rocksdb/db/prefix_test.cc

505 lines
16 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run rocksdb tools\n");
return 1;
}
#else
#include <algorithm>
#include <iostream>
#include <vector>
#include <gflags/gflags.h>
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/memtablerep.h"
#include "util/histogram.h"
#include "util/stop_watch.h"
#include "util/testharness.h"
using GFLAGS::ParseCommandLineFlags;
DEFINE_bool(trigger_deadlock, false,
"issue delete in range scan to trigger PrefixHashMap deadlock");
DEFINE_uint64(bucket_count, 100000, "number of buckets");
DEFINE_uint64(num_locks, 10001, "number of locks");
DEFINE_bool(random_prefix, false, "randomize prefix");
DEFINE_uint64(total_prefixes, 100000, "total number of prefixes");
DEFINE_uint64(items_per_prefix, 1, "total number of values per prefix");
DEFINE_int64(write_buffer_size, 33554432, "");
DEFINE_int64(max_write_buffer_number, 2, "");
DEFINE_int64(min_write_buffer_number_to_merge, 1, "");
DEFINE_int32(skiplist_height, 4, "");
DEFINE_int32(memtable_prefix_bloom_bits, 10000000, "");
DEFINE_int32(memtable_prefix_bloom_probes, 10, "");
DEFINE_int32(memtable_prefix_bloom_huge_page_tlb_size, 2 * 1024 * 1024, "");
DEFINE_int32(value_size, 40, "");
// Path to the database on file system
const std::string kDbName = rocksdb::test::TmpDir() + "/prefix_test";
namespace rocksdb {
struct TestKey {
uint64_t prefix;
uint64_t sorted;
TestKey(uint64_t prefix, uint64_t sorted) : prefix(prefix), sorted(sorted) {}
};
// return a slice backed by test_key
inline Slice TestKeyToSlice(const TestKey& test_key) {
return Slice((const char*)&test_key, sizeof(test_key));
}
inline const TestKey* SliceToTestKey(const Slice& slice) {
return (const TestKey*)slice.data();
}
class TestKeyComparator : public Comparator {
public:
// Compare needs to be aware of the possibility of a and/or b is
// prefix only
virtual int Compare(const Slice& a, const Slice& b) const {
const TestKey* key_a = SliceToTestKey(a);
const TestKey* key_b = SliceToTestKey(b);
if (key_a->prefix != key_b->prefix) {
if (key_a->prefix < key_b->prefix) return -1;
if (key_a->prefix > key_b->prefix) return 1;
} else {
ASSERT_TRUE(key_a->prefix == key_b->prefix);
// note, both a and b could be prefix only
if (a.size() != b.size()) {
// one of them is prefix
ASSERT_TRUE(
(a.size() == sizeof(uint64_t) && b.size() == sizeof(TestKey)) ||
(b.size() == sizeof(uint64_t) && a.size() == sizeof(TestKey)));
if (a.size() < b.size()) return -1;
if (a.size() > b.size()) return 1;
} else {
// both a and b are prefix
if (a.size() == sizeof(uint64_t)) {
return 0;
}
// both a and b are whole key
ASSERT_TRUE(a.size() == sizeof(TestKey) && b.size() == sizeof(TestKey));
if (key_a->sorted < key_b->sorted) return -1;
if (key_a->sorted > key_b->sorted) return 1;
if (key_a->sorted == key_b->sorted) return 0;
}
}
return 0;
}
virtual const char* Name() const override {
return "TestKeyComparator";
}
virtual void FindShortestSeparator(
std::string* start,
const Slice& limit) const {
}
virtual void FindShortSuccessor(std::string* key) const {}
};
namespace {
void PutKey(DB* db, WriteOptions write_options, uint64_t prefix,
uint64_t suffix, const Slice& value) {
TestKey test_key(prefix, suffix);
Slice key = TestKeyToSlice(test_key);
ASSERT_OK(db->Put(write_options, key, value));
}
void SeekIterator(Iterator* iter, uint64_t prefix, uint64_t suffix) {
TestKey test_key(prefix, suffix);
Slice key = TestKeyToSlice(test_key);
iter->Seek(key);
}
const std::string kNotFoundResult = "NOT_FOUND";
std::string Get(DB* db, const ReadOptions& read_options, uint64_t prefix,
uint64_t suffix) {
TestKey test_key(prefix, suffix);
Slice key = TestKeyToSlice(test_key);
std::string result;
Status s = db->Get(read_options, key, &result);
if (s.IsNotFound()) {
result = kNotFoundResult;
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
} // namespace
class PrefixTest {
public:
std::shared_ptr<DB> OpenDb() {
DB* db;
options.create_if_missing = true;
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.memtable_prefix_bloom_bits = FLAGS_memtable_prefix_bloom_bits;
options.memtable_prefix_bloom_probes = FLAGS_memtable_prefix_bloom_probes;
options.memtable_prefix_bloom_huge_page_tlb_size =
FLAGS_memtable_prefix_bloom_huge_page_tlb_size;
Status s = DB::Open(options, kDbName, &db);
ASSERT_OK(s);
return std::shared_ptr<DB>(db);
}
void FirstOption() {
option_config_ = kBegin;
}
bool NextOptions(int bucket_count) {
// skip some options
option_config_++;
if (option_config_ < kEnd) {
options.prefix_extractor.reset(NewFixedPrefixTransform(8));
switch(option_config_) {
case kHashSkipList:
options.memtable_factory.reset(
NewHashSkipListRepFactory(bucket_count, FLAGS_skiplist_height));
return true;
case kHashLinkList:
options.memtable_factory.reset(
NewHashLinkListRepFactory(bucket_count));
return true;
case kHashLinkListHugePageTlb:
options.memtable_factory.reset(
NewHashLinkListRepFactory(bucket_count, 2 * 1024 * 1024));
return true;
case kHashLinkListTriggerSkipList:
options.memtable_factory.reset(
NewHashLinkListRepFactory(bucket_count, 0, 3));
return true;
default:
return false;
}
}
return false;
}
PrefixTest() : option_config_(kBegin) {
options.comparator = new TestKeyComparator();
}
~PrefixTest() {
delete options.comparator;
}
protected:
enum OptionConfig {
kBegin,
kHashSkipList,
kHashLinkList,
kHashLinkListHugePageTlb,
kHashLinkListTriggerSkipList,
kEnd
};
int option_config_;
Options options;
};
TEST(PrefixTest, TestResult) {
for (int num_buckets = 1; num_buckets <= 2; num_buckets++) {
FirstOption();
while (NextOptions(num_buckets)) {
std::cout << "*** Mem table: " << options.memtable_factory->Name()
<< " number of buckets: " << num_buckets
<< std::endl;
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
// 1. Insert one row.
Slice v16("v16");
PutKey(db.get(), write_options, 1, 6, v16);
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 6);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(!iter->Valid());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(!iter->Valid());
ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 5));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 7));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 0, 6));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 2, 6));
// 2. Insert an entry for the same prefix as the last entry in the bucket.
Slice v17("v17");
PutKey(db.get(), write_options, 1, 7, v17);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 6);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
iter->Next();
ASSERT_TRUE(!iter->Valid());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(!iter->Valid());
// 3. Insert an entry for the same prefix as the head of the bucket.
Slice v15("v15");
PutKey(db.get(), write_options, 1, 5, v15);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5));
ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6));
ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7));
// 4. Insert an entry with a larger prefix
Slice v22("v22");
PutKey(db.get(), write_options, 2, 2, v22);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 2, 2);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
// 5. Insert an entry with a smaller prefix
Slice v02("v02");
PutKey(db.get(), write_options, 0, 2, v02);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 0, 2);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v02 == iter->value());
SeekIterator(iter.get(), 0, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v02 == iter->value());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
// 6. Insert to the beginning and the end of the first prefix
Slice v13("v13");
Slice v18("v18");
PutKey(db.get(), write_options, 1, 3, v13);
PutKey(db.get(), write_options, 1, 8, v18);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 3);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v13 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v18 == iter->value());
SeekIterator(iter.get(), 0, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v02 == iter->value());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
ASSERT_EQ(v22.ToString(), Get(db.get(), read_options, 2, 2));
ASSERT_EQ(v02.ToString(), Get(db.get(), read_options, 0, 2));
ASSERT_EQ(v13.ToString(), Get(db.get(), read_options, 1, 3));
ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5));
ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6));
ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7));
ASSERT_EQ(v18.ToString(), Get(db.get(), read_options, 1, 8));
}
}
}
TEST(PrefixTest, DynamicPrefixIterator) {
while (NextOptions(FLAGS_bucket_count)) {
std::cout << "*** Mem table: " << options.memtable_factory->Name()
<< std::endl;
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
std::vector<uint64_t> prefixes;
for (uint64_t i = 0; i < FLAGS_total_prefixes; ++i) {
prefixes.push_back(i);
}
if (FLAGS_random_prefix) {
std::random_shuffle(prefixes.begin(), prefixes.end());
}
HistogramImpl hist_put_time;
HistogramImpl hist_put_comparison;
// insert x random prefix, each with y continuous element.
for (auto prefix : prefixes) {
for (uint64_t sorted = 0; sorted < FLAGS_items_per_prefix; sorted++) {
TestKey test_key(prefix, sorted);
Slice key = TestKeyToSlice(test_key);
std::string value(FLAGS_value_size, 0);
perf_context.Reset();
StopWatchNano timer(Env::Default(), true);
ASSERT_OK(db->Put(write_options, key, value));
hist_put_time.Add(timer.ElapsedNanos());
hist_put_comparison.Add(perf_context.user_key_comparison_count);
}
}
std::cout << "Put key comparison: \n" << hist_put_comparison.ToString()
<< "Put time: \n" << hist_put_time.ToString();
// test seek existing keys
HistogramImpl hist_seek_time;
HistogramImpl hist_seek_comparison;
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
for (auto prefix : prefixes) {
TestKey test_key(prefix, FLAGS_items_per_prefix / 2);
Slice key = TestKeyToSlice(test_key);
std::string value = "v" + std::to_string(0);
perf_context.Reset();
StopWatchNano timer(Env::Default(), true);
auto key_prefix = options.prefix_extractor->Transform(key);
uint64_t total_keys = 0;
for (iter->Seek(key);
iter->Valid() && iter->key().starts_with(key_prefix);
iter->Next()) {
if (FLAGS_trigger_deadlock) {
std::cout << "Behold the deadlock!\n";
db->Delete(write_options, iter->key());
}
total_keys++;
}
hist_seek_time.Add(timer.ElapsedNanos());
hist_seek_comparison.Add(perf_context.user_key_comparison_count);
ASSERT_EQ(total_keys, FLAGS_items_per_prefix - FLAGS_items_per_prefix/2);
}
std::cout << "Seek key comparison: \n"
<< hist_seek_comparison.ToString()
<< "Seek time: \n"
<< hist_seek_time.ToString();
// test non-existing keys
HistogramImpl hist_no_seek_time;
HistogramImpl hist_no_seek_comparison;
for (auto prefix = FLAGS_total_prefixes;
prefix < FLAGS_total_prefixes + 10000;
prefix++) {
TestKey test_key(prefix, 0);
Slice key = TestKeyToSlice(test_key);
perf_context.Reset();
StopWatchNano timer(Env::Default(), true);
iter->Seek(key);
hist_no_seek_time.Add(timer.ElapsedNanos());
hist_no_seek_comparison.Add(perf_context.user_key_comparison_count);
ASSERT_TRUE(!iter->Valid());
}
std::cout << "non-existing Seek key comparison: \n"
<< hist_no_seek_comparison.ToString()
<< "non-existing Seek time: \n"
<< hist_no_seek_time.ToString();
}
}
}
int main(int argc, char** argv) {
ParseCommandLineFlags(&argc, &argv, true);
std::cout << kDbName << "\n";
rocksdb::test::RunAllTests();
return 0;
}
#endif // GFLAGS