleDelete("B");
ASSERT_OK(s);
// According to db.h, doing a SingleDelete on a key that has been
// overwritten will have undefinied behavior. So it is unclear what the
// result of fetching "A" should be. The current implementation will
// return NotFound in this case.
s = txn->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn2->Put("B", "b");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
s = txn->Commit();
ASSERT_OK(s);
delete txn;
// According to db.h, doing a SingleDelete on a key that has been
// overwritten will have undefinied behavior. So it is unclear what the
// result of fetching "A" should be. The current implementation will
// return NotFound in this case.
s = db->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(read_options, "B", &value);
ASSERT_TRUE(s.IsNotFound());
}
TEST_P(TransactionTest, MergeTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(write_options, TransactionOptions());
ASSERT_TRUE(txn);
s = db->Put(write_options, "A", "a0");
ASSERT_OK(s);
s = txn->Merge("A", "1");
ASSERT_OK(s);
s = txn->Merge("A", "2");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a0,1,2", value);
s = txn->Put("A", "a");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a", value);
s = txn->Merge("A", "3");
ASSERT_OK(s);
s = txn->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a,3", value);
TransactionOptions txn_options;
txn_options.lock_timeout = 1; // 1 ms
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
// verify that txn has "A" locked
s = txn2->Merge("A", "4");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
s = txn->Commit();
ASSERT_OK(s);
delete txn;
s = db->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a,3", value);
}
TEST_P(TransactionTest, DeleteRangeSupportTest) {
// The `DeleteRange()` API is banned everywhere.
ASSERT_TRUE(
db->DeleteRange(WriteOptions(), db->DefaultColumnFamily(), "a", "b")
.IsNotSupported());
// But range deletions can be added via the `Write()` API by specifying the
// proper flags to promise there are no conflicts according to the DB type
// (see `TransactionDB::DeleteRange()` API doc for details).
for (bool skip_concurrency_control : {false, true}) {
for (bool skip_duplicate_key_check : {false, true}) {
ASSERT_OK(db->Put(WriteOptions(), "a", "val"));
WriteBatch wb;
ASSERT_OK(wb.DeleteRange("a", "b"));
TransactionDBWriteOptimizations flags;
flags.skip_concurrency_control = skip_concurrency_control;
flags.skip_duplicate_key_check = skip_duplicate_key_check;
Status s = db->Write(WriteOptions(), flags, &wb);
std::string value;
switch (txn_db_options.write_policy) {
case WRITE_COMMITTED:
if (skip_concurrency_control) {
ASSERT_OK(s);
ASSERT_TRUE(db->Get(ReadOptions(), "a", &value).IsNotFound());
} else {
ASSERT_NOK(s);
ASSERT_OK(db->Get(ReadOptions(), "a", &value));
}
break;
case WRITE_PREPARED:
FALLTHROUGH_INTENDED;
case WRITE_UNPREPARED:
if (skip_concurrency_control && skip_duplicate_key_check) {
ASSERT_OK(s);
ASSERT_TRUE(db->Get(ReadOptions(), "a", &value).IsNotFound());
} else {
ASSERT_NOK(s);
ASSERT_OK(db->Get(ReadOptions(), "a", &value));
}
break;
}
// Without any promises from the user, range deletion via other `Write()`
// APIs are still banned.
ASSERT_OK(db->Put(WriteOptions(), "a", "val"));
ASSERT_NOK(db->Write(WriteOptions(), &wb));
ASSERT_OK(db->Get(ReadOptions(), "a", &value));
}
}
}
TEST_P(TransactionTest, DeferSnapshotTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
s = db->Put(write_options, "A", "a0");
ASSERT_OK(s);
Transaction* txn1 = db->BeginTransaction(write_options);
Transaction* txn2 = db->BeginTransaction(write_options);
txn1->SetSnapshotOnNextOperation();
auto snapshot = txn1->GetSnapshot();
ASSERT_FALSE(snapshot);
s = txn2->Put("A", "a2");
ASSERT_OK(s);
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
s = txn1->GetForUpdate(read_options, "A", &value);
// Should not conflict with txn2 since snapshot wasn't set until
// GetForUpdate was called.
ASSERT_OK(s);
ASSERT_EQ("a2", value);
s = txn1->Put("A", "a1");
ASSERT_OK(s);
s = db->Put(write_options, "B", "b0");
ASSERT_OK(s);
// Cannot lock B since it was written after the snapshot was set
s = txn1->Put("B", "b1");
ASSERT_TRUE(s.IsBusy());
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
s = db->Get(read_options, "A", &value);
ASSERT_OK(s);
ASSERT_EQ("a1", value);
s = db->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_EQ("b0", value);
}
TEST_P(TransactionTest, DeferSnapshotTest2) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
Transaction* txn1 = db->BeginTransaction(write_options);
txn1->SetSnapshot();
s = txn1->Put("A", "a1");
ASSERT_OK(s);
s = db->Put(write_options, "C", "c0");
ASSERT_OK(s);
s = db->Put(write_options, "D", "d0");
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
txn1->SetSnapshotOnNextOperation();
s = txn1->Get(snapshot_read_options, "C", &value);
// Snapshot was set before C was written
ASSERT_TRUE(s.IsNotFound());
s = txn1->Get(snapshot_read_options, "D", &value);
// Snapshot was set before D was written
ASSERT_TRUE(s.IsNotFound());
// Snapshot should not have changed yet.
snapshot_read_options.snapshot = txn1->GetSnapshot();
s = txn1->Get(snapshot_read_options, "C", &value);
// Snapshot was set before C was written
ASSERT_TRUE(s.IsNotFound());
s = txn1->Get(snapshot_read_options, "D", &value);
// Snapshot was set before D was written
ASSERT_TRUE(s.IsNotFound());
s = txn1->GetForUpdate(read_options, "C", &value);
ASSERT_OK(s);
ASSERT_EQ("c0", value);
s = db->Put(write_options, "D", "d00");
ASSERT_OK(s);
// Snapshot is now set
snapshot_read_options.snapshot = txn1->GetSnapshot();
s = txn1->Get(snapshot_read_options, "D", &value);
ASSERT_OK(s);
ASSERT_EQ("d0", value);
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
}
TEST_P(TransactionTest, DeferSnapshotSavePointTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
Transaction* txn1 = db->BeginTransaction(write_options);
txn1->SetSavePoint(); // 1
s = db->Put(write_options, "T", "1");
ASSERT_OK(s);
txn1->SetSnapshotOnNextOperation();
s = db->Put(write_options, "T", "2");
ASSERT_OK(s);
txn1->SetSavePoint(); // 2
s = db->Put(write_options, "T", "3");
ASSERT_OK(s);
s = txn1->Put("A", "a");
ASSERT_OK(s);
txn1->SetSavePoint(); // 3
s = db->Put(write_options, "T", "4");
ASSERT_OK(s);
txn1->SetSnapshot();
txn1->SetSnapshotOnNextOperation();
txn1->SetSavePoint(); // 4
s = db->Put(write_options, "T", "5");
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("4", value);
s = txn1->Put("A", "a1");
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("5", value);
s = txn1->RollbackToSavePoint(); // Rollback to 4
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("4", value);
s = txn1->RollbackToSavePoint(); // Rollback to 3
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("3", value);
s = txn1->Get(read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("5", value);
s = txn1->RollbackToSavePoint(); // Rollback to 2
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
ASSERT_FALSE(snapshot_read_options.snapshot);
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("5", value);
s = txn1->Delete("A");
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
ASSERT_TRUE(snapshot_read_options.snapshot);
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("5", value);
s = txn1->RollbackToSavePoint(); // Rollback to 1
ASSERT_OK(s);
s = txn1->Delete("A");
ASSERT_OK(s);
snapshot_read_options.snapshot = txn1->GetSnapshot();
ASSERT_FALSE(snapshot_read_options.snapshot);
s = txn1->Get(snapshot_read_options, "T", &value);
ASSERT_OK(s);
ASSERT_EQ("5", value);
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
}
TEST_P(TransactionTest, SetSnapshotOnNextOperationWithNotification) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
class Notifier : public TransactionNotifier {
private:
const Snapshot** snapshot_ptr_;
public:
explicit Notifier(const Snapshot** snapshot_ptr)
: snapshot_ptr_(snapshot_ptr) {}
void SnapshotCreated(const Snapshot* newSnapshot) override {
*snapshot_ptr_ = newSnapshot;
}
};
std::shared_ptr<Notifier> notifier =
std::make_shared<Notifier>(&read_options.snapshot);
Status s;
s = db->Put(write_options, "B", "0");
ASSERT_OK(s);
Transaction* txn1 = db->BeginTransaction(write_options);
txn1->SetSnapshotOnNextOperation(notifier);
ASSERT_FALSE(read_options.snapshot);
s = db->Put(write_options, "B", "1");
ASSERT_OK(s);
// A Get does not generate the snapshot
s = txn1->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_FALSE(read_options.snapshot);
ASSERT_EQ(value, "1");
// Any other operation does
s = txn1->Put("A", "0");
ASSERT_OK(s);
// Now change "B".
s = db->Put(write_options, "B", "2");
ASSERT_OK(s);
// The original value should still be read
s = txn1->Get(read_options, "B", &value);
ASSERT_OK(s);
ASSERT_TRUE(read_options.snapshot);
ASSERT_EQ(value, "1");
s = txn1->Commit();
ASSERT_OK(s);
delete txn1;
}
TEST_P(TransactionTest, ClearSnapshotTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
Status s;
s = db->Put(write_options, "foo", "0");
ASSERT_OK(s);
Transaction* txn = db->BeginTransaction(write_options);
ASSERT_TRUE(txn);
s = db->Put(write_options, "foo", "1");
ASSERT_OK(s);
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_FALSE(snapshot_read_options.snapshot);
// No snapshot created yet
s = txn->Get(snapshot_read_options, "foo", &value);
ASSERT_EQ(value, "1");
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_TRUE(snapshot_read_options.snapshot);
s = db->Put(write_options, "foo", "2");
ASSERT_OK(s);
// Snapshot was created before change to '2'
s = txn->Get(snapshot_read_options, "foo", &value);
ASSERT_EQ(value, "1");
txn->ClearSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_FALSE(snapshot_read_options.snapshot);
// Snapshot has now been cleared
s = txn->Get(snapshot_read_options, "foo", &value);
ASSERT_EQ(value, "2");
s = txn->Commit();
ASSERT_OK(s);
delete txn;
}
TEST_P(TransactionTest, ToggleAutoCompactionTest) {
Status s;
ColumnFamilyHandle *cfa, *cfb;
ColumnFamilyOptions cf_options;
// Create 2 new column families
s = db->CreateColumnFamily(cf_options, "CFA", &cfa);
ASSERT_OK(s);
s = db->CreateColumnFamily(cf_options, "CFB", &cfb);
ASSERT_OK(s);
delete cfa;
delete cfb;
delete db;
// open DB with three column families
std::vector<ColumnFamilyDescriptor> column_families;
// have to open default column family
column_families.emplace_back(kDefaultColumnFamilyName, ColumnFamilyOptions());
// open the new column families
column_families.emplace_back("CFA", ColumnFamilyOptions());
column_families.emplace_back("CFB", ColumnFamilyOptions());
ColumnFamilyOptions* cf_opt_default = &column_families[0].options;
ColumnFamilyOptions* cf_opt_cfa = &column_families[1].options;
ColumnFamilyOptions* cf_opt_cfb = &column_families[2].options;
cf_opt_default->disable_auto_compactions = false;
cf_opt_cfa->disable_auto_compactions = true;
cf_opt_cfb->disable_auto_compactions = false;
std::vector<ColumnFamilyHandle*> handles;
s = TransactionDB::Open(options, txn_db_options, dbname, column_families,
&handles, &db);
ASSERT_OK(s);
auto cfh_default = static_cast_with_check<ColumnFamilyHandleImpl>(handles[0]);
auto opt_default = *cfh_default->cfd()->GetLatestMutableCFOptions();
auto cfh_a = static_cast_with_check<ColumnFamilyHandleImpl>(handles[1]);
auto opt_a = *cfh_a->cfd()->GetLatestMutableCFOptions();
auto cfh_b = static_cast_with_check<ColumnFamilyHandleImpl>(handles[2]);
auto opt_b = *cfh_b->cfd()->GetLatestMutableCFOptions();
ASSERT_EQ(opt_default.disable_auto_compactions, false);
ASSERT_EQ(opt_a.disable_auto_compactions, true);
ASSERT_EQ(opt_b.disable_auto_compactions, false);
for (auto handle : handles) {
delete handle;
}
}
TEST_P(TransactionStressTest, ExpiredTransactionDataRace1) {
// In this test, txn1 should succeed committing,
// as the callback is called after txn1 starts committing.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"TransactionTest::ExpirableTransactionDataRace:1"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TransactionTest::ExpirableTransactionDataRace:1", [&](void* /*arg*/) {
WriteOptions write_options;
TransactionOptions txn_options;
// Force txn1 to expire
/* sleep override */
std::this_thread::sleep_for(std::chrono::milliseconds(1500));
Transaction* txn2 = db->BeginTransaction(write_options, txn_options);
Status s;
s = txn2->Put("X", "2");
ASSERT_TRUE(s.IsTimedOut());
s = txn2->Commit();
ASSERT_OK(s);
delete txn2;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions write_options;
TransactionOptions txn_options;
txn_options.expiration = 1000; // 1 second
Transaction* txn1 = db->BeginTransaction(write_options, txn_options);
Status s;
s = txn1->Put("X", "1");
ASSERT_OK(s);
s = txn1->Commit();
ASSERT_OK(s);
ReadOptions read_options;
std::string value;
s = db->Get(read_options, "X", &value);
ASSERT_OK(s);
ASSERT_EQ("1", value);
delete txn1;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
namespace {
// cmt_delay_ms is the delay between prepare and commit
// first_id is the id of the first transaction
Status TransactionStressTestInserter(
TransactionDB* db, const size_t num_transactions, const size_t num_sets,
const size_t num_keys_per_set, Random64* rand,
const uint64_t cmt_delay_ms = 0, const uint64_t first_id = 0) {
WriteOptions write_options;
ReadOptions read_options;
TransactionOptions txn_options;
txn_options.use_only_the_last_commit_time_batch_for_recovery = true;
// Inside the inserter we might also retake the snapshot. We do both since two
// separte functions are engaged for each.
txn_options.set_snapshot = rand->OneIn(2);
RandomTransactionInserter inserter(
rand, write_options, read_options, num_keys_per_set,
static_cast<uint16_t>(num_sets), cmt_delay_ms, first_id);
for (size_t t = 0; t < num_transactions; t++) {
bool success = inserter.TransactionDBInsert(db, txn_options);
if (!success) {
// unexpected failure
return inserter.GetLastStatus();
}
}
inserter.GetLastStatus().PermitUncheckedError();
// Make sure at least some of the transactions succeeded. It's ok if
// some failed due to write-conflicts.
if (num_transactions != 1 &&
inserter.GetFailureCount() > num_transactions / 2) {
return Status::TryAgain("Too many transactions failed! " +
std::to_string(inserter.GetFailureCount()) + " / " +
std::to_string(num_transactions));
}
return Status::OK();
}
} // namespace
// Worker threads add a number to a key from each set of keys. The checker
// threads verify that the sum of all keys in each set are equal.
TEST_P(MySQLStyleTransactionTest, TransactionStressTest) {
// Small write buffer to trigger more compactions
options.write_buffer_size = 1024;
txn_db_options.rollback_deletion_type_callback =
[](TransactionDB*, ColumnFamilyHandle*, const Slice& key) {
return RandomTransactionInserter::RollbackDeletionTypeCallback(key);
};
ASSERT_OK(ReOpenNoDelete());
constexpr size_t num_workers = 4; // worker threads count
constexpr size_t num_checkers = 2; // checker threads count
constexpr size_t num_slow_checkers = 2; // checker threads emulating backups
constexpr size_t num_slow_workers = 1; // slow worker threads count
constexpr size_t num_transactions_per_thread = 1000;
constexpr uint16_t num_sets = 3;
constexpr size_t num_keys_per_set = 100;
// Setting the key-space to be 100 keys should cause enough write-conflicts
// to make this test interesting.
std::vector<port::Thread> threads;
std::atomic<uint32_t> finished = {0};
constexpr bool TAKE_SNAPSHOT = true;
uint64_t time_seed = env->NowMicros();
printf("time_seed is %" PRIu64 "\n", time_seed); // would help to reproduce
std::function<void()> call_inserter = [&] {
size_t thd_seed = std::hash<std::thread::id>()(std::this_thread::get_id());
Random64 rand(time_seed * thd_seed);
ASSERT_OK(TransactionStressTestInserter(db, num_transactions_per_thread,
num_sets, num_keys_per_set, &rand));
finished++;
};
std::function<void()> call_checker = [&] {
size_t thd_seed = std::hash<std::thread::id>()(std::this_thread::get_id());
Random64 rand(time_seed * thd_seed);
// Verify that data is consistent
while (finished < num_workers) {
ASSERT_OK(RandomTransactionInserter::Verify(
db, num_sets, num_keys_per_set, TAKE_SNAPSHOT, &rand));
}
};
std::function<void()> call_slow_checker = [&] {
size_t thd_seed = std::hash<std::thread::id>()(std::this_thread::get_id());
Random64 rand(time_seed * thd_seed);
// Verify that data is consistent
while (finished < num_workers) {
uint64_t delay_ms = rand.Uniform(100) + 1;
Status s = RandomTransactionInserter::Verify(
db, num_sets, num_keys_per_set, TAKE_SNAPSHOT, &rand, delay_ms);
ASSERT_OK(s);
}
};
std::function<void()> call_slow_inserter = [&] {
size_t thd_seed = std::hash<std::thread::id>()(std::this_thread::get_id());
Random64 rand(time_seed * thd_seed);
uint64_t id = 0;
// Verify that data is consistent
while (finished < num_workers) {
uint64_t delay_ms = rand.Uniform(500) + 1;
ASSERT_OK(TransactionStressTestInserter(db, 1, num_sets, num_keys_per_set,
&rand, delay_ms, id++));
}
};
for (uint32_t i = 0; i < num_workers; i++) {
threads.emplace_back(call_inserter);
}
for (uint32_t i = 0; i < num_checkers; i++) {
threads.emplace_back(call_checker);
}
if (with_slow_threads_) {
for (uint32_t i = 0; i < num_slow_checkers; i++) {
threads.emplace_back(call_slow_checker);
}
for (uint32_t i = 0; i < num_slow_workers; i++) {
threads.emplace_back(call_slow_inserter);
}
}
// Wait for all threads to finish
for (auto& t : threads) {
t.join();
}
// Verify that data is consistent
Status s = RandomTransactionInserter::Verify(db, num_sets, num_keys_per_set,
!TAKE_SNAPSHOT);
ASSERT_OK(s);
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionTest, MemoryLimitTest) {
TransactionOptions txn_options;
// Header (12 bytes) + NOOP (1 byte) + 2 * 8 bytes for data.
txn_options.max_write_batch_size = 29;
// Set threshold to unlimited so that the write batch does not get flushed,
// and can hit the memory limit.
txn_options.write_batch_flush_threshold = 0;
std::string value;
Status s;
Transaction* txn = db->BeginTransaction(WriteOptions(), txn_options);
ASSERT_TRUE(txn);
ASSERT_EQ(0, txn->GetNumPuts());
ASSERT_LE(0, txn->GetID());
s = txn->Put(Slice("a"), Slice("...."));
ASSERT_OK(s);
ASSERT_EQ(1, txn->GetNumPuts());
s = txn->Put(Slice("b"), Slice("...."));
ASSERT_OK(s);
ASSERT_EQ(2, txn->GetNumPuts());
s = txn->Put(Slice("b"), Slice("...."));
ASSERT_TRUE(s.IsMemoryLimit());
ASSERT_EQ(2, txn->GetNumPuts());
ASSERT_OK(txn->Rollback());
delete txn;
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
// This test clarifies the existing expectation from the sequence number
// algorithm. It could detect mistakes in updating the code but it is not
// necessarily the one acceptable way. If the algorithm is legitimately changed,
// this unit test should be updated as well.
TEST_P(TransactionStressTest, SeqAdvanceTest) {
// TODO(myabandeh): must be test with false before new releases
const bool short_test = true;
WriteOptions wopts;
FlushOptions fopt;
options.disable_auto_compactions = true;
ASSERT_OK(ReOpen());
// Do the test with NUM_BRANCHES branches in it. Each run of a test takes some
// of the branches. This is the same as counting a binary number where i-th
// bit represents whether we take branch i in the represented by the number.
const size_t NUM_BRANCHES = short_test ? 6 : 10;
// Helper function that shows if the branch is to be taken in the run
// represented by the number n.
auto branch_do = [&](size_t n, size_t* branch) {
assert(*branch < NUM_BRANCHES);
const size_t filter = static_cast<size_t>(1) << *branch;
return n & filter;
};
const size_t max_n = static_cast<size_t>(1) << NUM_BRANCHES;
for (size_t n = 0; n < max_n; n++) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
size_t branch = 0;
auto seq = db_impl->GetLatestSequenceNumber();
exp_seq = seq;
TestTxn0(0);
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
if (branch_do(n, &branch)) {
ASSERT_OK(db_impl->Flush(fopt));
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
}
if (!short_test && branch_do(n, &branch)) {
ASSERT_OK(db_impl->FlushWAL(true));
ASSERT_OK(ReOpenNoDelete());
db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
seq = db_impl->GetLatestSequenceNumber();
ASSERT_EQ(exp_seq, seq);
}
// Doing it twice might detect some bugs
TestTxn0(1);
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
TestTxn1(0);
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
if (branch_do(n, &branch)) {
ASSERT_OK(db_impl->Flush(fopt));
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
}
if (!short_test && branch_do(n, &branch)) {
ASSERT_OK(db_impl->FlushWAL(true));
ASSERT_OK(ReOpenNoDelete());
db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
seq = db_impl->GetLatestSequenceNumber();
ASSERT_EQ(exp_seq, seq);
}
TestTxn3(0);
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
if (branch_do(n, &branch)) {
ASSERT_OK(db_impl->Flush(fopt));
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
}
if (!short_test && branch_do(n, &branch)) {
ASSERT_OK(db_impl->FlushWAL(true));
ASSERT_OK(ReOpenNoDelete());
db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
seq = db_impl->GetLatestSequenceNumber();
ASSERT_EQ(exp_seq, seq);
}
TestTxn4(0);
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
if (branch_do(n, &branch)) {
ASSERT_OK(db_impl->Flush(fopt));
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
}
if (!short_test && branch_do(n, &branch)) {
ASSERT_OK(db_impl->FlushWAL(true));
ASSERT_OK(ReOpenNoDelete());
db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
seq = db_impl->GetLatestSequenceNumber();
ASSERT_EQ(exp_seq, seq);
}
TestTxn2(0);
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
if (branch_do(n, &branch)) {
ASSERT_OK(db_impl->Flush(fopt));
seq = db_impl->TEST_GetLastVisibleSequence();
ASSERT_EQ(exp_seq, seq);
}
if (!short_test && branch_do(n, &branch)) {
ASSERT_OK(db_impl->FlushWAL(true));
ASSERT_OK(ReOpenNoDelete());
db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
seq = db_impl->GetLatestSequenceNumber();
ASSERT_EQ(exp_seq, seq);
}
ASSERT_OK(ReOpen());
}
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
// Verify that the optimization would not compromize the correctness
TEST_P(TransactionTest, Optimizations) {
size_t comb_cnt = size_t(1) << 2; // 2 is number of optimization vars
for (size_t new_comb = 0; new_comb < comb_cnt; new_comb++) {
TransactionDBWriteOptimizations optimizations;
optimizations.skip_concurrency_control = IsInCombination(0, new_comb);
optimizations.skip_duplicate_key_check = IsInCombination(1, new_comb);
ASSERT_OK(ReOpen());
WriteOptions write_options;
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("k"), Slice("v1")));
ASSERT_OK(db->Write(write_options, &batch));
ReadOptions ropt;
PinnableSlice pinnable_val;
ASSERT_OK(db->Get(ropt, db->DefaultColumnFamily(), "k", &pinnable_val));
ASSERT_TRUE(pinnable_val == ("v1"));
}
}
// A comparator that uses only the first three bytes
class ThreeBytewiseComparator : public Comparator {
public:
ThreeBytewiseComparator() = default;
const char* Name() const override { return "test.ThreeBytewiseComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
Slice na = Slice(a.data(), a.size() < 3 ? a.size() : 3);
Slice nb = Slice(b.data(), b.size() < 3 ? b.size() : 3);
return na.compare(nb);
}
bool Equal(const Slice& a, const Slice& b) const override {
Slice na = Slice(a.data(), a.size() < 3 ? a.size() : 3);
Slice nb = Slice(b.data(), b.size() < 3 ? b.size() : 3);
return na == nb;
}
// These methods below don't seem relevant to this test. Implement them if
// proven othersize.
void FindShortestSeparator(std::string* start,
const Slice& limit) const override {
const Comparator* bytewise_comp = BytewiseComparator();
bytewise_comp->FindShortestSeparator(start, limit);
}
void FindShortSuccessor(std::string* key) const override {
const Comparator* bytewise_comp = BytewiseComparator();
bytewise_comp->FindShortSuccessor(key);
}
};
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_P(TransactionTest, GetWithoutSnapshot) {
WriteOptions write_options;
std::atomic<bool> finish = {false};
ASSERT_OK(db->Put(write_options, "key", "value"));
ROCKSDB_NAMESPACE::port::Thread commit_thread([&]() {
for (int i = 0; i < 100; i++) {
TransactionOptions txn_options;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn->SetName("xid"));
ASSERT_OK(txn->Put("key", "overridedvalue"));
ASSERT_OK(txn->Put("key", "value"));
ASSERT_OK(txn->Prepare());
ASSERT_OK(txn->Commit());
delete txn;
}
finish = true;
});
ROCKSDB_NAMESPACE::port::Thread read_thread([&]() {
while (!finish) {
ReadOptions ropt;
PinnableSlice pinnable_val;
ASSERT_OK(db->Get(ropt, db->DefaultColumnFamily(), "key", &pinnable_val));
ASSERT_TRUE(pinnable_val == ("value"));
}
});
commit_thread.join();
read_thread.join();
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
// Test that the transactional db can handle duplicate keys in the write batch
TEST_P(TransactionTest, DuplicateKeys) {
ColumnFamilyOptions cf_options;
std::string cf_name = "two";
ColumnFamilyHandle* cf_handle = nullptr;
{
ASSERT_OK(db->CreateColumnFamily(cf_options, cf_name, &cf_handle));
WriteOptions write_options;
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("key"), Slice("value")));
ASSERT_OK(batch.Put(Slice("key2"), Slice("value2")));
// duplicate the keys
ASSERT_OK(batch.Put(Slice("key"), Slice("value3")));
// duplicate the 2nd key. It should not be counted duplicate since a
// sub-patch is cut after the last duplicate.
ASSERT_OK(batch.Put(Slice("key2"), Slice("value4")));
// duplicate the keys but in a different cf. It should not be counted as
// duplicate keys
ASSERT_OK(batch.Put(cf_handle, Slice("key"), Slice("value5")));
ASSERT_OK(db->Write(write_options, &batch));
ReadOptions ropt;
PinnableSlice pinnable_val;
auto s = db->Get(ropt, db->DefaultColumnFamily(), "key", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("value3"));
s = db->Get(ropt, db->DefaultColumnFamily(), "key2", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("value4"));
s = db->Get(ropt, cf_handle, "key", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("value5"));
delete cf_handle;
}
// Test with non-bytewise comparator
{
ASSERT_OK(ReOpen());
std::unique_ptr<const Comparator> comp_gc(new ThreeBytewiseComparator());
cf_options.comparator = comp_gc.get();
ASSERT_OK(db->CreateColumnFamily(cf_options, cf_name, &cf_handle));
WriteOptions write_options;
WriteBatch batch;
ASSERT_OK(batch.Put(cf_handle, Slice("key"), Slice("value")));
// The first three bytes are the same, do it must be counted as duplicate
ASSERT_OK(batch.Put(cf_handle, Slice("key2"), Slice("value2")));
// check for 2nd duplicate key in cf with non-default comparator
ASSERT_OK(batch.Put(cf_handle, Slice("key2b"), Slice("value2b")));
ASSERT_OK(db->Write(write_options, &batch));
// The value must be the most recent value for all the keys equal to "key",
// including "key2"
ReadOptions ropt;
PinnableSlice pinnable_val;
ASSERT_OK(db->Get(ropt, cf_handle, "key", &pinnable_val));
ASSERT_TRUE(pinnable_val == ("value2b"));
// Test duplicate keys with rollback
TransactionOptions txn_options;
Transaction* txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(cf_handle, Slice("key3"), Slice("value3")));
ASSERT_OK(txn0->Merge(cf_handle, Slice("key4"), Slice("value4")));
ASSERT_OK(txn0->Rollback());
ASSERT_OK(db->Get(ropt, cf_handle, "key5", &pinnable_val));
ASSERT_TRUE(pinnable_val == ("value2b"));
delete txn0;
delete cf_handle;
cf_options.comparator = BytewiseComparator();
}
for (bool do_prepare : {true, false}) {
for (bool do_rollback : {true, false}) {
for (bool with_commit_batch : {true, false}) {
if (with_commit_batch && !do_prepare) {
continue;
}
if (with_commit_batch && do_rollback) {
continue;
}
ASSERT_OK(ReOpen());
ASSERT_OK(db->CreateColumnFamily(cf_options, cf_name, &cf_handle));
TransactionOptions txn_options;
txn_options.use_only_the_last_commit_time_batch_for_recovery = true;
WriteOptions write_options;
Transaction* txn0 = db->BeginTransaction(write_options, txn_options);
auto s = txn0->SetName("xid");
ASSERT_OK(s);
s = txn0->Put(Slice("foo0"), Slice("bar0a"));
ASSERT_OK(s);
s = txn0->Put(Slice("foo0"), Slice("bar0b"));
ASSERT_OK(s);
s = txn0->Put(Slice("foo1"), Slice("bar1"));
ASSERT_OK(s);
s = txn0->Merge(Slice("foo2"), Slice("bar2a"));
ASSERT_OK(s);
// Repeat a key after the start of a sub-patch. This should not cause a
// duplicate in the most recent sub-patch and hence not creating a new
// sub-patch.
s = txn0->Put(Slice("foo0"), Slice("bar0c"));
ASSERT_OK(s);
s = txn0->Merge(Slice("foo2"), Slice("bar2b"));
ASSERT_OK(s);
// duplicate the keys but in a different cf. It should not be counted as
// duplicate.
s = txn0->Put(cf_handle, Slice("foo0"), Slice("bar0-cf1"));
ASSERT_OK(s);
s = txn0->Put(Slice("foo3"), Slice("bar3"));
ASSERT_OK(s);
s = txn0->Merge(Slice("foo3"), Slice("bar3"));
ASSERT_OK(s);
s = txn0->Put(Slice("foo4"), Slice("bar4"));
ASSERT_OK(s);
s = txn0->Delete(Slice("foo4"));
ASSERT_OK(s);
s = txn0->SingleDelete(Slice("foo4"));
ASSERT_OK(s);
if (do_prepare) {
s = txn0->Prepare();
ASSERT_OK(s);
}
if (do_rollback) {
// Test rolling back the batch with duplicates
s = txn0->Rollback();
ASSERT_OK(s);
} else {
if (with_commit_batch) {
assert(do_prepare);
auto cb = txn0->GetCommitTimeWriteBatch();
// duplicate a key in the original batch
// TODO(myabandeh): the behavior of GetCommitTimeWriteBatch
// conflicting with the prepared batch is currently undefined and
// gives different results in different implementations.
// s = cb->Put(Slice("foo0"), Slice("bar0d"));
// ASSERT_OK(s);
// add a new duplicate key
s = cb->Put(Slice("foo6"), Slice("bar6a"));
ASSERT_OK(s);
s = cb->Put(Slice("foo6"), Slice("bar6b"));
ASSERT_OK(s);
// add a duplicate key that is removed in the same batch
s = cb->Put(Slice("foo7"), Slice("bar7a"));
ASSERT_OK(s);
s = cb->Delete(Slice("foo7"));
ASSERT_OK(s);
}
s = txn0->Commit();
ASSERT_OK(s);
}
delete txn0;
ReadOptions ropt;
PinnableSlice pinnable_val;
if (do_rollback) {
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(ropt, cf_handle, "foo0", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(ropt, db->DefaultColumnFamily(), "foo1", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(ropt, db->DefaultColumnFamily(), "foo2", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(ropt, db->DefaultColumnFamily(), "foo3", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
s = db->Get(ropt, db->DefaultColumnFamily(), "foo4", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
} else {
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0c"));
s = db->Get(ropt, cf_handle, "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0-cf1"));
s = db->Get(ropt, db->DefaultColumnFamily(), "foo1", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar1"));
s = db->Get(ropt, db->DefaultColumnFamily(), "foo2", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar2a,bar2b"));
s = db->Get(ropt, db->DefaultColumnFamily(), "foo3", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar3,bar3"));
s = db->Get(ropt, db->DefaultColumnFamily(), "foo4", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
if (with_commit_batch) {
s = db->Get(ropt, db->DefaultColumnFamily(), "foo6", &pinnable_val);
if (txn_db_options.write_policy ==
TxnDBWritePolicy::WRITE_COMMITTED) {
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar6b"));
} else {
ASSERT_TRUE(s.IsNotFound());
}
s = db->Get(ropt, db->DefaultColumnFamily(), "foo7", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
}
}
delete cf_handle;
} // with_commit_batch
} // do_rollback
} // do_prepare
if (!options.unordered_write) {
// Also test with max_successive_merges > 0. max_successive_merges will not
// affect our algorithm for duplicate key insertion but we add the test to
// verify that.
cf_options.max_successive_merges = 2;
cf_options.merge_operator = MergeOperators::CreateStringAppendOperator();
ASSERT_OK(ReOpen());
ASSERT_OK(db->CreateColumnFamily(cf_options, cf_name, &cf_handle));
WriteOptions write_options;
// Ensure one value for the key
ASSERT_OK(db->Put(write_options, cf_handle, Slice("key"), Slice("value")));
WriteBatch batch;
// Merge more than max_successive_merges times
ASSERT_OK(batch.Merge(cf_handle, Slice("key"), Slice("1")));
ASSERT_OK(batch.Merge(cf_handle, Slice("key"), Slice("2")));
ASSERT_OK(batch.Merge(cf_handle, Slice("key"), Slice("3")));
ASSERT_OK(batch.Merge(cf_handle, Slice("key"), Slice("4")));
ASSERT_OK(db->Write(write_options, &batch));
ReadOptions read_options;
std::string value;
ASSERT_OK(db->Get(read_options, cf_handle, "key", &value));
ASSERT_EQ(value, "value,1,2,3,4");
delete cf_handle;
}
{
// Test that the duplicate detection is not compromised after rolling back
// to a save point
TransactionOptions txn_options;
WriteOptions write_options;
Transaction* txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0a")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0b")));
txn0->SetSavePoint();
ASSERT_OK(txn0->RollbackToSavePoint());
ASSERT_OK(txn0->Commit());
delete txn0;
}
// Test sucessfull recovery after a crash
{
ASSERT_OK(ReOpen());
TransactionOptions txn_options;
WriteOptions write_options;
ReadOptions ropt;
Transaction* txn0;
PinnableSlice pinnable_val;
Status s;
std::unique_ptr<const Comparator> comp_gc(new ThreeBytewiseComparator());
cf_options.comparator = comp_gc.get();
cf_options.merge_operator = MergeOperators::CreateStringAppendOperator();
ASSERT_OK(db->CreateColumnFamily(cf_options, cf_name, &cf_handle));
delete cf_handle;
std::vector<ColumnFamilyDescriptor> cfds{
ColumnFamilyDescriptor(kDefaultColumnFamilyName,
ColumnFamilyOptions(options)),
ColumnFamilyDescriptor(cf_name, cf_options),
};
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
assert(db != nullptr);
ASSERT_OK(db->Put(write_options, "foo0", "init"));
ASSERT_OK(db->Put(write_options, "foo1", "init"));
ASSERT_OK(db->Put(write_options, handles[1], "foo0", "init"));
ASSERT_OK(db->Put(write_options, handles[1], "foo1", "init"));
// one entry
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0a")));
ASSERT_OK(txn0->Prepare());
delete txn0;
// This will check the asserts inside recovery code
ASSERT_OK(db->FlushWAL(true));
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
txn0 = db->GetTransactionByName("xid");
ASSERT_TRUE(txn0 != nullptr);
ASSERT_OK(txn0->Commit());
delete txn0;
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0a"));
// two entries, no duplicate
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(handles[1], Slice("foo0"), Slice("bar0b")));
ASSERT_OK(txn0->Put(handles[1], Slice("fol1"), Slice("bar1b")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0b")));
ASSERT_OK(txn0->Put(Slice("foo1"), Slice("bar1b")));
ASSERT_OK(txn0->Prepare());
delete txn0;
// This will check the asserts inside recovery code
ASSERT_OK(db->FlushWAL(true));
// Flush only cf 1
ASSERT_OK(static_cast_with_check<DBImpl>(db->GetRootDB())
->TEST_FlushMemTable(true, false, handles[1]));
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
txn0 = db->GetTransactionByName("xid");
ASSERT_TRUE(txn0 != nullptr);
ASSERT_OK(txn0->Commit());
delete txn0;
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0b"));
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo1", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar1b"));
pinnable_val.Reset();
s = db->Get(ropt, handles[1], "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0b"));
pinnable_val.Reset();
s = db->Get(ropt, handles[1], "fol1", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar1b"));
// one duplicate with ::Put
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(handles[1], Slice("key-nonkey0"), Slice("bar0c")));
ASSERT_OK(txn0->Put(handles[1], Slice("key-nonkey1"), Slice("bar1d")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0c")));
ASSERT_OK(txn0->Put(Slice("foo1"), Slice("bar1c")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0d")));
ASSERT_OK(txn0->Prepare());
delete txn0;
// This will check the asserts inside recovery code
ASSERT_OK(db->FlushWAL(true));
// Flush only cf 1
ASSERT_OK(static_cast_with_check<DBImpl>(db->GetRootDB())
->TEST_FlushMemTable(true, false, handles[1]));
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
txn0 = db->GetTransactionByName("xid");
ASSERT_TRUE(txn0 != nullptr);
ASSERT_OK(txn0->Commit());
delete txn0;
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0d"));
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo1", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar1c"));
pinnable_val.Reset();
s = db->Get(ropt, handles[1], "key-nonkey2", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar1d"));
// Duplicate with ::Put, ::Delete
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(handles[1], Slice("key-nonkey0"), Slice("bar0e")));
ASSERT_OK(txn0->Delete(handles[1], Slice("key-nonkey1")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0e")));
ASSERT_OK(txn0->Delete(Slice("foo0")));
ASSERT_OK(txn0->Prepare());
delete txn0;
// This will check the asserts inside recovery code
ASSERT_OK(db->FlushWAL(true));
// Flush only cf 1
ASSERT_OK(static_cast_with_check<DBImpl>(db->GetRootDB())
->TEST_FlushMemTable(true, false, handles[1]));
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
txn0 = db->GetTransactionByName("xid");
ASSERT_TRUE(txn0 != nullptr);
ASSERT_OK(txn0->Commit());
delete txn0;
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
pinnable_val.Reset();
s = db->Get(ropt, handles[1], "key-nonkey2", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
// Duplicate with ::Put, ::SingleDelete
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(handles[1], Slice("key-nonkey0"), Slice("bar0g")));
ASSERT_OK(txn0->SingleDelete(handles[1], Slice("key-nonkey1")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0e")));
ASSERT_OK(txn0->SingleDelete(Slice("foo0")));
ASSERT_OK(txn0->Prepare());
delete txn0;
// This will check the asserts inside recovery code
ASSERT_OK(db->FlushWAL(true));
// Flush only cf 1
ASSERT_OK(static_cast_with_check<DBImpl>(db->GetRootDB())
->TEST_FlushMemTable(true, false, handles[1]));
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
txn0 = db->GetTransactionByName("xid");
ASSERT_TRUE(txn0 != nullptr);
ASSERT_OK(txn0->Commit());
delete txn0;
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
pinnable_val.Reset();
s = db->Get(ropt, handles[1], "key-nonkey2", &pinnable_val);
ASSERT_TRUE(s.IsNotFound());
// Duplicate with ::Put, ::Merge
txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Put(handles[1], Slice("key-nonkey0"), Slice("bar1i")));
ASSERT_OK(txn0->Merge(handles[1], Slice("key-nonkey1"), Slice("bar1j")));
ASSERT_OK(txn0->Put(Slice("foo0"), Slice("bar0f")));
ASSERT_OK(txn0->Merge(Slice("foo0"), Slice("bar0g")));
ASSERT_OK(txn0->Prepare());
delete txn0;
// This will check the asserts inside recovery code
ASSERT_OK(db->FlushWAL(true));
// Flush only cf 1
ASSERT_OK(static_cast_with_check<DBImpl>(db->GetRootDB())
->TEST_FlushMemTable(true, false, handles[1]));
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
ASSERT_OK(ReOpenNoDelete(cfds, &handles));
txn0 = db->GetTransactionByName("xid");
ASSERT_TRUE(txn0 != nullptr);
ASSERT_OK(txn0->Commit());
delete txn0;
pinnable_val.Reset();
s = db->Get(ropt, db->DefaultColumnFamily(), "foo0", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar0f,bar0g"));
pinnable_val.Reset();
s = db->Get(ropt, handles[1], "key-nonkey2", &pinnable_val);
ASSERT_OK(s);
ASSERT_TRUE(pinnable_val == ("bar1i,bar1j"));
for (auto h : handles) {
delete h;
}
delete db;
db = nullptr;
}
}
// Test that the reseek optimization in iterators will not result in an infinite
// loop if there are too many uncommitted entries before the snapshot.
TEST_P(TransactionTest, ReseekOptimization) {
WriteOptions write_options;
write_options.sync = true;
write_options.disableWAL = false;
ColumnFamilyDescriptor cfd;
ASSERT_OK(db->DefaultColumnFamily()->GetDescriptor(&cfd));
auto max_skip = cfd.options.max_sequential_skip_in_iterations;
ASSERT_OK(db->Put(write_options, Slice("foo0"), Slice("initv")));
TransactionOptions txn_options;
Transaction* txn0 = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn0->SetName("xid"));
// Duplicate keys will result into separate sequence numbers in WritePrepared
// and WriteUnPrepared
for (size_t i = 0; i < 2 * max_skip; i++) {
ASSERT_OK(txn0->Put(Slice("foo1"), Slice("bar")));
}
ASSERT_OK(txn0->Prepare());
ASSERT_OK(db->Put(write_options, Slice("foo2"), Slice("initv")));
ReadOptions read_options;
// To avoid loops
read_options.max_skippable_internal_keys = 10 * max_skip;
Iterator* iter = db->NewIterator(read_options);
ASSERT_OK(iter->status());
size_t cnt = 0;
iter->SeekToFirst();
while (iter->Valid()) {
iter->Next();
ASSERT_OK(iter->status());
cnt++;
}
ASSERT_EQ(cnt, 2);
cnt = 0;
iter->SeekToLast();
while (iter->Valid()) {
iter->Prev();
ASSERT_OK(iter->status());
cnt++;
}
ASSERT_EQ(cnt, 2);
delete iter;
ASSERT_OK(txn0->Rollback());
delete txn0;
}
// After recovery in kPointInTimeRecovery mode, the corrupted log file remains
// there. The new log files should be still read succesfully during recovery of
// the 2nd crash.
TEST_P(TransactionTest, DoubleCrashInRecovery) {
for (const bool manual_wal_flush : {false, true}) {
for (const bool write_after_recovery : {false, true}) {
options.wal_recovery_mode = WALRecoveryMode::kPointInTimeRecovery;
options.manual_wal_flush = manual_wal_flush;
ASSERT_OK(ReOpen());
std::string cf_name = "two";
ColumnFamilyOptions cf_options;
ColumnFamilyHandle* cf_handle = nullptr;
ASSERT_OK(db->CreateColumnFamily(cf_options, cf_name, &cf_handle));
// Add a prepare entry to prevent the older logs from being deleted.
WriteOptions write_options;
TransactionOptions txn_options;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn->SetName("xid"));
ASSERT_OK(txn->Put(Slice("foo-prepare"), Slice("bar-prepare")));
ASSERT_OK(txn->Prepare());
FlushOptions flush_ops;
ASSERT_OK(db->Flush(flush_ops));
// Now we have a log that cannot be deleted
ASSERT_OK(db->Put(write_options, cf_handle, "foo1", "bar1"));
// Flush only the 2nd cf
ASSERT_OK(db->Flush(flush_ops, cf_handle));
// The value is large enough to be touched by the corruption we ingest
// below.
std::string large_value(400, ' ');
// key/value not touched by corruption
ASSERT_OK(db->Put(write_options, "foo2", "bar2"));
// key/value touched by corruption
ASSERT_OK(db->Put(write_options, "foo3", large_value));
// key/value not touched by corruption
ASSERT_OK(db->Put(write_options, "foo4", "bar4"));
ASSERT_OK(db->FlushWAL(true));
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
uint64_t wal_file_id = db_impl->TEST_LogfileNumber();
std::string fname = LogFileName(dbname, wal_file_id);
static_cast<PessimisticTransactionDB*>(db)->TEST_Crash();
delete txn;
delete cf_handle;
delete db;
db = nullptr;
// Corrupt the last log file in the middle, so that it is not corrupted
// in the tail.
std::string file_content;
ASSERT_OK(ReadFileToString(env.get(), fname, &file_content));
file_content[400] = 'h';
file_content[401] = 'a';
ASSERT_OK(env->DeleteFile(fname));
ASSERT_OK(WriteStringToFile(env.get(), file_content, fname, true));
// Recover from corruption
std::vector<ColumnFamilyHandle*> handles;
std::vector<ColumnFamilyDescriptor> column_families;
column_families.emplace_back(kDefaultColumnFamilyName,
ColumnFamilyOptions());
column_families.emplace_back("two", ColumnFamilyOptions());
ASSERT_OK(ReOpenNoDelete(column_families, &handles));
assert(db != nullptr);
if (write_after_recovery) {
// Write data to the log right after the corrupted log
ASSERT_OK(db->Put(write_options, "foo5", large_value));
}
// Persist data written to WAL during recovery or by the last Put
ASSERT_OK(db->FlushWAL(true));
// 2nd crash to recover while having a valid log after the corrupted one.
ASSERT_OK(ReOpenNoDelete(column_families, &handles));
assert(db != nullptr);
txn = db->GetTransactionByName("xid");
ASSERT_TRUE(txn != nullptr);
ASSERT_OK(txn->Commit());
delete txn;
for (auto handle : handles) {
delete handle;
}
}
}
}
TEST_P(TransactionTest, CommitWithoutPrepare) {
{
// skip_prepare = false.
WriteOptions write_options;
TransactionOptions txn_options;
txn_options.skip_prepare = false;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn->Commit().IsTxnNotPrepared());
delete txn;
}
{
// skip_prepare = true.
WriteOptions write_options;
TransactionOptions txn_options;
txn_options.skip_prepare = true;
Transaction* txn = db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn->Commit());
delete txn;
}
}
TEST_P(TransactionTest, OpenAndEnableU64Timestamp) {
ASSERT_OK(ReOpenNoDelete());
assert(db);
const std::string test_cf_name = "test_cf";
ColumnFamilyOptions cf_opts;
cf_opts.comparator = test::BytewiseComparatorWithU64TsWrapper();
{
ColumnFamilyHandle* cfh = nullptr;
const Status s = db->CreateColumnFamily(cf_opts, test_cf_name, &cfh);
if (txn_db_options.write_policy == WRITE_COMMITTED) {
ASSERT_OK(s);
delete cfh;
} else {
ASSERT_TRUE(s.IsNotSupported());
assert(!cfh);
}
}
// Bypass transaction db layer.
if (txn_db_options.write_policy != WRITE_COMMITTED) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
assert(db_impl);
ColumnFamilyHandle* cfh = nullptr;
ASSERT_OK(db_impl->CreateColumnFamily(cf_opts, test_cf_name, &cfh));
delete cfh;
}
{
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, options);
cf_descs.emplace_back(test_cf_name, cf_opts);
std::vector<ColumnFamilyHandle*> handles;
const Status s = ReOpenNoDelete(cf_descs, &handles);
if (txn_db_options.write_policy == WRITE_COMMITTED) {
ASSERT_OK(s);
for (auto* h : handles) {
delete h;
}
} else {
ASSERT_TRUE(s.IsNotSupported());
}
}
}
TEST_P(TransactionTest, OpenAndEnableU32Timestamp) {
class DummyComparatorWithU32Ts : public Comparator {
public:
DummyComparatorWithU32Ts() : Comparator(sizeof(uint32_t)) {}
const char* Name() const override { return "DummyComparatorWithU32Ts"; }
void FindShortSuccessor(std::string*) const override {}
void FindShortestSeparator(std::string*, const Slice&) const override {}
int Compare(const Slice&, const Slice&) const override { return 0; }
};
std::unique_ptr<Comparator> dummy_ucmp(new DummyComparatorWithU32Ts());
ASSERT_OK(ReOpenNoDelete());
assert(db);
const std::string test_cf_name = "test_cf";
ColumnFamilyOptions cf_opts;
cf_opts.comparator = dummy_ucmp.get();
{
ColumnFamilyHandle* cfh = nullptr;
ASSERT_TRUE(db->CreateColumnFamily(cf_opts, test_cf_name, &cfh)
.IsInvalidArgument());
}
// Bypass transaction db layer.
{
ColumnFamilyHandle* cfh = nullptr;
DBImpl* db_impl = static_cast_with_check<DBImpl>(db->GetRootDB());
assert(db_impl);
ASSERT_OK(db_impl->CreateColumnFamily(cf_opts, test_cf_name, &cfh));
delete cfh;
}
{
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, options);
cf_descs.emplace_back(test_cf_name, cf_opts);
std::vector<ColumnFamilyHandle*> handles;
ASSERT_TRUE(ReOpenNoDelete(cf_descs, &handles).IsInvalidArgument());
}
}
TEST_P(TransactionTest, WriteWithBulkCreatedColumnFamilies) {
ColumnFamilyOptions cf_options;
WriteOptions write_options;
std::vector<std::string> cf_names;
std::vector<ColumnFamilyHandle*> cf_handles;
cf_names.emplace_back("test_cf");
ASSERT_OK(db->CreateColumnFamilies(cf_options, cf_names, &cf_handles));
ASSERT_OK(db->Put(write_options, cf_handles[0], "foo", "bar"));
ASSERT_OK(db->DropColumnFamilies(cf_handles));
for (auto* h : cf_handles) {
delete h;
}
cf_handles.clear();
std::vector<ColumnFamilyDescriptor> cf_descriptors;
cf_descriptors.emplace_back("test_cf", ColumnFamilyOptions());
ASSERT_OK(db->CreateColumnFamilies(cf_options, cf_names, &cf_handles));
ASSERT_OK(db->Put(write_options, cf_handles[0], "foo", "bar"));
ASSERT_OK(db->DropColumnFamilies(cf_handles));
for (auto* h : cf_handles) {
delete h;
}
cf_handles.clear();
}
TEST_P(TransactionTest, LockWal) {
const TxnDBWritePolicy write_policy = std::get<2>(GetParam());
if (TxnDBWritePolicy::WRITE_COMMITTED != write_policy) {
ROCKSDB_GTEST_BYPASS("Test only write-committed for now");
return;
}
ASSERT_OK(ReOpen());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"TransactionTest::LockWal:AfterLockWal",
"TransactionTest::LockWal:BeforePrepareTxn2"}});
SyncPoint::GetInstance()->EnableProcessing();
std::unique_ptr<Transaction> txn0;
WriteOptions wopts;
wopts.no_slowdown = true;
txn0.reset(db->BeginTransaction(wopts, TransactionOptions()));
ASSERT_OK(txn0->SetName("txn0"));
ASSERT_OK(txn0->Put("foo", "v0"));
std::unique_ptr<Transaction> txn1;
txn1.reset(db->BeginTransaction(wopts, TransactionOptions()));
ASSERT_OK(txn1->SetName("txn1"));
ASSERT_OK(txn1->Put("dummy", "v0"));
ASSERT_OK(txn1->Prepare());
std::unique_ptr<Transaction> txn2;
port::Thread worker([&]() {
txn2.reset(db->BeginTransaction(WriteOptions(), TransactionOptions()));
ASSERT_OK(txn2->SetName("txn2"));
ASSERT_OK(txn2->Put("bar", "v0"));
TEST_SYNC_POINT("TransactionTest::LockWal:BeforePrepareTxn2");
ASSERT_OK(txn2->Prepare());
ASSERT_OK(txn2->Commit());
});
ASSERT_OK(db->LockWAL());
// txn0 cannot prepare
Status s = txn0->Prepare();
ASSERT_TRUE(s.IsIncomplete());
// txn1 cannot commit
s = txn1->Commit();
ASSERT_TRUE(s.IsIncomplete());
TEST_SYNC_POINT("TransactionTest::LockWal:AfterLockWal");
ASSERT_OK(db->UnlockWAL());
txn0.reset();
txn0.reset(db->BeginTransaction(wopts, TransactionOptions()));
ASSERT_OK(txn0->SetName("txn0_1"));
ASSERT_OK(txn0->Put("foo", "v1"));
ASSERT_OK(txn0->Prepare());
ASSERT_OK(txn0->Commit());
worker.join();
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(TransactionTest, StallTwoWriteQueues) {
// There was a two_write_queues bug in which both write thread leaders (for
// each queue) would attempt to own the stopping of writes in the primary
// write queue. This nearly worked but could lead to some broken assertions
// and a kind of deadlock in the test below. (Would resume if someone
// eventually signalled bg_cv_ again.)
if (!options.two_write_queues) {
ROCKSDB_GTEST_BYPASS("Test only needed with two_write_queues");
return;
}
// Stop writes
ASSERT_OK(db->LockWAL());
WriteOptions wopts;
wopts.sync = true;
wopts.disableWAL = false;
// Create one write thread that blocks in the primary write queue and one
// that blocks in the nonmem queue.
bool t1_completed = false;
bool t2_completed = false;
port::Thread t1{[&]() {
ASSERT_OK(db->Put(wopts, "x", "y"));
t1_completed = true;
}};
port::Thread t2{[&]() {
std::unique_ptr<Transaction> txn0{db->BeginTransaction(wopts, {})};
ASSERT_OK(txn0->SetName("xid"));
ASSERT_OK(txn0->Prepare()); // nonmem
ASSERT_OK(txn0->Commit());
t2_completed = true;
}};
// Sleep long enough to that above threads can usually reach a waiting point,
// to usually reveal deadlock if the bug is present.
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// Ensure proper test setup
ASSERT_FALSE(t1_completed);
ASSERT_FALSE(t2_completed);
// Resume writes
ASSERT_OK(db->UnlockWAL());
// Wait for writes to finish
t1.join();
t2.join();
// Ensure proper test setup
ASSERT_TRUE(t1_completed);
ASSERT_TRUE(t2_completed);
}
// Make sure UnlockWAL does not return until the stall it controls is cleared.
TEST_P(TransactionTest, UnlockWALStallCleared) {
auto dbimpl = static_cast_with_check<DBImpl>(db->GetRootDB());
for (bool external_stall : {false, true}) {
WriteOptions wopts;
wopts.sync = true;
wopts.disableWAL = false;
ASSERT_OK(db->Put(wopts, "k1", "val1"));
// Stall writes
ASSERT_OK(db->LockWAL());
std::unique_ptr<WriteControllerToken> token;
if (external_stall) {
// Also make sure UnlockWAL can return despite another stall being in
// effect.
token = dbimpl->TEST_write_controler().GetStopToken();
}
SyncPoint::GetInstance()->DisableProcessing();
std::vector<SyncPoint::SyncPointPair> sync_deps;
sync_deps.push_back(
{"DBImpl::DelayWrite:Wait",
"TransactionTest::UnlockWALStallCleared:BeforeUnlockWAL1"});
if (options.two_write_queues &&
txn_db_options.write_policy == WRITE_COMMITTED) {
sync_deps.push_back(
{"DBImpl::DelayWrite:NonmemWait",
"TransactionTest::UnlockWALStallCleared:BeforeUnlockWAL2"});
}
SyncPoint::GetInstance()->LoadDependency(sync_deps);
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:AfterWait", [](void* arg) {
auto& mu = *static_cast<CacheAlignedInstrumentedMutex*>(arg);
mu.AssertHeld();
// Pretend we are slow waking up from bg_cv_, to give a chance for the
// bug to occur if it can. Randomly prefer one queue over the other.
mu.Unlock();
if (Random::GetTLSInstance()->OneIn(2)) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} else {
std::this_thread::yield();
}
mu.Lock();
});
SyncPoint::GetInstance()->EnableProcessing();
// Create blocking writes (for both queues) in background and use
// sync point dependency to get the stall into the write queue(s)
std::atomic<bool> t1_completed{false};
port::Thread t1{[&]() {
ASSERT_OK(db->Put(wopts, "k2", "val2"));
t1_completed = true;
}};
std::atomic<bool> t2_completed{false};
port::Thread t2{[&]() {
std::unique_ptr<Transaction> txn0{db->BeginTransaction(wopts, {})};
ASSERT_OK(txn0->SetName("x1"));
ASSERT_OK(txn0->Put("k3", "val3"));
ASSERT_OK(txn0->Prepare()); // nonmem
ASSERT_OK(txn0->Commit());
}};
// Be sure the test is set up appropriately
TEST_SYNC_POINT("TransactionTest::UnlockWALStallCleared:BeforeUnlockWAL1");
TEST_SYNC_POINT("TransactionTest::UnlockWALStallCleared:BeforeUnlockWAL2");
ASSERT_FALSE(t1_completed.load());
ASSERT_FALSE(t2_completed.load());
// Clear the stall
ASSERT_OK(db->UnlockWAL());
WriteOptions wopts2 = wopts;
if (external_stall) {
// We did not deadlock in UnlockWAL, so now async clear the external
// stall and then do a blocking write.
// DB mutex acquire+release is needed to ensure we don't reset token and
// signal while DelayWrite() is between IsStopped() and
// BeginWriteStall().
token.reset();
dbimpl->TEST_LockMutex();
dbimpl->TEST_UnlockMutex();
dbimpl->TEST_SignalAllBgCv();
} else {
// To verify the LockWAL stall is guaranteed cleared, do a non-blocking
// write that is attempting to catch a bug by attempting to come before
// the thread that did BeginWriteStall() can do EndWriteStall()
wopts2.no_slowdown = true;
}
std::unique_ptr<Transaction> txn0{db->BeginTransaction(wopts2, {})};
ASSERT_OK(txn0->SetName("x2"));
ASSERT_OK(txn0->Put("k1", "val4"));
ASSERT_OK(txn0->Prepare()); // nonmem
ASSERT_OK(txn0->Commit());
t1.join();
t2.join();
}
}
TEST_F(TransactionDBTest, CollapseKey) {
ASSERT_OK(ReOpen());
ASSERT_OK(db->Put({}, "hello", "world"));
ASSERT_OK(db->Flush({}));
ASSERT_OK(db->Merge({}, "hello", "world"));
ASSERT_OK(db->Flush({}));
ASSERT_OK(db->Merge({}, "hello", "world"));
ASSERT_OK(db->Flush({}));
std::string value;
ASSERT_OK(db->Get({}, "hello", &value));
ASSERT_EQ("world,world,world", value);
// get merge op info
std::vector<PinnableSlice> operands(3);
GetMergeOperandsOptions mergeOperandOptions;
mergeOperandOptions.expected_max_number_of_operands = 3;
int numOperands;
ASSERT_OK(db->GetMergeOperands({}, db->DefaultColumnFamily(), "hello",
operands.data(), &mergeOperandOptions,
&numOperands));
ASSERT_EQ(3, numOperands);
// collapse key
{
std::unique_ptr<Transaction> txn0{
db->BeginTransaction(WriteOptions{}, TransactionOptions{})};
ASSERT_OK(txn0->CollapseKey(ReadOptions{}, "hello"));
ASSERT_OK(txn0->Commit());
}
// merge operands should be 1
ASSERT_OK(db->GetMergeOperands({}, db->DefaultColumnFamily(), "hello",
operands.data(), &mergeOperandOptions,
&numOperands));
ASSERT_EQ(1, numOperands);
// get again after collapse
ASSERT_OK(db->Get({}, "hello", &value));
ASSERT_EQ("world,world,world", value);
// collapse of non-existent key
{
std::unique_ptr<Transaction> txn1{
db->BeginTransaction(WriteOptions{}, TransactionOptions{})};
ASSERT_TRUE(txn1->CollapseKey(ReadOptions{}, "dummy").IsNotFound());
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}