rocksdb/db_stress_tool/no_batched_ops_stress.cc

2881 lines
107 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/dbformat.h"
#include "db_stress_tool/db_stress_listener.h"
#include "db_stress_tool/db_stress_shared_state.h"
#include "db_stress_tool/expected_state.h"
#include "rocksdb/status.h"
#ifdef GFLAGS
#include "db/wide/wide_columns_helper.h"
#include "db_stress_tool/db_stress_common.h"
#include "rocksdb/utilities/transaction_db.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
class NonBatchedOpsStressTest : public StressTest {
public:
NonBatchedOpsStressTest() = default;
virtual ~NonBatchedOpsStressTest() = default;
void VerifyDb(ThreadState* thread) const override {
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions options(FLAGS_verify_checksum, true);
std::string ts_str;
Slice ts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GetNowNanos();
ts = ts_str;
options.timestamp = &ts;
}
auto shared = thread->shared;
const int64_t max_key = shared->GetMaxKey();
const int64_t keys_per_thread = max_key / shared->GetNumThreads();
int64_t start = keys_per_thread * thread->tid;
int64_t end = start + keys_per_thread;
uint64_t prefix_to_use =
(FLAGS_prefix_size < 0) ? 1 : static_cast<size_t>(FLAGS_prefix_size);
if (thread->tid == shared->GetNumThreads() - 1) {
end = max_key;
}
for (size_t cf = 0; cf < column_families_.size(); ++cf) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
enum class VerificationMethod {
kIterator,
kGet,
kGetEntity,
kMultiGet,
kMultiGetEntity,
kGetMergeOperands,
// Add any new items above kNumberOfMethods
kNumberOfMethods
};
constexpr int num_methods =
static_cast<int>(VerificationMethod::kNumberOfMethods);
const VerificationMethod method =
static_cast<VerificationMethod>(thread->rand.Uniform(
(FLAGS_user_timestamp_size > 0) ? num_methods - 1 : num_methods));
if (method == VerificationMethod::kIterator) {
std::unique_ptr<Iterator> iter(
db_->NewIterator(options, column_families_[cf]));
std::string seek_key = Key(start);
iter->Seek(seek_key);
Slice prefix(seek_key.data(), prefix_to_use);
for (int64_t i = start; i < end; ++i) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
const std::string key = Key(i);
const Slice k(key);
const Slice pfx(key.data(), prefix_to_use);
// Reseek when the prefix changes
if (prefix_to_use > 0 && prefix.compare(pfx) != 0) {
iter->Seek(k);
seek_key = key;
prefix = Slice(seek_key.data(), prefix_to_use);
}
Status s = iter->status();
std::string from_db;
if (iter->Valid()) {
const int diff = iter->key().compare(k);
if (diff > 0) {
s = Status::NotFound();
} else if (diff == 0) {
if (!VerifyWideColumns(iter->value(), iter->columns())) {
VerificationAbort(shared, static_cast<int>(cf), i,
iter->value(), iter->columns());
}
from_db = iter->value().ToString();
iter->Next();
} else {
assert(diff < 0);
VerificationAbort(shared, "An out of range key was found",
static_cast<int>(cf), i);
}
} else {
// The iterator found no value for the key in question, so do not
// move to the next item in the iterator
s = Status::NotFound();
}
VerifyOrSyncValue(static_cast<int>(cf), i, options, shared, from_db,
/* msg_prefix */ "Iterator verification", s);
if (!from_db.empty()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i),
from_db.data(), from_db.size());
}
}
} else if (method == VerificationMethod::kGet) {
for (int64_t i = start; i < end; ++i) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
const std::string key = Key(i);
std::string from_db;
Status s = db_->Get(options, column_families_[cf], key, &from_db);
VerifyOrSyncValue(static_cast<int>(cf), i, options, shared, from_db,
/* msg_prefix */ "Get verification", s);
if (!from_db.empty()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i),
from_db.data(), from_db.size());
}
}
} else if (method == VerificationMethod::kGetEntity) {
for (int64_t i = start; i < end; ++i) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
const std::string key = Key(i);
PinnableWideColumns result;
Status s =
db_->GetEntity(options, column_families_[cf], key, &result);
std::string from_db;
if (s.ok()) {
const WideColumns& columns = result.columns();
if (WideColumnsHelper::HasDefaultColumn(columns)) {
from_db = WideColumnsHelper::GetDefaultColumn(columns).ToString();
}
if (!VerifyWideColumns(columns)) {
VerificationAbort(shared, static_cast<int>(cf), i, from_db,
columns);
}
}
VerifyOrSyncValue(static_cast<int>(cf), i, options, shared, from_db,
/* msg_prefix */ "GetEntity verification", s);
if (!from_db.empty()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i),
from_db.data(), from_db.size());
}
}
} else if (method == VerificationMethod::kMultiGet) {
for (int64_t i = start; i < end;) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
// Keep the batch size to some reasonable value
size_t batch_size = thread->rand.Uniform(128) + 1;
batch_size = std::min<size_t>(batch_size, end - i);
std::vector<std::string> key_strs(batch_size);
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
for (size_t j = 0; j < batch_size; ++j) {
key_strs[j] = Key(i + j);
keys[j] = Slice(key_strs[j]);
}
db_->MultiGet(options, column_families_[cf], batch_size, keys.data(),
values.data(), statuses.data());
for (size_t j = 0; j < batch_size; ++j) {
const std::string from_db = values[j].ToString();
VerifyOrSyncValue(static_cast<int>(cf), i + j, options, shared,
from_db, /* msg_prefix */ "MultiGet verification",
statuses[j]);
if (!from_db.empty()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i + j),
from_db.data(), from_db.size());
}
}
i += batch_size;
}
} else if (method == VerificationMethod::kMultiGetEntity) {
for (int64_t i = start; i < end;) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
// Keep the batch size to some reasonable value
size_t batch_size = thread->rand.Uniform(128) + 1;
batch_size = std::min<size_t>(batch_size, end - i);
std::vector<std::string> key_strs(batch_size);
std::vector<Slice> keys(batch_size);
std::vector<PinnableWideColumns> results(batch_size);
std::vector<Status> statuses(batch_size);
for (size_t j = 0; j < batch_size; ++j) {
key_strs[j] = Key(i + j);
keys[j] = Slice(key_strs[j]);
}
db_->MultiGetEntity(options, column_families_[cf], batch_size,
keys.data(), results.data(), statuses.data());
for (size_t j = 0; j < batch_size; ++j) {
std::string from_db;
if (statuses[j].ok()) {
const WideColumns& columns = results[j].columns();
if (WideColumnsHelper::HasDefaultColumn(columns)) {
from_db =
WideColumnsHelper::GetDefaultColumn(columns).ToString();
}
if (!VerifyWideColumns(columns)) {
VerificationAbort(shared, static_cast<int>(cf), i, from_db,
columns);
}
}
VerifyOrSyncValue(
static_cast<int>(cf), i + j, options, shared, from_db,
/* msg_prefix */ "MultiGetEntity verification", statuses[j]);
if (!from_db.empty()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i + j),
from_db.data(), from_db.size());
}
}
i += batch_size;
}
} else {
assert(method == VerificationMethod::kGetMergeOperands);
// Start off with small size that will be increased later if necessary
std::vector<PinnableSlice> values(4);
GetMergeOperandsOptions merge_operands_info;
merge_operands_info.expected_max_number_of_operands =
static_cast<int>(values.size());
for (int64_t i = start; i < end; ++i) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
const std::string key = Key(i);
const Slice k(key);
std::string from_db;
int number_of_operands = 0;
Status s = db_->GetMergeOperands(options, column_families_[cf], k,
values.data(), &merge_operands_info,
&number_of_operands);
if (s.IsIncomplete()) {
// Need to resize values as there are more than values.size() merge
// operands on this key. Should only happen a few times when we
// encounter a key that had more merge operands than any key seen so
// far
values.resize(number_of_operands);
merge_operands_info.expected_max_number_of_operands =
static_cast<int>(number_of_operands);
s = db_->GetMergeOperands(options, column_families_[cf], k,
values.data(), &merge_operands_info,
&number_of_operands);
}
// Assumed here that GetMergeOperands always sets number_of_operand
if (number_of_operands) {
from_db = values[number_of_operands - 1].ToString();
}
VerifyOrSyncValue(static_cast<int>(cf), i, options, shared, from_db,
/* msg_prefix */ "GetMergeOperands verification",
s);
if (!from_db.empty()) {
PrintKeyValue(static_cast<int>(cf), static_cast<uint32_t>(i),
from_db.data(), from_db.size());
}
}
}
}
}
void ContinuouslyVerifyDb(ThreadState* thread) const override {
if (!cmp_db_) {
return;
}
assert(cmp_db_);
assert(!cmp_cfhs_.empty());
Status s = cmp_db_->TryCatchUpWithPrimary();
if (!s.ok()) {
assert(false);
exit(1);
}
const auto checksum_column_family = [](Iterator* iter,
uint32_t* checksum) -> Status {
assert(nullptr != checksum);
uint32_t ret = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ret = crc32c::Extend(ret, iter->key().data(), iter->key().size());
ret = crc32c::Extend(ret, iter->value().data(), iter->value().size());
}
*checksum = ret;
return iter->status();
};
auto* shared = thread->shared;
assert(shared);
const int64_t max_key = shared->GetMaxKey();
ReadOptions read_opts(FLAGS_verify_checksum, true);
std::string ts_str;
Slice ts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GetNowNanos();
ts = ts_str;
read_opts.timestamp = &ts;
}
static Random64 rand64(shared->GetSeed());
{
uint32_t crc = 0;
std::unique_ptr<Iterator> it(cmp_db_->NewIterator(read_opts));
s = checksum_column_family(it.get(), &crc);
if (!s.ok()) {
fprintf(stderr, "Computing checksum of default cf: %s\n",
s.ToString().c_str());
assert(false);
}
}
for (auto* handle : cmp_cfhs_) {
if (thread->rand.OneInOpt(3)) {
// Use Get()
uint64_t key = rand64.Uniform(static_cast<uint64_t>(max_key));
std::string key_str = Key(key);
std::string value;
std::string key_ts;
s = cmp_db_->Get(read_opts, handle, key_str, &value,
FLAGS_user_timestamp_size > 0 ? &key_ts : nullptr);
s.PermitUncheckedError();
} else {
// Use range scan
std::unique_ptr<Iterator> iter(cmp_db_->NewIterator(read_opts, handle));
uint32_t rnd = (thread->rand.Next()) % 4;
if (0 == rnd) {
// SeekToFirst() + Next()*5
read_opts.total_order_seek = true;
iter->SeekToFirst();
for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Next()) {
}
} else if (1 == rnd) {
// SeekToLast() + Prev()*5
read_opts.total_order_seek = true;
iter->SeekToLast();
for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Prev()) {
}
} else if (2 == rnd) {
// Seek() +Next()*5
uint64_t key = rand64.Uniform(static_cast<uint64_t>(max_key));
std::string key_str = Key(key);
iter->Seek(key_str);
for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Next()) {
}
} else {
// SeekForPrev() + Prev()*5
uint64_t key = rand64.Uniform(static_cast<uint64_t>(max_key));
std::string key_str = Key(key);
iter->SeekForPrev(key_str);
for (int i = 0; i < 5 && iter->Valid(); ++i, iter->Prev()) {
}
}
}
}
}
void MaybeClearOneColumnFamily(ThreadState* thread) override {
if (FLAGS_column_families > 1) {
if (thread->rand.OneInOpt(FLAGS_clear_column_family_one_in)) {
// drop column family and then create it again (can't drop default)
int cf = thread->rand.Next() % (FLAGS_column_families - 1) + 1;
std::string new_name =
std::to_string(new_column_family_name_.fetch_add(1));
{
MutexLock l(thread->shared->GetMutex());
fprintf(
stdout,
"[CF %d] Dropping and recreating column family. new name: %s\n",
cf, new_name.c_str());
}
thread->shared->LockColumnFamily(cf);
Status s = db_->DropColumnFamily(column_families_[cf]);
delete column_families_[cf];
if (!s.ok()) {
fprintf(stderr, "dropping column family error: %s\n",
s.ToString().c_str());
thread->shared->SafeTerminate();
}
s = db_->CreateColumnFamily(ColumnFamilyOptions(options_), new_name,
&column_families_[cf]);
column_family_names_[cf] = new_name;
thread->shared->ClearColumnFamily(cf);
if (!s.ok()) {
fprintf(stderr, "creating column family error: %s\n",
s.ToString().c_str());
thread->shared->SafeTerminate();
}
thread->shared->UnlockColumnFamily(cf);
}
}
}
bool ShouldAcquireMutexOnKey() const override { return true; }
bool IsStateTracked() const override { return true; }
void TestKeyMayExist(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
auto cfh = column_families_[rand_column_families[0]];
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
std::string ignore;
ReadOptions read_opts_copy = read_opts;
std::string read_ts_str;
Slice read_ts_slice;
if (FLAGS_user_timestamp_size > 0) {
read_ts_str = GetNowNanos();
read_ts_slice = read_ts_str;
read_opts_copy.timestamp = &read_ts_slice;
}
bool read_older_ts = MaybeUseOlderTimestampForPointLookup(
thread, read_ts_str, read_ts_slice, read_opts_copy);
const ExpectedValue pre_read_expected_value =
thread->shared->Get(rand_column_families[0], rand_keys[0]);
bool key_may_exist = db_->KeyMayExist(read_opts_copy, cfh, key, &ignore);
const ExpectedValue post_read_expected_value =
thread->shared->Get(rand_column_families[0], rand_keys[0]);
if (!key_may_exist && !FLAGS_skip_verifydb && !read_older_ts) {
if (ExpectedValueHelper::MustHaveExisted(pre_read_expected_value,
post_read_expected_value)) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent values for key %s: expected state has "
"the key, TestKeyMayExist() returns false indicating the key "
"must not exist.\n",
key.ToString(true).c_str());
}
}
}
Status TestGet(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
auto cfh = column_families_[rand_column_families[0]];
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
std::string from_db;
ReadOptions read_opts_copy = read_opts;
std::string read_ts_str;
Slice read_ts_slice;
if (FLAGS_user_timestamp_size > 0) {
read_ts_str = GetNowNanos();
read_ts_slice = read_ts_str;
read_opts_copy.timestamp = &read_ts_slice;
}
bool read_older_ts = MaybeUseOlderTimestampForPointLookup(
thread, read_ts_str, read_ts_slice, read_opts_copy);
if (fault_fs_guard) {
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead);
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead);
SharedState::ignore_read_error = false;
}
const ExpectedValue pre_read_expected_value =
thread->shared->Get(rand_column_families[0], rand_keys[0]);
Status s = db_->Get(read_opts_copy, cfh, key, &from_db);
const ExpectedValue post_read_expected_value =
thread->shared->Get(rand_column_families[0], rand_keys[0]);
int injected_error_count = 0;
if (fault_fs_guard) {
injected_error_count = GetMinInjectedErrorCount(
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead),
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead));
if (!SharedState::ignore_read_error && injected_error_count > 0 &&
(s.ok() || s.IsNotFound())) {
// Grab mutex so multiple thread don't try to print the
// stack trace at the same time
MutexLock l(thread->shared->GetMutex());
fprintf(stderr, "Didn't get expected error from Get\n");
fprintf(stderr, "Callstack that injected the fault\n");
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kRead);
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kMetadataRead);
std::terminate();
}
}
if (s.ok()) {
// found case
thread->stats.AddGets(1, 1);
// we only have the latest expected state
if (!FLAGS_skip_verifydb && !read_older_ts) {
if (ExpectedValueHelper::MustHaveNotExisted(pre_read_expected_value,
post_read_expected_value)) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent values for key %s (%" PRIi64
"): Get returns %s, "
"but expected state is \"deleted\".\n",
key.ToString(true).c_str(), rand_keys[0],
StringToHex(from_db).c_str());
}
Slice from_db_slice(from_db);
uint32_t value_base_from_db = GetValueBase(from_db_slice);
if (!ExpectedValueHelper::InExpectedValueBaseRange(
value_base_from_db, pre_read_expected_value,
post_read_expected_value)) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent values for key %s (%" PRIi64
"): Get returns %s with "
"value base %d that falls out of expected state's value base "
"range.\n",
key.ToString(true).c_str(), rand_keys[0],
StringToHex(from_db).c_str(), value_base_from_db);
}
}
} else if (s.IsNotFound()) {
// not found case
thread->stats.AddGets(1, 0);
if (!FLAGS_skip_verifydb && !read_older_ts) {
if (ExpectedValueHelper::MustHaveExisted(pre_read_expected_value,
post_read_expected_value)) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent values for key %s (%" PRIi64
"): expected state has "
"the key, Get() returns NotFound.\n",
key.ToString(true).c_str(), rand_keys[0]);
}
}
} else if (injected_error_count == 0 || !IsErrorInjectedAndRetryable(s)) {
thread->shared->SetVerificationFailure();
fprintf(stderr, "error : Get() returns %s for key: %s (%" PRIi64 ").\n",
s.ToString().c_str(), key.ToString(true).c_str(), rand_keys[0]);
}
return s;
}
std::vector<Status> TestMultiGet(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
size_t num_keys = rand_keys.size();
std::vector<std::string> key_str;
std::vector<Slice> keys;
key_str.reserve(num_keys);
keys.reserve(num_keys);
std::vector<PinnableSlice> values(num_keys);
std::vector<Status> statuses(num_keys);
// When Flags_use_txn is enabled, we also do a read your write check.
std::unordered_map<std::string, ExpectedValue> ryw_expected_values;
SharedState* shared = thread->shared;
assert(shared);
int column_family = rand_column_families[0];
ColumnFamilyHandle* cfh = column_families_[column_family];
bool do_consistency_check = FLAGS_check_multiget_consistency;
ReadOptions readoptionscopy = read_opts;
if (do_consistency_check) {
readoptionscopy.snapshot = db_->GetSnapshot();
}
std::string read_ts_str;
Slice read_ts_slice;
MaybeUseOlderTimestampForPointLookup(thread, read_ts_str, read_ts_slice,
readoptionscopy);
readoptionscopy.rate_limiter_priority =
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
// To appease clang analyzer
const bool use_txn = FLAGS_use_txn;
// Create a transaction in order to write some data. The purpose is to
// exercise WriteBatchWithIndex::MultiGetFromBatchAndDB. The transaction
// will be rolled back once MultiGet returns.
std::unique_ptr<Transaction> txn;
if (use_txn) {
// TODO(hx235): test fault injection with MultiGet() with transactions
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
WriteOptions wo;
if (FLAGS_rate_limit_auto_wal_flush) {
wo.rate_limiter_priority = Env::IO_USER;
}
Status s = NewTxn(wo, &txn);
if (!s.ok()) {
fprintf(stderr, "NewTxn error: %s\n", s.ToString().c_str());
shared->SafeTerminate();
}
}
for (size_t i = 0; i < num_keys; ++i) {
uint64_t rand_key = rand_keys[i];
key_str.emplace_back(Key(rand_key));
keys.emplace_back(key_str.back());
if (use_txn) {
MaybeAddKeyToTxnForRYW(thread, column_family, rand_key, txn.get(),
ryw_expected_values);
}
}
int injected_error_count = 0;
if (!use_txn) {
if (fault_fs_guard) {
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead);
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead);
SharedState::ignore_read_error = false;
}
db_->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(),
statuses.data());
if (fault_fs_guard) {
injected_error_count = GetMinInjectedErrorCount(
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead),
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead));
if (injected_error_count > 0) {
int stat_nok_nfound = 0;
for (const auto& s : statuses) {
if (!s.ok() && !s.IsNotFound()) {
stat_nok_nfound++;
}
}
if (!SharedState::ignore_read_error &&
stat_nok_nfound < injected_error_count) {
// Grab mutex so multiple thread don't try to print the
// stack trace at the same time
MutexLock l(shared->GetMutex());
fprintf(stderr, "Didn't get expected error from MultiGet. \n");
fprintf(stderr,
"num_keys %zu Expected %d errors, seen at least %d\n",
num_keys, injected_error_count, stat_nok_nfound);
fprintf(stderr, "Callstack that injected the fault\n");
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kRead);
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kMetadataRead);
std::terminate();
}
}
}
} else {
assert(txn);
txn->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(),
statuses.data());
}
auto ryw_check =
[](const Slice& key, const PinnableSlice& value, const Status& s,
const std::optional<ExpectedValue>& ryw_expected_value) -> bool {
if (!ryw_expected_value.has_value()) {
return true;
}
const ExpectedValue& expected = ryw_expected_value.value();
char expected_value[100];
if (s.ok() &&
ExpectedValueHelper::MustHaveNotExisted(expected, expected)) {
fprintf(stderr,
"MultiGet returned value different from what was "
"written for key %s\n",
key.ToString(true).c_str());
fprintf(stderr,
"MultiGet returned ok, transaction has non-committed "
"delete.\n");
return false;
} else if (s.IsNotFound() &&
ExpectedValueHelper::MustHaveExisted(expected, expected)) {
fprintf(stderr,
"MultiGet returned value different from what was "
"written for key %s\n",
key.ToString(true).c_str());
fprintf(stderr,
"MultiGet returned not found, transaction has "
"non-committed value.\n");
return false;
} else if (s.ok() &&
ExpectedValueHelper::MustHaveExisted(expected, expected)) {
Slice from_txn_slice(value);
size_t sz = GenerateValue(expected.GetValueBase(), expected_value,
sizeof(expected_value));
Slice expected_value_slice(expected_value, sz);
if (expected_value_slice.compare(from_txn_slice) == 0) {
return true;
}
fprintf(stderr,
"MultiGet returned value different from what was "
"written for key %s\n",
key.ToString(true /* hex */).c_str());
fprintf(stderr, "MultiGet returned value %s\n",
from_txn_slice.ToString(true /* hex */).c_str());
fprintf(stderr, "Transaction has non-committed value %s\n",
expected_value_slice.ToString(true /* hex */).c_str());
return false;
}
return true;
};
auto check_multiget =
[&](const Slice& key, const PinnableSlice& expected_value,
const Status& s,
const std::optional<ExpectedValue>& ryw_expected_value) -> bool {
// Temporarily disable error injection for verification
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
bool check_multiget_res = true;
bool is_consistent = true;
bool is_ryw_correct = true;
// If test does not use transaction, the consistency check for each key
// included check results from db `Get` and db `MultiGet` are consistent.
// If test use transaction, after consistency check, also do a read your
// own write check.
Status tmp_s;
std::string value;
if (use_txn) {
assert(txn);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_GET);
tmp_s = txn->Get(readoptionscopy, cfh, key, &value);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_MULTIGET);
} else {
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_GET);
tmp_s = db_->Get(readoptionscopy, cfh, key, &value);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_MULTIGET);
}
if (!tmp_s.ok() && !tmp_s.IsNotFound()) {
fprintf(stderr, "Get error: %s\n", s.ToString().c_str());
is_consistent = false;
} else if (!s.ok() && tmp_s.ok()) {
fprintf(stderr,
"MultiGet(%d) returned different results with key %s. "
"Snapshot Seq No: %" PRIu64 "\n",
column_family, key.ToString(true).c_str(),
readoptionscopy.snapshot->GetSequenceNumber());
fprintf(stderr, "Get returned ok, MultiGet returned not found\n");
is_consistent = false;
} else if (s.ok() && tmp_s.IsNotFound()) {
fprintf(stderr,
"MultiGet(%d) returned different results with key %s. "
"Snapshot Seq No: %" PRIu64 "\n",
column_family, key.ToString(true).c_str(),
readoptionscopy.snapshot->GetSequenceNumber());
fprintf(stderr, "MultiGet returned ok, Get returned not found\n");
is_consistent = false;
} else if (s.ok() && value != expected_value.ToString()) {
fprintf(stderr,
"MultiGet(%d) returned different results with key %s. "
"Snapshot Seq No: %" PRIu64 "\n",
column_family, key.ToString(true).c_str(),
readoptionscopy.snapshot->GetSequenceNumber());
fprintf(stderr, "MultiGet returned value %s\n",
expected_value.ToString(true).c_str());
fprintf(stderr, "Get returned value %s\n",
Slice(value).ToString(true /* hex */).c_str());
is_consistent = false;
}
// If test uses transaction, continue to do a read your own write check.
if (is_consistent && use_txn) {
is_ryw_correct = ryw_check(key, expected_value, s, ryw_expected_value);
}
if (!is_consistent) {
fprintf(stderr, "TestMultiGet error: is_consistent is false\n");
thread->stats.AddErrors(1);
check_multiget_res = false;
// Fail fast to preserve the DB state
shared->SetVerificationFailure();
} else if (!is_ryw_correct) {
fprintf(stderr, "TestMultiGet error: is_ryw_correct is false\n");
thread->stats.AddErrors(1);
check_multiget_res = false;
// Fail fast to preserve the DB state
shared->SetVerificationFailure();
} else if (s.ok()) {
// found case
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
// not found case
thread->stats.AddGets(1, 0);
} else if (s.IsMergeInProgress() && use_txn) {
// With txn this is sometimes expected.
thread->stats.AddGets(1, 1);
} else if (injected_error_count == 0 || !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr, "MultiGet error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
shared->SetVerificationFailure();
}
// Enable back error injection disbled for checking results
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
return check_multiget_res;
};
// Consistency check
if (do_consistency_check && injected_error_count == 0) {
size_t num_of_keys = keys.size();
assert(values.size() == num_of_keys);
assert(statuses.size() == num_of_keys);
for (size_t i = 0; i < num_of_keys; ++i) {
bool check_result = true;
if (use_txn) {
std::optional<ExpectedValue> ryw_expected_value;
const auto it = ryw_expected_values.find(key_str[i]);
if (it != ryw_expected_values.end()) {
ryw_expected_value = it->second;
}
check_result = check_multiget(keys[i], values[i], statuses[i],
ryw_expected_value);
} else {
check_result = check_multiget(keys[i], values[i], statuses[i],
std::nullopt /* ryw_expected_value */);
}
if (!check_result) {
break;
}
}
}
if (readoptionscopy.snapshot) {
db_->ReleaseSnapshot(readoptionscopy.snapshot);
}
if (use_txn) {
txn->Rollback().PermitUncheckedError();
// Enable back error injection disbled for transactions
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
}
return statuses;
}
void TestGetEntity(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(thread);
SharedState* const shared = thread->shared;
assert(shared);
assert(!rand_column_families.empty());
const int column_family = rand_column_families[0];
assert(column_family >= 0);
assert(column_family < static_cast<int>(column_families_.size()));
ColumnFamilyHandle* const cfh = column_families_[column_family];
assert(cfh);
assert(!rand_keys.empty());
const int64_t key = rand_keys[0];
const std::string key_str = Key(key);
PinnableWideColumns columns_from_db;
PinnableAttributeGroups attribute_groups_from_db;
ReadOptions read_opts_copy = read_opts;
std::string read_ts_str;
Slice read_ts_slice;
if (FLAGS_user_timestamp_size > 0) {
read_ts_str = GetNowNanos();
read_ts_slice = read_ts_str;
read_opts_copy.timestamp = &read_ts_slice;
}
const bool read_older_ts = MaybeUseOlderTimestampForPointLookup(
thread, read_ts_str, read_ts_slice, read_opts_copy);
const ExpectedValue pre_read_expected_value =
thread->shared->Get(column_family, key);
if (fault_fs_guard) {
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead);
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead);
SharedState::ignore_read_error = false;
}
Status s;
if (FLAGS_use_attribute_group) {
attribute_groups_from_db.emplace_back(cfh);
s = db_->GetEntity(read_opts_copy, key_str, &attribute_groups_from_db);
if (s.ok()) {
s = attribute_groups_from_db.back().status();
}
} else {
s = db_->GetEntity(read_opts_copy, cfh, key_str, &columns_from_db);
}
const ExpectedValue post_read_expected_value =
thread->shared->Get(column_family, key);
int injected_error_count = 0;
if (fault_fs_guard) {
injected_error_count = GetMinInjectedErrorCount(
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead),
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead));
if (!SharedState::ignore_read_error && injected_error_count > 0 &&
(s.ok() || s.IsNotFound())) {
// Grab mutex so multiple thread don't try to print the
// stack trace at the same time
MutexLock l(thread->shared->GetMutex());
fprintf(stderr, "Didn't get expected error from GetEntity\n");
fprintf(stderr, "Callstack that injected the fault\n");
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kRead);
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kMetadataRead);
std::terminate();
}
}
if (s.ok()) {
thread->stats.AddGets(1, 1);
if (!FLAGS_skip_verifydb && !read_older_ts) {
if (FLAGS_use_attribute_group) {
assert(!attribute_groups_from_db.empty());
}
const WideColumns& columns =
FLAGS_use_attribute_group
? attribute_groups_from_db.back().columns()
: columns_from_db.columns();
if (!VerifyWideColumns(columns)) {
shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent columns returned by GetEntity for key "
"%s (%" PRIi64 "): %s\n",
StringToHex(key_str).c_str(), rand_keys[0],
WideColumnsToHex(columns).c_str());
} else if (ExpectedValueHelper::MustHaveNotExisted(
pre_read_expected_value, post_read_expected_value)) {
shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent values for key %s (%" PRIi64
"): GetEntity returns %s, "
"expected state does not have the key.\n",
StringToHex(key_str).c_str(), rand_keys[0],
WideColumnsToHex(columns).c_str());
} else {
const uint32_t value_base_from_db =
GetValueBase(WideColumnsHelper::GetDefaultColumn(columns));
if (!ExpectedValueHelper::InExpectedValueBaseRange(
value_base_from_db, pre_read_expected_value,
post_read_expected_value)) {
shared->SetVerificationFailure();
fprintf(
stderr,
"error : inconsistent values for key %s (%" PRIi64
"): GetEntity returns %s "
"with value base %d that falls out of expected state's value "
"base range.\n",
StringToHex(key_str).c_str(), rand_keys[0],
WideColumnsToHex(columns).c_str(), value_base_from_db);
}
}
}
} else if (s.IsNotFound()) {
thread->stats.AddGets(1, 0);
if (!FLAGS_skip_verifydb && !read_older_ts) {
if (ExpectedValueHelper::MustHaveExisted(pre_read_expected_value,
post_read_expected_value)) {
shared->SetVerificationFailure();
fprintf(stderr,
"error : inconsistent values for key %s (%" PRIi64
"): expected state has "
"the key, GetEntity returns NotFound.\n",
StringToHex(key_str).c_str(), rand_keys[0]);
}
}
} else if (injected_error_count == 0 || !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr,
"error : GetEntity() returns %s for key: %s (%" PRIi64 ").\n",
s.ToString().c_str(), StringToHex(key_str).c_str(), rand_keys[0]);
thread->shared->SetVerificationFailure();
}
}
void TestMultiGetEntity(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(thread);
ManagedSnapshot snapshot_guard(db_);
ReadOptions read_opts_copy(read_opts);
read_opts_copy.snapshot = snapshot_guard.snapshot();
assert(!rand_column_families.empty());
const int column_family = rand_column_families[0];
assert(column_family >= 0);
assert(column_family < static_cast<int>(column_families_.size()));
ColumnFamilyHandle* const cfh = column_families_[column_family];
assert(cfh);
assert(!rand_keys.empty());
const size_t num_keys = rand_keys.size();
std::unique_ptr<Transaction> txn;
if (FLAGS_use_txn) {
// TODO(hx235): test fault injection with MultiGetEntity() with
// transactions
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
WriteOptions write_options;
if (FLAGS_rate_limit_auto_wal_flush) {
write_options.rate_limiter_priority = Env::IO_USER;
}
const Status s = NewTxn(write_options, &txn);
if (!s.ok()) {
fprintf(stderr, "NewTxn error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
}
std::vector<std::string> keys(num_keys);
std::vector<Slice> key_slices(num_keys);
std::unordered_map<std::string, ExpectedValue> ryw_expected_values;
for (size_t i = 0; i < num_keys; ++i) {
const int64_t key = rand_keys[i];
keys[i] = Key(key);
key_slices[i] = keys[i];
if (FLAGS_use_txn) {
MaybeAddKeyToTxnForRYW(thread, column_family, key, txn.get(),
ryw_expected_values);
}
}
int injected_error_count = 0;
auto verify_expected_errors = [&](auto get_status) {
assert(fault_fs_guard);
injected_error_count = GetMinInjectedErrorCount(
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead),
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead));
if (injected_error_count) {
int stat_nok_nfound = 0;
for (size_t i = 0; i < num_keys; ++i) {
const Status& s = get_status(i);
if (!s.ok() && !s.IsNotFound()) {
++stat_nok_nfound;
}
}
if (!SharedState::ignore_read_error &&
stat_nok_nfound < injected_error_count) {
// Grab mutex so multiple threads don't try to print the
// stack trace at the same time
assert(thread->shared);
MutexLock l(thread->shared->GetMutex());
fprintf(stderr, "Didn't get expected error from MultiGetEntity\n");
fprintf(stderr, "num_keys %zu Expected %d errors, seen %d\n",
num_keys, injected_error_count, stat_nok_nfound);
fprintf(stderr, "Call stack that injected the fault\n");
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kRead);
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kMetadataRead);
std::terminate();
}
}
};
auto check_results = [&](auto get_columns, auto get_status,
auto do_extra_check, auto call_get_entity) {
// Temporarily disable error injection for checking results
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
const bool check_get_entity =
!injected_error_count && FLAGS_check_multiget_entity_consistency;
for (size_t i = 0; i < num_keys; ++i) {
const WideColumns& columns = get_columns(i);
const Status& s = get_status(i);
bool is_consistent = true;
if (s.ok() && !VerifyWideColumns(columns)) {
fprintf(
stderr,
"error : inconsistent columns returned by MultiGetEntity for key "
"%s: %s\n",
StringToHex(keys[i]).c_str(), WideColumnsToHex(columns).c_str());
is_consistent = false;
} else if (s.ok() || s.IsNotFound()) {
if (!do_extra_check(keys[i], columns, s)) {
is_consistent = false;
} else if (check_get_entity) {
PinnableWideColumns cmp_result;
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_GETENTITY);
const Status cmp_s = call_get_entity(key_slices[i], &cmp_result);
if (!cmp_s.ok() && !cmp_s.IsNotFound()) {
fprintf(stderr, "GetEntity error: %s\n",
cmp_s.ToString().c_str());
is_consistent = false;
} else if (cmp_s.IsNotFound()) {
if (s.ok()) {
fprintf(
stderr,
"Inconsistent results for key %s: MultiGetEntity returned "
"ok, GetEntity returned not found\n",
StringToHex(keys[i]).c_str());
is_consistent = false;
}
} else {
assert(cmp_s.ok());
if (s.IsNotFound()) {
fprintf(
stderr,
"Inconsistent results for key %s: MultiGetEntity returned "
"not found, GetEntity returned ok\n",
StringToHex(keys[i]).c_str());
is_consistent = false;
} else {
assert(s.ok());
const WideColumns& cmp_columns = cmp_result.columns();
if (columns != cmp_columns) {
fprintf(stderr,
"Inconsistent results for key %s: MultiGetEntity "
"returned "
"%s, GetEntity returned %s\n",
StringToHex(keys[i]).c_str(),
WideColumnsToHex(columns).c_str(),
WideColumnsToHex(cmp_columns).c_str());
is_consistent = false;
}
}
}
}
}
if (!is_consistent) {
fprintf(stderr,
"TestMultiGetEntity error: results are not consistent\n");
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state
thread->shared->SetVerificationFailure();
break;
} else if (s.ok()) {
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
thread->stats.AddGets(1, 0);
} else if (injected_error_count == 0 ||
!IsErrorInjectedAndRetryable(s)) {
fprintf(stderr, "MultiGetEntity error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
thread->shared->SetVerificationFailure();
}
}
// Enable back error injection disbled for checking results
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
};
if (FLAGS_use_txn) {
// Transactional/read-your-own-writes MultiGetEntity verification
std::vector<PinnableWideColumns> results(num_keys);
std::vector<Status> statuses(num_keys);
assert(txn);
txn->MultiGetEntity(read_opts_copy, cfh, num_keys, key_slices.data(),
results.data(), statuses.data());
auto ryw_check = [&](const std::string& key, const WideColumns& columns,
const Status& s) -> bool {
const auto it = ryw_expected_values.find(key);
if (it == ryw_expected_values.end()) {
return true;
}
const auto& ryw_expected_value = it->second;
if (s.ok()) {
if (ryw_expected_value.IsDeleted()) {
fprintf(
stderr,
"MultiGetEntity failed the read-your-own-write check for key "
"%s\n",
Slice(key).ToString(true).c_str());
fprintf(stderr,
"MultiGetEntity returned ok, transaction has non-committed "
"delete\n");
return false;
} else {
const uint32_t value_base = ryw_expected_value.GetValueBase();
char expected_value[100];
const size_t sz = GenerateValue(value_base, expected_value,
sizeof(expected_value));
const Slice expected_slice(expected_value, sz);
const WideColumns expected_columns =
GenerateExpectedWideColumns(value_base, expected_slice);
if (columns != expected_columns) {
fprintf(
stderr,
"MultiGetEntity failed the read-your-own-write check for key "
"%s\n",
Slice(key).ToString(true).c_str());
fprintf(stderr, "MultiGetEntity returned %s\n",
WideColumnsToHex(columns).c_str());
fprintf(stderr, "Transaction has non-committed write %s\n",
WideColumnsToHex(expected_columns).c_str());
return false;
}
return true;
}
}
assert(s.IsNotFound());
if (!ryw_expected_value.IsDeleted()) {
fprintf(stderr,
"MultiGetEntity failed the read-your-own-write check for key "
"%s\n",
Slice(key).ToString(true).c_str());
fprintf(stderr,
"MultiGetEntity returned not found, transaction has "
"non-committed write\n");
return false;
}
return true;
};
check_results([&](size_t i) { return results[i].columns(); },
[&](size_t i) { return statuses[i]; }, ryw_check,
[&](const Slice& key, PinnableWideColumns* result) {
return txn->GetEntity(read_opts_copy, cfh, key, result);
});
txn->Rollback().PermitUncheckedError();
// Enable back error injection disbled for transactions
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
} else if (FLAGS_use_attribute_group) {
// AttributeGroup MultiGetEntity verification
if (fault_fs_guard) {
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead);
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead);
SharedState::ignore_read_error = false;
}
std::vector<PinnableAttributeGroups> results;
results.reserve(num_keys);
for (size_t i = 0; i < num_keys; ++i) {
PinnableAttributeGroups attribute_groups;
attribute_groups.emplace_back(cfh);
results.emplace_back(std::move(attribute_groups));
}
db_->MultiGetEntity(read_opts_copy, num_keys, key_slices.data(),
results.data());
if (fault_fs_guard) {
verify_expected_errors(
[&](size_t i) { return results[i][0].status(); });
}
// Compare against non-attribute-group GetEntity result
check_results([&](size_t i) { return results[i][0].columns(); },
[&](size_t i) { return results[i][0].status(); },
[](const Slice& /* key */, const WideColumns& /* columns */,
const Status& /* s */) { return true; },
[&](const Slice& key, PinnableWideColumns* result) {
return db_->GetEntity(read_opts_copy, cfh, key, result);
});
} else {
// Non-AttributeGroup MultiGetEntity verification
if (fault_fs_guard) {
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead);
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead);
SharedState::ignore_read_error = false;
}
std::vector<PinnableWideColumns> results(num_keys);
std::vector<Status> statuses(num_keys);
db_->MultiGetEntity(read_opts_copy, cfh, num_keys, key_slices.data(),
results.data(), statuses.data());
if (fault_fs_guard) {
verify_expected_errors([&](size_t i) { return statuses[i]; });
}
check_results([&](size_t i) { return results[i].columns(); },
[&](size_t i) { return statuses[i]; },
[](const Slice& /* key */, const WideColumns& /* columns */,
const Status& /* s */) { return true; },
[&](const Slice& key, PinnableWideColumns* result) {
return db_->GetEntity(read_opts_copy, cfh, key, result);
});
}
}
Status TestPrefixScan(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
ColumnFamilyHandle* const cfh = column_families_[rand_column_families[0]];
assert(cfh);
const std::string key = Key(rand_keys[0]);
const Slice prefix(key.data(), FLAGS_prefix_size);
std::string upper_bound;
Slice ub_slice;
ReadOptions ro_copy = read_opts;
// Randomly test with `iterate_upper_bound` and `prefix_same_as_start`
//
// Get the next prefix first and then see if we want to set it to be the
// upper bound. We'll use the next prefix in an assertion later on
if (GetNextPrefix(prefix, &upper_bound) && thread->rand.OneIn(2)) {
// For half of the time, set the upper bound to the next prefix
ub_slice = Slice(upper_bound);
ro_copy.iterate_upper_bound = &ub_slice;
if (FLAGS_use_sqfc_for_range_queries) {
ro_copy.table_filter =
sqfc_factory_->GetTableFilterForRangeQuery(prefix, ub_slice);
}
} else if (options_.prefix_extractor && thread->rand.OneIn(2)) {
ro_copy.prefix_same_as_start = true;
}
std::string read_ts_str;
Slice read_ts_slice;
MaybeUseOlderTimestampForRangeScan(thread, read_ts_str, read_ts_slice,
ro_copy);
if (fault_fs_guard) {
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead);
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead);
SharedState::ignore_read_error = false;
}
std::unique_ptr<Iterator> iter(db_->NewIterator(ro_copy, cfh));
uint64_t count = 0;
Status s;
for (iter->Seek(prefix); iter->Valid(); iter->Next()) {
// If upper or prefix bounds is specified, only keys of the target
// prefix should show up. Otherwise, we need to manual exit the loop when
// we see the first key that is not in the target prefix show up.
if (ro_copy.iterate_upper_bound != nullptr ||
ro_copy.prefix_same_as_start) {
assert(iter->key().starts_with(prefix));
} else if (!iter->key().starts_with(prefix)) {
break;
}
++count;
// When iter_start_ts is set, iterator exposes internal keys, including
// tombstones; however, we want to perform column validation only for
// value-like types.
if (ro_copy.iter_start_ts) {
const ValueType value_type = ExtractValueType(iter->key());
if (value_type != kTypeValue && value_type != kTypeBlobIndex &&
value_type != kTypeWideColumnEntity) {
continue;
}
}
if (!VerifyWideColumns(iter->value(), iter->columns())) {
s = Status::Corruption("Value and columns inconsistent",
DebugString(iter->value(), iter->columns()));
break;
}
}
if (ro_copy.iter_start_ts == nullptr) {
assert(count <= GetPrefixKeyCount(prefix.ToString(), upper_bound));
}
if (s.ok()) {
s = iter->status();
}
int injected_error_count = 0;
if (fault_fs_guard) {
injected_error_count = GetMinInjectedErrorCount(
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kRead),
fault_fs_guard->GetAndResetInjectedThreadLocalErrorCount(
FaultInjectionIOType::kMetadataRead));
if (!SharedState::ignore_read_error && injected_error_count > 0 &&
s.ok()) {
// Grab mutex so multiple thread don't try to print the
// stack trace at the same time
MutexLock l(thread->shared->GetMutex());
fprintf(stderr, "Didn't get expected error from PrefixScan\n");
fprintf(stderr, "Callstack that injected the fault\n");
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kRead);
fault_fs_guard->PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType::kMetadataRead);
std::terminate();
}
}
if (s.ok()) {
thread->stats.AddPrefixes(1, count);
} else if (injected_error_count == 0 || !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr,
"TestPrefixScan error: %s with ReadOptions::iterate_upper_bound: "
"%s, prefix_same_as_start: %s \n",
s.ToString().c_str(),
ro_copy.iterate_upper_bound
? ro_copy.iterate_upper_bound->ToString(true).c_str()
: "nullptr",
ro_copy.prefix_same_as_start ? "true" : "false");
thread->shared->SetVerificationFailure();
}
return s;
}
Status TestPut(ThreadState* thread, WriteOptions& write_opts,
const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys,
char (&value)[100]) override {
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
auto shared = thread->shared;
assert(shared);
const int64_t max_key = shared->GetMaxKey();
int64_t rand_key = rand_keys[0];
int rand_column_family = rand_column_families[0];
std::string write_ts;
std::unique_ptr<MutexLock> lock(
new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key)));
while (!shared->AllowsOverwrite(rand_key) &&
(FLAGS_use_merge || shared->Exists(rand_column_family, rand_key))) {
lock.reset();
rand_key = thread->rand.Next() % max_key;
rand_column_family = thread->rand.Next() % FLAGS_column_families;
lock.reset(
new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key)));
if (FLAGS_user_timestamp_size > 0) {
write_ts = GetNowNanos();
}
}
if (write_ts.empty() && FLAGS_user_timestamp_size) {
write_ts = GetNowNanos();
}
const std::string k = Key(rand_key);
ColumnFamilyHandle* const cfh = column_families_[rand_column_family];
assert(cfh);
if (FLAGS_verify_before_write) {
// Temporarily disable error injection for preparation
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
std::string from_db;
Status s = db_->Get(read_opts, cfh, k, &from_db);
bool res = VerifyOrSyncValue(
rand_column_family, rand_key, read_opts, shared,
/* msg_prefix */ "Pre-Put Get verification", from_db, s);
// Enable back error injection disabled for preparation
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
if (!res) {
return s;
}
}
// To track the final write status
Status s;
// To track the initial write status
Status initial_write_s;
// To track whether WAL write may have succeeded during the initial failed
// write
bool initial_wal_write_may_succeed = true;
PendingExpectedValue pending_expected_value =
shared->PreparePut(rand_column_family, rand_key);
const uint32_t value_base = pending_expected_value.GetFinalValueBase();
const size_t sz = GenerateValue(value_base, value, sizeof(value));
const Slice v(value, sz);
uint64_t wait_for_recover_start_time = 0;
do {
// In order to commit the expected state for the initial write failed with
// injected retryable error and successful WAL write, retry the write
// until it succeeds after the recovery finishes
if (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed) {
std::this_thread::sleep_for(std::chrono::microseconds(1 * 1000 * 1000));
}
if (FLAGS_use_put_entity_one_in > 0 &&
(value_base % FLAGS_use_put_entity_one_in) == 0) {
if (!FLAGS_use_txn) {
if (FLAGS_use_attribute_group) {
s = db_->PutEntity(write_opts, k,
GenerateAttributeGroups({cfh}, value_base, v));
} else {
s = db_->PutEntity(write_opts, cfh, k,
GenerateWideColumns(value_base, v));
}
} else {
s = ExecuteTransaction(write_opts, thread, [&](Transaction& txn) {
return txn.PutEntity(cfh, k, GenerateWideColumns(value_base, v));
});
}
} else if (FLAGS_use_timed_put_one_in > 0 &&
((value_base + kLargePrimeForCommonFactorSkew) %
FLAGS_use_timed_put_one_in) == 0) {
WriteBatch wb;
uint64_t write_unix_time = GetWriteUnixTime(thread);
s = wb.TimedPut(cfh, k, v, write_unix_time);
if (s.ok()) {
s = db_->Write(write_opts, &wb);
}
} else if (FLAGS_use_merge) {
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->Merge(write_opts, cfh, k, v);
} else {
s = db_->Merge(write_opts, cfh, k, write_ts, v);
}
} else {
s = ExecuteTransaction(write_opts, thread, [&](Transaction& txn) {
return txn.Merge(cfh, k, v);
});
}
} else {
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->Put(write_opts, cfh, k, v);
} else {
s = db_->Put(write_opts, cfh, k, write_ts, v);
}
} else {
s = ExecuteTransaction(write_opts, thread, [&](Transaction& txn) {
return txn.Put(cfh, k, v);
});
}
}
UpdateIfInitialWriteFails(db_stress_env, s, &initial_write_s,
&initial_wal_write_may_succeed,
&wait_for_recover_start_time);
} while (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed);
if (!s.ok()) {
pending_expected_value.Rollback();
if (IsErrorInjectedAndRetryable(s)) {
assert(!initial_wal_write_may_succeed);
return s;
} else if (FLAGS_inject_error_severity == 2) {
if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
PrintWriteRecoveryWaitTimeIfNeeded(
db_stress_env, initial_write_s, initial_wal_write_may_succeed,
wait_for_recover_start_time, "TestPut");
pending_expected_value.Commit();
thread->stats.AddBytesForWrites(1, sz);
PrintKeyValue(rand_column_family, static_cast<uint32_t>(rand_key), value,
sz);
}
return s;
}
Status TestDelete(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
int64_t rand_key = rand_keys[0];
int rand_column_family = rand_column_families[0];
auto shared = thread->shared;
std::unique_ptr<MutexLock> lock(
new MutexLock(shared->GetMutexForKey(rand_column_family, rand_key)));
// OPERATION delete
std::string write_ts_str = GetNowNanos();
Slice write_ts = write_ts_str;
std::string key_str = Key(rand_key);
Slice key = key_str;
auto cfh = column_families_[rand_column_family];
// To track the final write status
Status s;
// To track the initial write status
Status initial_write_s;
// To track whether WAL write may have succeeded during the initial failed
// write
bool initial_wal_write_may_succeed = true;
// Use delete if the key may be overwritten and a single deletion
// otherwise.
if (shared->AllowsOverwrite(rand_key)) {
PendingExpectedValue pending_expected_value =
shared->PrepareDelete(rand_column_family, rand_key);
uint64_t wait_for_recover_start_time = 0;
do {
// In order to commit the expected state for the initial write failed
// with injected retryable error and successful WAL write, retry the
// write until it succeeds after the recovery finishes
if (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed) {
std::this_thread::sleep_for(
std::chrono::microseconds(1 * 1000 * 1000));
}
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->Delete(write_opts, cfh, key);
} else {
s = db_->Delete(write_opts, cfh, key, write_ts);
}
} else {
s = ExecuteTransaction(write_opts, thread, [&](Transaction& txn) {
return txn.Delete(cfh, key);
});
}
UpdateIfInitialWriteFails(db_stress_env, s, &initial_write_s,
&initial_wal_write_may_succeed,
&wait_for_recover_start_time);
} while (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed);
if (!s.ok()) {
pending_expected_value.Rollback();
if (IsErrorInjectedAndRetryable(s)) {
assert(!initial_wal_write_may_succeed);
return s;
} else if (FLAGS_inject_error_severity == 2) {
if (!is_db_stopped_ &&
s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
PrintWriteRecoveryWaitTimeIfNeeded(
db_stress_env, initial_write_s, initial_wal_write_may_succeed,
wait_for_recover_start_time, "TestDelete");
pending_expected_value.Commit();
thread->stats.AddDeletes(1);
}
} else {
PendingExpectedValue pending_expected_value =
shared->PrepareSingleDelete(rand_column_family, rand_key);
uint64_t wait_for_recover_start_time = 0;
do {
// In order to commit the expected state for the initial write failed
// with injected retryable error and successful WAL write, retry the
// write until it succeeds after the recovery finishes
if (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed) {
std::this_thread::sleep_for(
std::chrono::microseconds(1 * 1000 * 1000));
}
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size == 0) {
s = db_->SingleDelete(write_opts, cfh, key);
} else {
s = db_->SingleDelete(write_opts, cfh, key, write_ts);
}
} else {
s = ExecuteTransaction(write_opts, thread, [&](Transaction& txn) {
return txn.SingleDelete(cfh, key);
});
}
UpdateIfInitialWriteFails(db_stress_env, s, &initial_write_s,
&initial_wal_write_may_succeed,
&wait_for_recover_start_time);
} while (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed);
if (!s.ok()) {
pending_expected_value.Rollback();
if (IsErrorInjectedAndRetryable(s)) {
assert(!initial_wal_write_may_succeed);
return s;
} else if (FLAGS_inject_error_severity == 2) {
if (!is_db_stopped_ &&
s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "single delete error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
fprintf(stderr, "single delete error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
PrintWriteRecoveryWaitTimeIfNeeded(
db_stress_env, initial_write_s, initial_wal_write_may_succeed,
wait_for_recover_start_time, "TestDelete");
pending_expected_value.Commit();
thread->stats.AddSingleDeletes(1);
}
}
return s;
}
Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
// OPERATION delete range
std::vector<std::unique_ptr<MutexLock>> range_locks;
// delete range does not respect disallowed overwrites. the keys for
// which overwrites are disallowed are randomly distributed so it
// could be expensive to find a range where each key allows
// overwrites.
int64_t rand_key = rand_keys[0];
int rand_column_family = rand_column_families[0];
auto shared = thread->shared;
int64_t max_key = shared->GetMaxKey();
if (rand_key > max_key - FLAGS_range_deletion_width) {
rand_key =
thread->rand.Next() % (max_key - FLAGS_range_deletion_width + 1);
}
GetDeleteRangeKeyLocks(thread, rand_column_family, rand_key, &range_locks);
// To track the final write status
Status s;
// To track the initial write status
Status initial_write_s;
// To track whether WAL write may have succeeded during the initial failed
// write
bool initial_wal_write_may_succeed = true;
std::vector<PendingExpectedValue> pending_expected_values =
shared->PrepareDeleteRange(rand_column_family, rand_key,
rand_key + FLAGS_range_deletion_width);
const int covered = static_cast<int>(pending_expected_values.size());
std::string keystr = Key(rand_key);
Slice key = keystr;
auto cfh = column_families_[rand_column_family];
std::string end_keystr = Key(rand_key + FLAGS_range_deletion_width);
Slice end_key = end_keystr;
std::string write_ts_str;
Slice write_ts;
uint64_t wait_for_recover_start_time = 0;
do {
// In order to commit the expected state for the initial write failed with
// injected retryable error and successful WAL write, retry the write
// until it succeeds after the recovery finishes
if (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed) {
std::this_thread::sleep_for(std::chrono::microseconds(1 * 1000 * 1000));
}
if (FLAGS_user_timestamp_size) {
write_ts_str = GetNowNanos();
write_ts = write_ts_str;
s = db_->DeleteRange(write_opts, cfh, key, end_key, write_ts);
} else {
s = db_->DeleteRange(write_opts, cfh, key, end_key);
}
UpdateIfInitialWriteFails(db_stress_env, s, &initial_write_s,
&initial_wal_write_may_succeed,
&wait_for_recover_start_time);
} while (!s.ok() && IsErrorInjectedAndRetryable(s) &&
initial_wal_write_may_succeed);
if (!s.ok()) {
for (PendingExpectedValue& pending_expected_value :
pending_expected_values) {
pending_expected_value.Rollback();
}
if (IsErrorInjectedAndRetryable(s)) {
assert(!initial_wal_write_may_succeed);
return s;
} else if (FLAGS_inject_error_severity == 2) {
if (!is_db_stopped_ && s.severity() >= Status::Severity::kFatalError) {
is_db_stopped_ = true;
} else if (!is_db_stopped_ ||
s.severity() < Status::Severity::kFatalError) {
fprintf(stderr, "delete range error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
fprintf(stderr, "delete range error: %s\n", s.ToString().c_str());
thread->shared->SafeTerminate();
}
} else {
PrintWriteRecoveryWaitTimeIfNeeded(
db_stress_env, initial_write_s, initial_wal_write_may_succeed,
wait_for_recover_start_time, "TestDeleteRange");
for (PendingExpectedValue& pending_expected_value :
pending_expected_values) {
pending_expected_value.Commit();
}
thread->stats.AddRangeDeletions(1);
thread->stats.AddCoveredByRangeDeletions(covered);
}
return s;
}
void TestIngestExternalFile(ThreadState* thread,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
// When true, we create two sst files, the first one with regular puts for
// a continuous range of keys, the second one with a standalone range
// deletion for all the keys. This is to exercise the standalone range
// deletion file's compaction input optimization.
bool test_standalone_range_deletion = thread->rand.OneInOpt(
FLAGS_test_ingest_standalone_range_deletion_one_in);
std::vector<std::string> external_files;
const std::string sst_filename =
FLAGS_db + "/." + std::to_string(thread->tid) + ".sst";
external_files.push_back(sst_filename);
std::string standalone_rangedel_filename;
if (test_standalone_range_deletion) {
standalone_rangedel_filename = FLAGS_db + "/." +
std::to_string(thread->tid) +
"_standalone_rangedel.sst";
external_files.push_back(standalone_rangedel_filename);
}
Status s;
std::ostringstream ingest_options_oss;
// Temporarily disable error injection for preparation
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
for (const auto& filename : external_files) {
if (db_stress_env->FileExists(filename).ok()) {
// Maybe we terminated abnormally before, so cleanup to give this file
// ingestion a clean slate
s = db_stress_env->DeleteFile(filename);
}
if (!s.ok()) {
return;
}
}
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
SstFileWriter sst_file_writer(EnvOptions(options_), options_);
SstFileWriter standalone_rangedel_sst_file_writer(EnvOptions(options_),
options_);
if (s.ok()) {
s = sst_file_writer.Open(sst_filename);
}
if (s.ok() && test_standalone_range_deletion) {
s = standalone_rangedel_sst_file_writer.Open(
standalone_rangedel_filename);
}
if (!s.ok()) {
return;
}
int64_t key_base = rand_keys[0];
int column_family = rand_column_families[0];
std::vector<std::unique_ptr<MutexLock>> range_locks;
range_locks.reserve(FLAGS_ingest_external_file_width);
std::vector<int64_t> keys;
keys.reserve(FLAGS_ingest_external_file_width);
std::vector<uint32_t> values;
values.reserve(FLAGS_ingest_external_file_width);
std::vector<PendingExpectedValue> pending_expected_values;
pending_expected_values.reserve(FLAGS_ingest_external_file_width);
SharedState* shared = thread->shared;
// Grab locks, add keys
assert(FLAGS_nooverwritepercent < 100);
for (int64_t key = key_base;
key < shared->GetMaxKey() &&
key < key_base + FLAGS_ingest_external_file_width;
++key) {
if (key == key_base ||
(key & ((1 << FLAGS_log2_keys_per_lock) - 1)) == 0) {
range_locks.emplace_back(
new MutexLock(shared->GetMutexForKey(column_family, key)));
}
if (test_standalone_range_deletion) {
// Testing standalone range deletion needs a continuous range of keys.
if (shared->AllowsOverwrite(key)) {
if (keys.empty() || (!keys.empty() && keys.back() == key - 1)) {
keys.push_back(key);
} else {
keys.clear();
keys.push_back(key);
}
} else {
if (keys.size() > 0) {
break;
} else {
continue;
}
}
} else {
if (!shared->AllowsOverwrite(key)) {
// We could alternatively include `key` that is deleted.
continue;
}
keys.push_back(key);
}
}
if (s.ok() && keys.empty()) {
return;
}
// set pending state on expected values, create and ingest files.
size_t total_keys = keys.size();
for (size_t i = 0; s.ok() && i < total_keys; i++) {
int64_t key = keys.at(i);
char value[100];
auto key_str = Key(key);
const Slice k(key_str);
Slice v;
if (test_standalone_range_deletion) {
assert(i == 0 || keys.at(i - 1) == key - 1);
s = sst_file_writer.Put(k, v);
} else {
PendingExpectedValue pending_expected_value =
shared->PreparePut(column_family, key);
const uint32_t value_base = pending_expected_value.GetFinalValueBase();
const size_t value_len =
GenerateValue(value_base, value, sizeof(value));
v = Slice(value, value_len);
values.push_back(value_base);
pending_expected_values.push_back(pending_expected_value);
if (FLAGS_use_put_entity_one_in > 0 &&
(value_base % FLAGS_use_put_entity_one_in) == 0) {
WideColumns columns = GenerateWideColumns(values.back(), v);
s = sst_file_writer.PutEntity(k, columns);
} else {
s = sst_file_writer.Put(k, v);
}
}
}
if (s.ok() && !keys.empty()) {
s = sst_file_writer.Finish();
}
if (s.ok() && total_keys != 0 && test_standalone_range_deletion) {
int64_t start_key = keys.at(0);
int64_t end_key = keys.back() + 1;
pending_expected_values =
shared->PrepareDeleteRange(column_family, start_key, end_key);
auto start_key_str = Key(start_key);
const Slice start_key_slice(start_key_str);
auto end_key_str = Key(end_key);
const Slice end_key_slice(end_key_str);
s = standalone_rangedel_sst_file_writer.DeleteRange(start_key_slice,
end_key_slice);
if (s.ok()) {
s = standalone_rangedel_sst_file_writer.Finish();
}
}
if (s.ok()) {
IngestExternalFileOptions ingest_options;
ingest_options.move_files = thread->rand.OneInOpt(2);
ingest_options.verify_checksums_before_ingest = thread->rand.OneInOpt(2);
ingest_options.verify_checksums_readahead_size =
thread->rand.OneInOpt(2) ? 1024 * 1024 : 0;
ingest_options.fill_cache = thread->rand.OneInOpt(4);
ingest_options_oss << "move_files: " << ingest_options.move_files
<< ", verify_checksums_before_ingest: "
<< ingest_options.verify_checksums_before_ingest
<< ", verify_checksums_readahead_size: "
<< ingest_options.verify_checksums_readahead_size
<< ", fill_cache: " << ingest_options.fill_cache
<< ", test_standalone_range_deletion: "
<< test_standalone_range_deletion;
s = db_->IngestExternalFile(column_families_[column_family],
external_files, ingest_options);
}
if (!s.ok()) {
for (PendingExpectedValue& pending_expected_value :
pending_expected_values) {
pending_expected_value.Rollback();
}
if (!IsErrorInjectedAndRetryable(s)) {
fprintf(stderr,
"file ingestion error: %s under specified "
"IngestExternalFileOptions: %s (Empty string or "
"missing field indicates default option or value is used)\n",
s.ToString().c_str(), ingest_options_oss.str().c_str());
thread->shared->SafeTerminate();
}
} else {
for (PendingExpectedValue& pending_expected_value :
pending_expected_values) {
pending_expected_value.Commit();
}
}
}
// Given a key K, this creates an iterator which scans the range
// [K, K + FLAGS_num_iterations) forward and backward.
// Then does a random sequence of Next/Prev operations.
Status TestIterateAgainstExpected(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(thread);
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
auto shared = thread->shared;
assert(shared);
int64_t max_key = shared->GetMaxKey();
const int64_t num_iter = static_cast<int64_t>(FLAGS_num_iterations);
int64_t lb = rand_keys[0];
if (lb > max_key - num_iter) {
lb = thread->rand.Next() % (max_key - num_iter + 1);
}
const int64_t ub = lb + num_iter;
const int rand_column_family = rand_column_families[0];
// Testing parallel read and write to the same key with user timestamp
// is not currently supported
std::vector<std::unique_ptr<MutexLock>> range_locks;
if (FLAGS_user_timestamp_size > 0) {
range_locks = shared->GetLocksForKeyRange(rand_column_family, lb, ub);
}
ReadOptions ro(read_opts);
if (FLAGS_prefix_size > 0) {
ro.total_order_seek = true;
}
std::string read_ts_str;
Slice read_ts;
if (FLAGS_user_timestamp_size > 0) {
read_ts_str = GetNowNanos();
read_ts = read_ts_str;
ro.timestamp = &read_ts;
}
std::string max_key_str;
Slice max_key_slice;
if (!FLAGS_destroy_db_initially) {
max_key_str = Key(max_key);
max_key_slice = max_key_str;
// to restrict iterator from reading keys written in batched_op_stress
// that do not have expected state updated and may not be parseable by
// GetIntVal().
ro.iterate_upper_bound = &max_key_slice;
}
std::string ub_str, lb_str;
if (FLAGS_use_sqfc_for_range_queries) {
ub_str = Key(ub);
lb_str = Key(lb);
ro.table_filter =
sqfc_factory_->GetTableFilterForRangeQuery(lb_str, ub_str);
}
ColumnFamilyHandle* const cfh = column_families_[rand_column_family];
assert(cfh);
const std::size_t expected_values_size = static_cast<std::size_t>(ub - lb);
std::vector<ExpectedValue> pre_read_expected_values;
std::vector<ExpectedValue> post_read_expected_values;
for (int64_t i = 0; i < static_cast<int64_t>(expected_values_size); ++i) {
pre_read_expected_values.push_back(
shared->Get(rand_column_family, i + lb));
}
std::unique_ptr<Iterator> iter;
if (FLAGS_use_multi_cf_iterator) {
std::vector<ColumnFamilyHandle*> cfhs;
cfhs.reserve(rand_column_families.size());
for (auto cf_index : rand_column_families) {
cfhs.emplace_back(column_families_[cf_index]);
}
assert(!cfhs.empty());
iter = db_->NewCoalescingIterator(ro, cfhs);
} else {
iter = std::unique_ptr<Iterator>(db_->NewIterator(ro, cfh));
}
for (int64_t i = 0; i < static_cast<int64_t>(expected_values_size); ++i) {
post_read_expected_values.push_back(
shared->Get(rand_column_family, i + lb));
}
assert(pre_read_expected_values.size() == expected_values_size &&
pre_read_expected_values.size() == post_read_expected_values.size());
std::string op_logs;
auto check_columns = [&]() {
assert(iter);
assert(iter->Valid());
if (!VerifyWideColumns(iter->value(), iter->columns())) {
shared->SetVerificationFailure();
fprintf(stderr,
"Verification failed for key %s: "
"Value and columns inconsistent: value: %s, columns: %s\n",
Slice(iter->key()).ToString(/* hex */ true).c_str(),
iter->value().ToString(/* hex */ true).c_str(),
WideColumnsToHex(iter->columns()).c_str());
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
thread->stats.AddErrors(1);
return false;
}
return true;
};
auto check_no_key_in_range = [&](int64_t start, int64_t end) {
assert(start <= end);
for (auto j = std::max(start, lb); j < std::min(end, ub); ++j) {
std::size_t index = static_cast<std::size_t>(j - lb);
assert(index < pre_read_expected_values.size() &&
index < post_read_expected_values.size());
const ExpectedValue pre_read_expected_value =
pre_read_expected_values[index];
const ExpectedValue post_read_expected_value =
post_read_expected_values[index];
if (ExpectedValueHelper::MustHaveExisted(pre_read_expected_value,
post_read_expected_value)) {
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
if (iter->Valid()) {
fprintf(stderr,
"Verification failed. Expected state has key %s, iterator "
"is at key %s\n",
Slice(Key(j)).ToString(true).c_str(),
iter->key().ToString(true).c_str());
} else {
fprintf(stderr,
"Verification failed. Expected state has key %s, iterator "
"is invalid\n",
Slice(Key(j)).ToString(true).c_str());
}
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
thread->stats.AddErrors(1);
return false;
}
}
return true;
};
// Forward and backward scan to ensure we cover the entire range [lb, ub).
// The random sequence Next and Prev test below tends to be very short
// ranged.
int64_t last_key = lb - 1;
std::string key_str = Key(lb);
iter->Seek(key_str);
op_logs += "S " + Slice(key_str).ToString(true) + " ";
uint64_t curr = 0;
while (true) {
assert(last_key < ub);
if (!iter->Valid()) {
if (!iter->status().ok()) {
if (IsErrorInjectedAndRetryable(iter->status())) {
return iter->status();
} else {
thread->shared->SetVerificationFailure();
fprintf(stderr, "TestIterate against expected state error: %s\n",
iter->status().ToString().c_str());
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
thread->stats.AddErrors(1);
return iter->status();
}
}
if (!check_no_key_in_range(last_key + 1, ub)) {
return Status::OK();
}
break;
}
if (!check_columns()) {
return Status::OK();
}
// iter is valid, the range (last_key, current key) was skipped
GetIntVal(iter->key().ToString(), &curr);
if (static_cast<int64_t>(curr) <= last_key) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"TestIterateAgainstExpected failed: found unexpectedly small "
"key\n");
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
fprintf(stderr, "Last op found key: %s, expected at least: %s\n",
Slice(Key(curr)).ToString(true).c_str(),
Slice(Key(last_key + 1)).ToString(true).c_str());
thread->stats.AddErrors(1);
return Status::OK();
}
if (!check_no_key_in_range(last_key + 1, static_cast<int64_t>(curr))) {
return Status::OK();
}
last_key = static_cast<int64_t>(curr);
if (last_key >= ub - 1) {
break;
}
iter->Next();
op_logs += "N";
}
// backward scan
key_str = Key(ub - 1);
iter->SeekForPrev(key_str);
op_logs += " SFP " + Slice(key_str).ToString(true) + " ";
last_key = ub;
while (true) {
assert(lb < last_key);
if (!iter->Valid()) {
if (!iter->status().ok()) {
if (IsErrorInjectedAndRetryable(iter->status())) {
return iter->status();
} else {
thread->shared->SetVerificationFailure();
fprintf(stderr, "TestIterate against expected state error: %s\n",
iter->status().ToString().c_str());
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
thread->stats.AddErrors(1);
return iter->status();
}
}
if (!check_no_key_in_range(lb, last_key)) {
return Status::OK();
}
break;
}
if (!check_columns()) {
return Status::OK();
}
// the range (current key, last key) was skipped
GetIntVal(iter->key().ToString(), &curr);
if (last_key <= static_cast<int64_t>(curr)) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"TestIterateAgainstExpected failed: found unexpectedly large "
"key\n");
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
fprintf(stderr, "Last op found key: %s, expected at most: %s\n",
Slice(Key(curr)).ToString(true).c_str(),
Slice(Key(last_key - 1)).ToString(true).c_str());
thread->stats.AddErrors(1);
return Status::OK();
}
if (!check_no_key_in_range(static_cast<int64_t>(curr + 1), last_key)) {
return Status::OK();
}
last_key = static_cast<int64_t>(curr);
if (last_key <= lb) {
break;
}
iter->Prev();
op_logs += "P";
}
// Write-prepared/write-unprepared transactions and multi-CF iterator do not
// support Refresh() yet.
if (!(FLAGS_use_txn && FLAGS_txn_write_policy != 0) &&
!FLAGS_use_multi_cf_iterator && thread->rand.OneIn(2)) {
pre_read_expected_values.clear();
post_read_expected_values.clear();
// Refresh after forward/backward scan to allow higher chance of SV
// change.
for (int64_t i = 0; i < static_cast<int64_t>(expected_values_size); ++i) {
pre_read_expected_values.push_back(
shared->Get(rand_column_family, i + lb));
}
Status rs = iter->Refresh();
if (!rs.ok() && IsErrorInjectedAndRetryable(rs)) {
return rs;
}
assert(rs.ok());
op_logs += "Refresh ";
for (int64_t i = 0; i < static_cast<int64_t>(expected_values_size); ++i) {
post_read_expected_values.push_back(
shared->Get(rand_column_family, i + lb));
}
assert(pre_read_expected_values.size() == expected_values_size &&
pre_read_expected_values.size() ==
post_read_expected_values.size());
}
// start from middle of [lb, ub) otherwise it is easy to iterate out of
// locked range
const int64_t mid = lb + num_iter / 2;
key_str = Key(mid);
const Slice key(key_str);
if (thread->rand.OneIn(2)) {
iter->Seek(key);
op_logs += " S " + key.ToString(true) + " ";
if (!iter->Valid() && iter->status().ok()) {
if (!check_no_key_in_range(mid, ub)) {
return Status::OK();
}
} else if (iter->Valid()) {
GetIntVal(iter->key().ToString(), &curr);
if (static_cast<int64_t>(curr) < mid) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"TestIterateAgainstExpected failed: found unexpectedly small "
"key\n");
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
fprintf(stderr, "Last op found key: %s, expected at least: %s\n",
Slice(Key(curr)).ToString(true).c_str(),
Slice(Key(mid)).ToString(true).c_str());
thread->stats.AddErrors(1);
return Status::OK();
}
}
} else {
iter->SeekForPrev(key);
op_logs += " SFP " + key.ToString(true) + " ";
if (!iter->Valid() && iter->status().ok()) {
// iterator says nothing <= mid
if (!check_no_key_in_range(lb, mid + 1)) {
return Status::OK();
}
} else if (iter->Valid()) {
GetIntVal(iter->key().ToString(), &curr);
if (mid < static_cast<int64_t>(curr)) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"TestIterateAgainstExpected failed: found unexpectedly large "
"key\n");
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
fprintf(stderr, "Last op found key: %s, expected at most: %s\n",
Slice(Key(curr)).ToString(true).c_str(),
Slice(Key(mid)).ToString(true).c_str());
thread->stats.AddErrors(1);
return Status::OK();
}
}
}
for (int64_t i = 0; i < num_iter && iter->Valid(); ++i) {
if (!check_columns()) {
return Status::OK();
}
GetIntVal(iter->key().ToString(), &curr);
if (static_cast<int64_t>(curr) < lb) {
iter->Next();
op_logs += "N";
} else if (static_cast<int64_t>(curr) >= ub) {
iter->Prev();
op_logs += "P";
} else {
const uint32_t value_base_from_db = GetValueBase(iter->value());
std::size_t index = static_cast<std::size_t>(curr - lb);
assert(index < pre_read_expected_values.size() &&
index < post_read_expected_values.size());
const ExpectedValue pre_read_expected_value =
pre_read_expected_values[index];
const ExpectedValue post_read_expected_value =
post_read_expected_values[index];
if (ExpectedValueHelper::MustHaveNotExisted(pre_read_expected_value,
post_read_expected_value) ||
!ExpectedValueHelper::InExpectedValueBaseRange(
value_base_from_db, pre_read_expected_value,
post_read_expected_value)) {
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
fprintf(stderr,
"Verification failed: iterator has key %s, but expected "
"state does not.\n",
iter->key().ToString(true).c_str());
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
thread->stats.AddErrors(1);
break;
}
if (thread->rand.OneIn(2)) {
iter->Next();
op_logs += "N";
if (!iter->Valid()) {
break;
}
uint64_t next = 0;
GetIntVal(iter->key().ToString(), &next);
if (next <= curr) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"TestIterateAgainstExpected failed: found unexpectedly "
"small key\n");
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
fprintf(stderr, "Last op found key: %s, expected at least: %s\n",
Slice(Key(next)).ToString(true).c_str(),
Slice(Key(curr + 1)).ToString(true).c_str());
thread->stats.AddErrors(1);
return Status::OK();
}
if (!check_no_key_in_range(static_cast<int64_t>(curr + 1),
static_cast<int64_t>(next))) {
return Status::OK();
}
} else {
iter->Prev();
op_logs += "P";
if (!iter->Valid()) {
break;
}
uint64_t prev = 0;
GetIntVal(iter->key().ToString(), &prev);
if (curr <= prev) {
thread->shared->SetVerificationFailure();
fprintf(stderr,
"TestIterateAgainstExpected failed: found unexpectedly "
"large key\n");
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
fprintf(stderr, "Last op found key: %s, expected at most: %s\n",
Slice(Key(prev)).ToString(true).c_str(),
Slice(Key(curr - 1)).ToString(true).c_str());
thread->stats.AddErrors(1);
return Status::OK();
}
if (!check_no_key_in_range(static_cast<int64_t>(prev + 1),
static_cast<int64_t>(curr))) {
return Status::OK();
}
}
}
}
if (!iter->status().ok()) {
if (IsErrorInjectedAndRetryable(iter->status())) {
return iter->status();
} else {
thread->shared->SetVerificationFailure();
fprintf(stderr, "TestIterate against expected state error: %s\n",
iter->status().ToString().c_str());
fprintf(stderr, "Column family: %s, op_logs: %s\n",
cfh->GetName().c_str(), op_logs.c_str());
thread->stats.AddErrors(1);
return iter->status();
}
}
thread->stats.AddIterations(1);
return Status::OK();
}
bool VerifyOrSyncValue(int cf, int64_t key, const ReadOptions& opts,
SharedState* shared, const std::string& value_from_db,
std::string msg_prefix, const Status& s) const {
if (shared->HasVerificationFailedYet()) {
return false;
}
const ExpectedValue expected_value = shared->Get(cf, key);
if (expected_value.PendingWrite() || expected_value.PendingDelete()) {
if (s.ok()) {
// Value exists in db, update state to reflect that
Slice slice(value_from_db);
uint32_t value_base = GetValueBase(slice);
shared->SyncPut(cf, key, value_base);
return true;
} else if (s.IsNotFound()) {
// Value doesn't exist in db, update state to reflect that
shared->SyncDelete(cf, key);
return true;
} else {
assert(false);
}
}
char expected_value_data[kValueMaxLen];
size_t expected_value_data_size =
GenerateValue(expected_value.GetValueBase(), expected_value_data,
sizeof(expected_value_data));
std::ostringstream read_u64ts;
if (opts.timestamp) {
read_u64ts << " while read with timestamp: ";
uint64_t read_ts;
if (DecodeU64Ts(*opts.timestamp, &read_ts).ok()) {
read_u64ts << std::to_string(read_ts) << ", ";
} else {
read_u64ts << s.ToString()
<< " Encoded read timestamp: " << opts.timestamp->ToString()
<< ", ";
}
}
// compare value_from_db with the value in the shared state
if (s.ok()) {
const Slice slice(value_from_db);
const uint32_t value_base_from_db = GetValueBase(slice);
if (ExpectedValueHelper::MustHaveNotExisted(expected_value,
expected_value)) {
VerificationAbort(
shared, msg_prefix + ": Unexpected value found" + read_u64ts.str(),
cf, key, value_from_db, "");
return false;
}
if (!ExpectedValueHelper::InExpectedValueBaseRange(
value_base_from_db, expected_value, expected_value)) {
VerificationAbort(
shared, msg_prefix + ": Unexpected value found" + read_u64ts.str(),
cf, key, value_from_db,
Slice(expected_value_data, expected_value_data_size));
return false;
}
// TODO: are the length/memcmp() checks repetitive?
if (value_from_db.length() != expected_value_data_size) {
VerificationAbort(shared,
msg_prefix + ": Length of value read is not equal" +
read_u64ts.str(),
cf, key, value_from_db,
Slice(expected_value_data, expected_value_data_size));
return false;
}
if (memcmp(value_from_db.data(), expected_value_data,
expected_value_data_size) != 0) {
VerificationAbort(shared,
msg_prefix + ": Contents of value read don't match" +
read_u64ts.str(),
cf, key, value_from_db,
Slice(expected_value_data, expected_value_data_size));
return false;
}
} else if (s.IsNotFound()) {
if (ExpectedValueHelper::MustHaveExisted(expected_value,
expected_value)) {
VerificationAbort(
shared,
msg_prefix + ": Value not found " + read_u64ts.str() + s.ToString(),
cf, key, "", Slice(expected_value_data, expected_value_data_size));
return false;
}
} else {
VerificationAbort(
shared,
msg_prefix + "Non-OK status " + read_u64ts.str() + s.ToString(), cf,
key, "", Slice(expected_value_data, expected_value_data_size));
return false;
}
return true;
}
void PrepareTxnDbOptions(SharedState* shared,
TransactionDBOptions& txn_db_opts) override {
txn_db_opts.rollback_deletion_type_callback =
[shared](TransactionDB*, ColumnFamilyHandle*, const Slice& key) {
assert(shared);
uint64_t key_num = 0;
bool ok = GetIntVal(key.ToString(), &key_num);
assert(ok);
(void)ok;
return !shared->AllowsOverwrite(key_num);
};
}
void MaybeAddKeyToTxnForRYW(
ThreadState* thread, int column_family, int64_t key, Transaction* txn,
std::unordered_map<std::string, ExpectedValue>& ryw_expected_values) {
assert(thread);
assert(txn);
SharedState* const shared = thread->shared;
assert(shared);
const ExpectedValue expected_value =
thread->shared->Get(column_family, key);
bool may_exist = !ExpectedValueHelper::MustHaveNotExisted(expected_value,
expected_value);
if (!shared->AllowsOverwrite(key) && may_exist) {
// Just do read your write checks for keys that allow overwrites.
return;
}
// With a 1 in 10 probability, insert the just added key in the batch
// into the transaction. This will create an overlap with the MultiGet
// keys and exercise some corner cases in the code
if (thread->rand.OneIn(10)) {
assert(column_family >= 0);
assert(column_family < static_cast<int>(column_families_.size()));
ColumnFamilyHandle* const cfh = column_families_[column_family];
assert(cfh);
const std::string k = Key(key);
enum class Op {
PutOrPutEntity,
Merge,
Delete,
// add new operations above this line
NumberOfOps
};
const Op op = static_cast<Op>(
thread->rand.Uniform(static_cast<int>(Op::NumberOfOps)));
Status s;
switch (op) {
case Op::PutOrPutEntity:
case Op::Merge: {
ExpectedValue put_value;
put_value.SyncPut(static_cast<uint32_t>(thread->rand.Uniform(
static_cast<int>(ExpectedValue::GetValueBaseMask()))));
ryw_expected_values[k] = put_value;
const uint32_t value_base = put_value.GetValueBase();
char value[100];
const size_t sz = GenerateValue(value_base, value, sizeof(value));
const Slice v(value, sz);
if (op == Op::PutOrPutEntity) {
if (FLAGS_use_put_entity_one_in > 0 &&
(value_base % FLAGS_use_put_entity_one_in) == 0) {
s = txn->PutEntity(cfh, k, GenerateWideColumns(value_base, v));
} else {
s = txn->Put(cfh, k, v);
}
} else {
s = txn->Merge(cfh, k, v);
}
break;
}
case Op::Delete: {
ExpectedValue delete_value;
delete_value.SyncDelete();
ryw_expected_values[k] = delete_value;
s = txn->Delete(cfh, k);
break;
}
default:
assert(false);
}
if (!s.ok()) {
fprintf(stderr,
"Transaction write error in read-your-own-write test: %s\n",
s.ToString().c_str());
shared->SafeTerminate();
}
}
}
};
StressTest* CreateNonBatchedOpsStressTest() {
return new NonBatchedOpsStressTest();
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS